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Clifford algebras appear in myriad ways in astonishingly many areas of mathe-
matics. For example, there is the wonderful generalization of a substantial portion
of classical harmonic analysis to the setting of “Clifford analysis”, which grew out
of Dirac’s use of Clifford-algebra valued operators to obtain linear differential oper-
ators which square to give the Schrédinger wave operator. (See the brief account of
Clifford analysis in the recent book review [Mc] in this journal; for more extensive
treatments, see the references cited there, such as the excellent book [GM].) Then
there is the geometry of spin manifolds, which depend on the existence of the spin
group as a double cover of the special orthogonal group; the spin group lives in the
multiplicative group of the Clifford algebra. (See [LM] for a superb account of spin
manifolds.) In representation theory, Clifford algebras are the source of the spin
and half-spin representations of the special orthogonal group.

But the focus here is on Clifford algebras in algebra, and particularly in qua-
dratic form theory. Let q: V' — F be a nondegenerate quadratic form on a finite-
dimensional vector space V' over any field F', and let B,: V x V — F' be the asso-
ciated symmetric bilinear form defined by B, (v1,v2) = q(v1 + v2) — q(v1) — q(v2).
To any such ¢ on V there is an associated Clifford algebra C(V') which is one of
the fundamental invariants of g. The multiplication in C (V') encodes the geometry
determined by g on V. For, since v? = ¢(v) - 1 in C(V) for every v € V, it follows
that for v1,v2 € V', vav1 = —vqv2 iff v1 L vy (with respect to By). Clifford algebras
are very useful in the classification of quadratic forms, and they have been impor-
tant ingredients in many of the significant advances in quadratic form theory over
fields.

Besides quadratic form theory over fields, there is a rich classical theory of such
forms over rings of integers in an algebraic number field, especially over Z. More
recently, there has been much interesting work on (sheaves of) quadratic forms
over algebraic geometric varieties. See, e.g., [Kn], [Ar], [OPS], [PSu], [AEJ], [CTS]
for a sampling of work in algebraic geometric quadratic form theory. This work
demands knowledge of quadratic forms over the local rings of points on the variety
and over the affine coordinate rings of affine subsets of the variety. The needs of
the arithmetic and the geometric theories have led to the study of quadratic forms
over a base which is an arbitrary commutative ring, not just a field. Here also,
Clifford algebras play an important réle. The book by A. Hahn is an engaging
and well-written introduction to Clifford algebras and their associated structures
for forms over a commutative ring.

To see what it is that is being generalized to rings, let us first recall a few funda-
mental properties of Clifford algebras over a field. Let g: V' — F be a nondegenerate
quadratic form over a field F', as above. By definition,

(%) cv)y=TV)/Iy

where T(V) = @ V®! is the tensor algebra of V, and I, is the ideal of T(V)
=0
generated by {v®@v —q(v)-1|v € V}. Then, C(V) contains a copy of V, which is
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a generating set of C'(V) as an F-algebra. Indeed, if {w1,... ,wy} is a base of V,
then {1} U | {wi, wi, ... w;,, | i1 < iz < ... < i} is a base of C'(V') as an F-vector
k=1

space. If the characteristic of F' is not 2, the Gram-Schmidt process allows one to
find an orthogonal base of V. The multiplication table for the corresponding base
of C(V) is then particularly easy to work out.

Relative to the grading on T'(V'), the generators of I, are sums of terms of even
degree. Therefore, C(V) inherits from T'(V') the structure of a Z/2Z-graded ring,
obtained by separating out the terms of even and odd degree:

CV)=GV)e (V)

where C;(V')-C;(V) = Ci4;(V) (4, j taken mod 2). So, Cy(V) is a subring of C'(V),
but C1(V) is not a ring. If dimp(V) = n, then dimp(Co(V)) = dimp(C1(V)) =
27=1 Also, C(V) has a canonical involution (i.e., an antiautomorphism 7: C(V) —
C(V) such that 72 is the identity) arising from the involution on T'(V) given by
MR...0VE — U ®...Rv;. Let

