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The solution of polynomial equations in integers and in rational numbers has
fascinated mathematicians since antiquity. The simplest non-trivial situation is the
case of one equation in two variables. That is, let f(X,Y) € Q[X,Y] be a (non-
constant) polynomial in two variables with rational coefficients. One is interested
in describing the integral or rational solutions to the equation

*) f(X,Y)=0.

Geometrically, the equation f = 0 describes an algebraic curve C in the affine
plane, so one also speaks of the integral or rational points on the curve C'. We will
denote the set of integral solutions to () by C(Z) and the set of rational solutions
by C(Q). More generally, if R is any ring or field, we write

C(R) = {(z,y) € R* : f(z,y)=0}.

Using a geometric approach turns out to be extremely fruitful. There are sev-
eral simplifications which one can make. First, if the polynomial f(X,Y") factors
in C[X,Y], then C breaks up into a union of two or more curves, each of which
may be studied separately, so it suffices to study curves defined by irreducible poly-
nomials. Second, the curve C' may be singular, but we can always replace C with
a non-singular curve C' so that there is a map C — C which is bijective at all
but finitely many points. It thus suffices to study integral and rational points on
non-singular curves. Third, we can embed a non-singular curve C' into a complete
non-singular curve C' so that the complement C' ~. C consists of a finite set of points.
It turns out that the geometry of C' and C . C largely determines the qualitative
behavior of the integral and rational points on C.

Let K be a number field (e.g. Q), let R be a finitely generated subring of K
(e.g. Z), and let C be a non-singular curve defined by polynomial equations with
coefficients in R. As above, we will let C' be a non-singular completion of C. The
complex points of C, denoted C(C), form a Riemann surface, and the complement
C(C) \ C(C) consists of a finite (possibly empty) set of points. The Euler charac-
teristic of C, denoted x(C'), can be defined as the usual alternating sum of vertices,
edges, and faces of a triangularization of C'(C), or by using any one of the standard
(co)homology theories. Equivalently, if we write g(C) for the genus of the Riemann
surface C(C), then

x(C) =2 -29(C) = #(C(C) ~ C(0)).
The fundamental finiteness theorems for the arithmetic of algebraic curves say that

the Euler characteristic x(C) determines the distribution of integral and rational
points on C. The following table gives the precise statements, where to avoid
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trivialities we have assumed that C' has at least one integral point.

x(C) | CR)
= 2 | isomorphic to P1(K)
=1 isomorphic to R
=0 a finitely generated abelian group
<0 a finite set

Integral Points on a Non-Singular Curve C

The first two lines of this table are classic. The third line, x(C') = 0, actually
contains two theorems. One possibility is g(C') = 0, in which case C' looks like
the curve P! \ {0,000}, and C(R) = R* is a finitely generated group by Dirichlet’s
unit theorem. The second possibility is that C' = C is a curve of genus 1, and then
the finite generation of E(K) is the Mordell-Weil theorem. Finally, the last line of
the table splits into three distinct cases. First, C' may look like P! with at least 3
points removed, second, C' may be a curve of genus 1 with at least 1 point removed,
and third, C' may be a curve of genus > 2 with any number of points removed.
The finiteness of C(R) if C' # C was proven by Siegel in the 1920’s. The finiteness
of C(K) = C(R) when C = C was conjectured by Mordell, also in the 1920’s, and
proven by Faltings in 1983.

In addition to looking for integral and rational solutions to polynomial equations,
there is a vast literature devoted to studying the solutions “modulo p”, or more
generally solutions in a finite field Fy, with ¢ elements. The set of such solutions,
or equivalently the set C(IF,) of F,-rational points on a curve C, is a finite set. For
example, the projective line P!(FF,) has ¢+ 1 points, namely, the ¢ points in F,
plus one extra point at infinity. The following estimate, which says that almost the
same thing is true for any non-singular complete curve C, was conjectured by Emil
Artin and proven by Hasse for curves of genus 1 and by Weil for curves of arbitrary
genus:

g+ 1 - #C(F,)| < 29(C)Va.

