
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 33, Number 2, April 1996

Variational methods in image segmentation, by Jean-Michel Morel and Sergio Soli-
mini, Progress in Nonlinear Differential Equations and Their Applications, vol.
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This is a remarkable multifaceted book in a field which is, from my perspective,
a remarkable multifaceted area. Let me state up front so there is no confusion: it is
the same field in which I have been working for a dozen years, and the book itself
is concerned with problems and a conjecture worked on by Jayant Shah and me.
So there is no question of whether this is a truly objective review! With that out
of the way, let me sketch the background for this field and this book.

The scientific study of vision began with the work of the two great German psy-
chophysicists Ernst Mach [Mc] and Heinrich von Helmholtz [vH] in the nineteenth
century. Bits and pieces of interesting math came into it at various times (the
spherical trig of the eyeball and its motions—Listing’s law; the saliency of non-C1

points of a perceived image—Mach bands; the Gestalt grouping laws; etc.). But
by and large the field remained the province of psychologists and neurobiologists
studying vision in animals and especially in man. Quite independently, however,
engineers trying to build robots with sight started to grapple with image processing
and image analysis in the ’60s. Several people brought these two groups together.
The work of Bela Julesz on stereoscopic binocular vision at Bell Labs and that
of David Marr, starting out as a neural modeller and putting together a unified
view of the field [Mr] at the MIT AI lab, are especially notable. The basic idea is
that there is one computational problem of vision, which is solved in many different
animal groups (e.g. mammals, birds and octopi, with independently evolved struc-
tures) and which we hope to solve by computer. This field has come to be called
computer vision, but it is meant to include all computational aspects of vision in
both robots and animals. To put it succinctly, the computational problem is to
use the information in the raw visual input, which is an array of intensity values
measured by the retina or TV camera, and infer the three-dimensional structure of
the world in front of the camera and as much as possible about the identity or cat-
egory of the objects present. Thus the field includes large parts of the related field
of image processing and the fields of image analysis and object recognition. It has
very strong parallels with the fields of speech recognition, computational linguistics
and the AI (artificial intelligence) study of natural language. Before the field grew,
it was often considered as a subfield of AI, but is has now largely gone its own way,
and its practitioners can be found in engineering, computer science and psychology
departments as well as biology, biomedical and statistics departments, etc.

In the meantime, it has also grown as an area of applied mathematics. There
are two quite beautiful applications of mathematics to vision which have been
extensively developed in the last twenty years. One of these is the application
of the geometry of three-dimensional space (and its projections to two-dimensional
image planes) to the inference of three-dimensional structure in the scene producing
an image and to matching the objects in the image with object models of various
types. To give a few examples, one problem is to identify parts of each of a sequence
of images which can be interpreted as successive views of a single rigidly translating
and rotating 3-D object. This goes under the name of structure from motion: cf.
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the recent survey [Fau]. If multiple geometric object models are available, one also
seeks to match specific views of specific objects to each image. This can proceed
by using various projective geometry ideas such as cross ratio [M-Z] or, if a precise
enough 3-D reconstruction can be done, by using curvature properties to identify
the object [K]. The second application of mathematics to vision uses the ideas
of statistics and recasts the fundamental problem of vision as making statistical
inferences about the world from raw image data rather than exact conclusions.
This set of ideas was pioneered by the work of Grenander (see his recent synthesis
[Gr] and my overview [Mu]), Cooper [Ceta1] and Stuart and Donald Geman [G-G],
who saw how to bring in ideas from statistical physics. This work has been done
primarily in a Bayesian statistical framework, some of which has also involved use
of entropy, coding theory and minimum description-length ideas.

Morel and Solimini’s book belongs to the second of these developments. Specif-
ically it is concerned with the problem of segmenting images. To fix notation, let
I(x, y) be a function on a plane domain D given by the measured incident light on
the focal plane of an eye or camera: we call such an I an image. In every image,
various three-dimensional objects will be visible, and their visible surfaces will be
projected on subsets Ri ⊂ D of the domain of I, while the restriction I|Ri is the
subimage representing the ith object. In many cases, since the functions I|Ri are
images of one object, these functions are smooth and slowly varying. This happens,
for instance, if the surfaces have slowly varying albedo and normal vector and no
strong shadows or specular reflections are present. In other cases, the surface is
textured by variable albedo (e.g. patterns on clothes) or by micro-geometry (e.g. a
lawn or pond), but one can still expect that I|Ri has slowly varying power spectrum
or nearly stationary statistics of some kind. In still other cases, such as the presence
of normal vector discontinuities (think of polyhedral objects) or sharp shadows, it
may be best to subdivide the subsets Ri further into parts of the surfaces of objects
in order to achieve some local homogeneity. In any case, we are led to seek a decom-
position D =

⋃
iRi of the domain of I into disjoint parts on each of which I (or in

the textured case, some vector of local statistics of I) is slowly varying. Computing
the correct decomposition of the domain of an image has long been recognized as
the first major computational step in the analysis of images, the central problem
of what people refer to as low-level vision.