AV)={ze C(V) | zco = cpz for all ¢y € Cp(V)} ,

the centralizer of Cy(V) in C'(V'). Then, A(V) is a 2-dimensional subring of C(V),
which, when the characteristic of F' is not 2, is determined by the signed determinant
d of ¢; this d is given by

d = (—1)""=D/227"det(By (wi, wy)) |

where {wy,...,w,} is any base of V; so, d is uniquely determined only up to a
nonzero square in F'. The connection with A(V) is given by A(V) = F[X]/(X%—d).
That is, if d ¢ F*2, where F* = F — {0}, then A(V) = F(Vd); but if d € F*2,
then A(V) 2 F @& F. (When char(F) = 2, either AV) X FO F or A(V) is a
2-dimensional Galois extension of F'; it then determines the appropriate invariant
of ¢ analogous to the signed determinant. This invariant, discovered by Arf [A],
takes its values in the additive group F/{c? + ¢ | ¢ € F'} rather than in F*/F*2.)
Regardless of char(F), the further structure of C(V') depends on the parity of n.
If n is even, C(V) is simple (i.e., it has no nontrivial two-sided ideals) with center
F. Since C(V) has an involution, its class in the Brauer group Br(F') of central
simple F-algebras has order 2 or 1. Also, Cy(V) is simple with center A(V'), unless
A(V) 2 F @ F; in the latter case, Co(V) = C(V) @& C_(V), where C (V) and
C_(V) are isomorphic simple rings of dimension 2"~2 with center F'. When n is
odd, Cy(V) is simple with center F, and C(V) = Co(V) @ A(V).

Let us assume now that char(F) # 2, and let WF denote the Witt ring of
anisotropic quadratic forms over F. This ring, whose structure embodies an enor-
mous amount of information about the quadratic forms over F, has a distin-
guished maximal ideal I'F' consisting of the classes of all quadratic forms on even-
dimensional vector spaces. Then WF/IF = 7,/27 by the map sending a quadratic
form ¢ to its dimension mod 2 (where, by definition, dim(¢q) = dim(V')). Further,
IF/(IF)? = F*/F*2 by the map sending an even-dimensional quadratic form to
its signed determinant. Additionally, there is a well-defined homomorphism

ex: (IF)?/(IF)? — Bry(F) ,
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mapping to the 2-torsion of the Brauer group of F’; the map is given by taking the
class of ¢ to the Brauer class of its Clifford algebra. It was a very old question
whether es is surjective, and Pfister asked explicitly in [P] in 1966 whether es is
injective. These were among the major open questions in quadratic form theory for
many years. They were finally settled in 1981, when Merkurjev gave his astounding
proof, using K-theoretic methods, that es is actually an isomorphism for every
field F' (of characteristic not 2). The surjectivity of es amounts to saying that
for every central simple F-algebra with involution, some size matrix algebra over
A is isomorphic to a tensor product of quaternion algebras. Merkurjev’s proof
of surjectivity of es was a major advance in the theory of algebras, as well as in
quadratic form theory.

Milnor in [Mi] put the map ez in a more general perspective by pointing out that
there could be maps e, : (IF)"/(IF)"*! — H"(F,7/27) (Galois cohomology) for
every n > 0. It is well known that HO(F,Z/27Z) = 7./27, H'(F,Z/2Z) = F*|F*?,
and H?(F,Z/27) = Bry(F); the maps eg and e; correspond to the dimension
parity and signed determinant isomorphisms noted above, while es corresponds to
the Clifford algebra map ez as above which Merkurjev proved to be an isomorphism.
Conceivably, the posited map e, could be an isomorphism, for every n. However,
for general n, it is not even known whether e,, is well-defined. (It is known how e,
should be defined on the standard generating set of (IF)"/(IF)"*1.) Deep work
of Arason, Merkurjev and Suslin, Jacob, and Rost has yielded proofs that e is a
well-defined isomorphism, as is e4, and es is well-defined.