One can also look at the points of C' defined over extension fields Fy» of F,. This
information is normally encoded in a generating function called the zeta function

Of C/F%
C F n
Z(C/F,,T) = exp(z MT").
n>1 n

Weil proved that

P(T)
(1=T)(1—qT)’
where P(T') € Z[T) is a polynomial of degree 2¢(C) satifying P(0) = 1 and P(T) =
9129 P(1/qT). Further, P factors as

Z(C[Fq,T) =

29(0)
P(T) = H (1—o4T) with every |a;| < (/g

=1

Notice that this gives Hasse’s estimate, since one can easily check that #C(Fgn) =
@ +1-> al
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Now we come to the book under review. The author’s hope was “to give a full
picture of the contemporary state of the theory of Diophantine equations and the
whole spectrum of methods used in it, while demonstrating their inner unity. How-
ever, space limitations [forced the omission of] the analytic aspects of the theory,
in particular the ... circle method of Hardy-Littlewood and the methods of the
theory of Diophantine approximation.” So the author “restricts the discussion to
arithmetic, algebraic-geometric, and logical aspects of the problem.”

He begins in Chapter 1 by studying equations over finite fields, and, following a
brief introduction to the algebraic geometry of curves in Chapter 4, proves in Chap-
ter 5 the rationality of the zeta function Z(C/F,,T) and the Hasse-Weil estimate
for the number of points in C(F,). The proof given, which is due to the author and
Bombieri, is reasonably elementary and involves the construction of certain rational
functions on C' having high order zeros at the points in C(F,). Also, in Chapter 2
the author discusses some analytic results concerning the distribution of quadratic
residues and non-residues, including a nice description of the large sieve.

Chapters 3, 6, and 7 are devoted to the global arithmetic of curves, that is, the
study of their integral and rational points over number fields. Chapter 3 discusses
the arithmetic of elliptic curves F, including a description of the group law on E
and a proof of Mordell’s theorem that F(Q) is a finitely generated group. Chapter 6
is devoted to an introduction to the theory of non-standard arithmetic. The author
constructs the non-standard reals *R and the non-standard natural numbers *N
and proves some of their basic properties. He then uses non-standard arithmetic in
Chapter 7 to prove the Mahler-Siegel theorem asserting the finiteness of C'(R) for
a curve C of genus at least 1 with at least one point removed.

The theory of curves over finite fields as covered in Stepanov’s book is quite
similar in scope and content to the monograph of Schmidt [2], although Stepanov’s
book has the added advantage of including numerous exercises. There are similarly
other sources for the theory of curves over global (e.g. number) fields, in particular
Lang’s classic [1] and Serre’s book [3]. However, both of these require a much
greater background in algebraic geometry than does Stepanov’s book, both follow
the classical (as opposed to the non-standard) approach to proving the finiteness
of C(R), and they contain few [3] or no [1] exercises. Stepanov also feels that the
non-standard proof of the Siegel-Mahler theorem has the “advantage of revealing
very clearly the ideas on which Siegel’s method is based” (page 258), an assertion
with which the reviewer disagrees but is willing to leave to the reader’s personal
taste. In any case, it is certainly worthwhile to see many different proofs of major
theorems, since each proof reveals new ideas and gives new insights.

Another positive aspect of this book which sets it off from any current competitor
is that it contains literally hundreds of exercises, many of them quite difficult and
given with extensive hints. A student looking for a challenge (as all students should)
would do well to open this book to any chapter and attempt a selection of the
problems. Indeed, the author is honest enough to say in the preface and repeat
in the introduction that “the problems are intended for researchers active in the
field.”

What, then, are the drawbacks of Stepanov’s book? First, although much of the
book is well written, there are places where the exposition seems a trifle unclear.
This was especially apparent in the proof of Mordell’s theorem in Chapter 3 and the
proof of Siegel’s theorem in Chapter 7, although the latter difficulty may have been
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due to the reviewer’s lack of familiarity with non-standard methods. Second, the
translation is adequate, but the book would certainly have benefitted from a final
edit by a native speaker. In particular, articles are frequently missing and there
are many awkward phrases. There are also a fair number of typographical errors,
some of which could cause confusion for the reader. (For example, on page 79,
line 7, the inequality H > p*/4t* should read H > p'/**t€.) A minor related gripe
concerns the references, which are extensive but not in alphabetical order! Finally,
and this is a matter of no small importance in what is supposed to be a textbook
for budding researchers, the list price of $115 is outrageous. Thus most graduate
students who want to benefit from Stepanov’s book will have to hope that their
local library has ordered a copy.
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