The first part of Morel and Solimini’s book is an extensive survey of the many
methods that have been introduced in computer vision for the solution of the seg-
mentation problem. As an aside, they entitle this section modelization following
a mistaken but universal French belief that to modelize is an English verb. This
section is a real tour de force, especially as it is accompanied by an exhaustive bibli-
ography. Nothing comparable to Math Reviews exists in hybrid fields like computer
vision, and it is worthwhile pointing out that the authors cite papers from all over
the map, e.g. J. Optical Society of America, Comp. Vision, Graphics, Image Proc.,
IEEE Transactions, J. Amer. Stat. Assoc., Comm. ACM, SIAM J. Numerical
Anal., as well as the mainline math journals. This part is a first class introduction
to all the basic algorithms for edge detection, region growing and image processing
by nonlinear PDEs, and I recommend it strongly to anyone seeking to get a sense of
the field. The central theme of this part is that all these diverse approaches to seg-
mentation make better sense and are better understood when posed as variational
problems. This means you should define a cost functional or energy functional
E(I, {Ri}) which evaluates how well a proposed segmentation {Ri} explains the
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structure of a given image I. What you want is that the correct segmentation of
most reasonable images I will be either the minimum of E, I being fixed, or at least
close to a local minimum on which E is close to the global minimum of E. They
argue (p. 5) in four ways that this is correct. First, without such a guiding vari-
ational principle, the heuristic algorithms in the literature get extremely complex;
second, that any decent algorithm should state when one segmentation is better
than another, hence should lead to an E; third, that most practical methods that
have been used can be recast variationally; and finally, that variational principles
arise naturally from multiscale analysis.

Multiscale analysis is indeed a second central theme in this book. I think it will
help explain to the reader much of what follows in this book if we briefly review
these ideas. In tactile sensing, you must touch an object to sense it, hence its size
on the tactile sensor array is always the same; in auditory sensing, nature provides
an absolute temporal scale by the bodily rhythms such as your gait, your heartbeat
or the vibration of your vocal cords. But in vision, there is no given scale: if you
move close to a scene, all objects get bigger, and if you move farther away, all
objects get smaller. Thus the statistics of images should be scale-invariant: I(x, y)
and I(σx, σy) should be equally likely. In particular, if you are looking for a face,
it may take up all of D or it may be a tiny part of D. Now a central part of
the job of the applied mathematician is to think about what kind of mathematical
abstraction is best suited to a particular physical reality. If you think about the
full implications of scale invariance, it becomes clear that images are not functions
at all: they are better considered as distributions. In fact, if you had Superman’s
super vision, you would see the microbes on every surface; and as the normals to
their surfaces vary as much as those of macroscopic objects, the laws of shading
imply that I would vary as much from one side of the microbe to the other as
it varies across the whole of D. This infinitely fine everywhere-present detail is
incompatible with I being a function.

Actually this problem comes up again and again in many guises, another one of
which is called clutter. If you were critical in reading the previous paragraph, you
might have wondered whether the segmentation model introduced there was reason-
able for things like your desktop or your bookshelf. Books on a shelf, for instance,
vary so much in color, size, orientation (if some are leaning over or horizontal)
that it is hard to assert confidently that an image of a book shelf has stationary
statistics! This is clutter, and it makes clear that segmentation can only be done if
you also break scale invariance. I would argue that the presence of clutter in visual
scenes shows that modeling (modelizing?) images by distributions is not a mere
mathematical abstraction but the natural setting for a property of images which is
already clear on the limited range of scales (roughly four orders of magnitude) that
our eyes deal with.

The basic variational problem studied in Morel and Solimini’s book does indeed
break scale invariance, but it does so in a minimal way (as opposed to more drastic
solutions like (2.3) on p. 14), and it pays a price for this: it is not clear whether it
is well posed. This is the main issue studied in parts 2 and 3 of the book and is
known as the Mumford-Shah conjecture. The variational problem in question is the
one Shah and I introduced in 1985–89 [M-S1, M-S2] which was based on looking for
another way to analyze the ideas of Cooper [Ceta1], the Gemans [G-G], and Blake
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and Zisserman [B-Z]. The definition is:

E(I, J, {Ri}) =

∫
D

(I − J)2 +
∑
i

∫
Ri

‖∇J‖2 + length(
⋃
i

∂Ri).

(We follow here the book’s refreshing tendency to drop constants which can be
normalized away.) Here a new variable J has made its entrance. J has been called
the cartoon of the full image I and is an idealization of the full image I in which
clutter and noise have been stripped away. J lives in the Sobolev-Hilbert space of
functions whose restriction to each Ri is in H1(Ri). Thus J will be, in general,
discontinuous across the boundaries of the Ri, which we write, following the book,
as K =

⋃
i ∂Ri. The functional E is quadratic in J , so for each K, it has a unique

minimum JK , and we write E(I,K) = E(I, JK ,K) for simplicity. Intuitively,
minimizing E for a fixed I is finding edges K which minimize a sum (in general a
weighted sum) of the length of K and the error and size of the best approximations
of I|Ri by H1-functions J |Ri .