The book under review concerns the generalization of Clifford algebras to the
setting where the base is a commutative ring R. The typical setup is to have a
nondegenerate quadratic form ¢: M — R, where M is a finitely generated projective
R-module. The Clifford algebra C(M) can be defined just as before in (x), and it
will still have the canonical grading, C(M) = Cyo(M) ® C1(M). But significant
complications immediately arise. The analogue of the dimension of V over F' is the
rank of M as an R-module, which is a not necessarily constant function from the
set of prime ideals of R to the set of nonnegative integers. (For any prime ideal p,
rk(M)(p) is the rank of the free module M, over the localized ring R, of R.) The
variation in the value of the rank from prime to prime might seem to doom C(M) to
hopeless complexity, since the structure of C'(V') in the field case depends so much
on the parity of dimp(V'). Fortunately, this difficulty can be overcome by observing
that there is a canonical ring decomposition R = Ry @ Rz and correspondingly
M = My @ M, where M; is a projective R;-module and ¢ maps M; to R;, with
M, of strictly odd rank (at every prime ideal of Ry) and Ms of strictly even rank.
Then, C(M) = C(M;)®C (M), and C(M;) (resp. C(Ms)) behaves much like C(V')
for dim(V') odd (resp. dim(V) even). Notably, C'(Ms) proves to be an Azumaya
algebra over Ry. This is the analogue for a commutative base ring to an algebra
over a field being central simple. Likewise, Co(M7) is an Azumaya algebra over R.
But, the further internal structure of C(M) can be difficult to see, since even if M is
a free R-module, there may be no orthogonal base of M with respect to B,. Often,
orthogonal bases will exist after scalar extension from R to various localizations
of R. Thus, patching and descent techniques become significant, as they can give
information about (M, q) and C(M) from their localizations.

Regardless of the rank of M, let A(M) denote the centralizer of Cy(M) in C(M).
Then A(M) is a separable quadratic (i.e., constant rank 2) algebra but need not



266 BOOK REVIEWS

be a free R-module. To elucidate what can occur with A(M), the author gives an
extensive discussion of separable quadratic algebras and free quadratic algebras,
and the group structure on the family of isomorphism classes of such algebras. As
in the field case, the structure of A(M) is related to the discriminant of ¢g. But,
the discriminant is no longer an element of R*/R*? (R* the group of multiplicative
units of R); instead, there is a discriminant module of ¢, which is a projective R-
module of constant rank 1 with a nonsingular symmetric bilinear form. Despite this
and other complications, a nice theory of Clifford algebras over commutative rings
emerges. There is, however, no analogue to Merkurjev’s Theorem, for Parimala
and Sridharan have given in [PS] an example of a commutative R for which the
Clifford algebra map from strictly even rank quadratic forms over R to Bry(R) is
not surjective.

The main new feature in Hahn’s development of the theory is his emphasis on
what he calls special elements in A(M). He shows that if M has strictly even or
strictly odd rank, then A(M) has a special element iff A(M) is a free R-module
(of rank 2); when this occurs, A(M) = R[X]/(X? — aX —b), for a,b € R with
a’? 4+ 4b € R*. When A(M) has a special element, the connections between A(M)
and the discriminant module are easier to see, and the situation is closer to the
classical setup over a field. While special elements do not always exist, Hahn shows
that in the most important case, when M is a free R-module, A(M) does have a
special element.

The first twelve chapters of Hahn’s book are in the nature of a graduate-level
textbook, with detailed exposition and fairly complete proofs; this part is accessible
to a reader having a little background in commutative algebra (or willing to dig
into the background references Hahn provides). Much new material is covered in
the exercises, for which the author gives extensive hints and references. The final
three chapters are very interesting surveys of deeper results, for which a substantial
further body of mathematics is assumed. Chapter 13 treats the Brauer group (of
Azumaya algebras) of a commutative ring R, and the Brauer-Wall group of Z/2Z-
graded Azumaya algebras over R, and the Witt group of quadratic forms over R,
with special attention to the classical cases R = Z and R = an algebraic number
field. In Chapter 14, the focus is on Witt groups and associated objects for rings
of algebraic integers. Here, a great body of classical number theory is assumed.
The final chapter takes up topics in the analytic and geometric applications of
Clifford algebras and their modules, including Dirac operators, spin manifolds,
and isoparametric hypersurfaces. For this, the background needed is in analysis,
topology, and differential geometry. The survey chapters are still highly readable,
as Hahn gives clear statements of the results he is assuming and good references
for omitted proofs. These chapters provide an excellent way of integrating the
foundational material of the earlier part of the book with important subjects where
it applies, without greatly lengthening the presentation or substantially duplicating
material found elsewhere.

Hahn’s book could be used successfully as a text or a collateral reference for a
graduate course, or for self-study by a motivated graduate student, or by anyone
with some curiosity about the subject. Many results are assumed without proof,
more so than usual in an introductory graduate text, but good sources are always
provided for the omitted proofs. This book provides a nice complement to the one
by Knus [K], which covers much the same ground more comprehensively and is
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more like a research monograph. But for a first approach to the subject, Hahn’s
book is more accessible. I recommend this book highly.
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