When an image is discretely sampled and E is approximated by a finite sum,
then E(I, J, {Ri}) is still quadratic in J ; and since there are only a finite num-
ber of possible regions Ri, E certainly has a minimum. Experiments show that
minimizing E generally produces reasonable segmentations. More precisely, since
no algorithm is known even in the discrete case for finding the exact minimum of
E, these experiments show that various algorithms which approximate the mini-
mum produce reasonable segmentations. Sections 4.4 and 5.4 describe two such
approximate algorithms, and examples of the output of the second are given in 5.5.

However, discrete sampling introduces another length scale and is a radical sort
of low-pass filtering. Does the original E in the continuous domain have good
minima or minima of any kind? The middle part of the book, entitled “Elements
of Geometric Measure Theory”, develops the tools needed to study this question.
The part is an excellent exposition of the theory of rectifiable sets in Rn starting
with the basic theory of Hausdorff measures Hα. It then introduces the basic tool
of analyzing a set K ⊂ Rn by its densities

Hα(K ∩B(x, r))/rα,

where B(x, r) is a ball of radius R centered at a point x. This leads to the decom-
position of a set K with finite α-Hausdorff measure into its regular and irregular
parts. The rest of the section is devoted to the analysis of the regular part, proving
that regularity is equivalent to being rectifiable. The authors suggest at various
places that these densities are very natural tools in the computer vision context.
Similar ideas have recently been investigated by S. Zucker and his student Dubuc
[D-Z] to find numerical measures that distinguish isolated edges in images from
“dense” sets of edges that are found in textured areas of images. My only quibble
with Morel and Solimini’s exposition is that the authors do not display and num-
ber their definitions, only their theorems, lemmas and corollaries. This sometimes
makes it quite hard to locate the key definitions. This part of the book parallels the
book of Falconer [Fal] which deals with original Besicovitch theory of 1-measurable
subsets of the plane. But by incorporating the approach of Mattila and Marstrand
and the reflection lemmas, the authors manage to give a concise and elementary
treatment in all dimensions.

The last section of the book is entitled “Existence and Structural Properties
of the Minimal Segmentations for the Mumford-Shah Model”. This section is a
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very coherent exposition of the results of the authors and their collaborators on the
well posedness of E. This is approached by extending E to a suitable large set of
K’s within which a weak minima can be proven to exist. This was first done by
De Giorgi and his many collaborators by introducing the concept of SBV functions
(special bounded variation) J , defining K to be the set of jumps of J or the singular
part of ∇J . This led Ambrosio to a proof that E admits a weak minimum for such
a J (see [A]). Morel and Solimini take a different approach by developing several
key a priori inequalities on the densities of minimizers K first. This leads them
directly to the existence of a “less weak” minimum of E, namely, one for which K
is a rectifiable Ahlfors set, meaning one for which uniform upper and lower bounds
exist for their densities:

c−1r ≤ H1(K ∩B(x, r)) ≤ cr

for a fixed c and for every disk B(x, r) in D such that x ∈ K. The key tool in their
work is to compare a segmentation with a given K with one obtained from this by
excision. This means that K ∩B(x, r) is removed from K, but a finite set of closed
arcs T in the boundary ∂B(x, r) of the disk are added to K:

K ′ = K −K ∩B(x, r) + T.

At the same time J is changed inside B(x, r) but remains continuous on ∂B(x, r)−
T .

Since the completion of the manuscript for this book, there has been dramatic
progress in proving the regularity of K by Alexis Bonnet, Guy David and Ambrosio,
Fusco and Pallara. Bonnet’s work is still unpublished, but I want to describe a key
idea in his method which reintroduces multiscale ideas: what he does is blow up
K infinitely around any point x ∈ K while suitably rescaling J and show that
some subsequence approaches a limit K,J which solves a much simpler variational
problem without an image I. More precisely, he shows that there exists εn → 0,
locally constant functions Jn on disks D(x, εn) − K ∩ D(x, εn) and ηn → 0 with
ηn/εn → 0 too such that

• 1
ηn
K converges to a closed set K ∈ R2 and

• 1√
ηn

(J(ηnx)− Jn(ηn))→ J(x) where J is defined on R2 −K.

Then (K,J) “locally minimizes” the improper functional

E(K,J) =

∫
R2−K

‖∇J‖2 +H1(K)

in the sense that any change of (K,J) on a compact subset B of R2—which does
not connect components of R2 −K −B that are disconnected in R2 −K—cannot
decrease the finite part of this functional given by the points in this compact set.

DeGiorgi conjectures in 1989 that the local minima of E are

1. J constant, K = ∅;
2. J locally constant, K a line;
3. J locally constant, K three half lines meeting at a point with angles 2π/3;
4. K a half line, J = c

√
r cos(θ/2), where r, θ are polar coordinates in which K

is the positive x-axis.

Bonnet has proved this under the additional assumption that K is connected. As
a consequence, he can prove that if K0 is an isolated component of the original K,
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then K0 is a finite union of C1-arcs, as conjectured. Whether all the components
of K are isolated remains open however.
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