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Elasticity theory is the central model of solid mechanics. Properly formulated,
it gives rise to formidable nonlinear problems whose understanding is in many
cases beyond the reach of present-day mathematics. Nevertheless, the last quarter-
century has seen substantial advances in this understanding, due largely to the
development and application of new methods of nonlinear analysis. An important
part in this development has been played by Stuart Antman’s pioneering studies
of the existence and bifurcation of solutions for various rod and shell problems.
His treatment of the theory in the monograph under review is thus of particular
interest.

Perhaps the most famous nonlinear problem of elasticity is that of the buckling
of a rod, and it well illustrates many of the difficulties of problem formulation
and analysis typically encountered in the theory. Suppose we are given an initially
straight cylindrical rod, which we try to compress by applying opposing forces to its
two ends. If the rod is sufficiently thin and we push the ends together hard enough,
the rod does not remain straight, but instead buckles into a curved configuration.
This will happen however perfectly the rod is made and however careful we are
to prevent asymmetries either in the composition of the rod or in the application
of the forces. (Of course gravity will produce such an asymmetry, but this can be
avoided partially by orienting the rod vertically, or almost completely by performing
the experiment in a spacecraft.) Other similar buckling behaviour occurs for thin
curved sheets under applied forces (sometimes accompanied by associated noises,
as in the mistreatment of plastic coffee cups).

How can we model buckling of a rod mathematically? Suppose the rod has length
L. We can identify the material points of the rod by their positions x in the open
subset Ω = (0, L)×D of R3, where the cross-section D is a bounded domain in R2.
We call this undeformed configuration of the rod its reference configuration. We
can thus describe any other configuration of the rod by the mapping y : Ω → R3

which takes each material point x to its deformed position y(x).
If the rod is made from a material such as steel, wood or rubber, we can hope

to model it as elastic, that is, as a material for which the (Piola-Kirchhoff) stress
tensor S(x) at the point x ∈ Ω in the configuration y depends only on the deforma-
tion gradient Dy(x), which in rectangular Cartesian coordinates can be identified

with the 3 × 3 matrix of partial derivatives ∂yi
∂xj

(x). We write this dependence as

S = σ(Dy). If Σ is a smooth oriented surface passing through the point x ∈ Ω
and having unit normal N(x) there, then S(x)N(x) gives the contact force per unit
undeformed area acting at y(x) across the deformed surface y(Σ).

Of course buckling is a dynamic phenomenon, so that we are interested in motions
of the rod described by one-parameter families of configurations x 7→ y(x, t) where
the parameter t is the time. However, we shall first consider a static theory in
which y = y(x) is the only unknown. The governing partial differential equations
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are then given by the balance of forces

Div σ(Dy) = 0,(1)

where we assume for simplicity that the body-force (e.g. gravity) is absent. This
is a system of three equations

3∑
j=1

∂

∂xj
σij(Dy(x)) = 0,

for i = 1, 2, 3 which have to hold for x ∈ Ω. Since σ = σ(A) is nonlinear, so is the
system (1).

To complete the specification of the buckling problem, we need to prescribe
suitable boundary conditions on y. This presents us with an awkward choice. On
the lateral boundary ∂Ω2 := (0, L) × ∂D it is natural to require that the applied
force vanishes, that is,

σ(Dy(x))N(x) = 0(2)

for x ∈ ∂Ω2, where N = N(x) is the unit outward normal to the boundary ∂Ω. But
what should we specify on the rest of the boundary ∂Ω1 consisting of the two end
faces of the rod {0}×D and {L}×D? If we think about this, it becomes obvious that
there are many different possible buckling experiments corresponding to different
loading devices, these leading to different choices of boundary conditions. For
example, we could specify equal and opposite dead loads parallel to the x1 axis on
the end faces, dead loads being those which maintain their direction and magnitude
per unit undeformed area however the rod deforms. While such loads have the
mathematical advantage of being conservative, it is hard to imagine how they could
actually be applied, and they would lead to surprising behaviour not at all in
keeping with the buckling phenomenon we are trying to study. For example, the rod
could rotate through an angle π about the x2 axis, leading to “compressive” loads
becoming tensile! To rule out this behaviour, we could instead consider “live” or
follower loads, in which the prescribed forces are normal to the deformed end faces.
Such loads would also be difficult to apply in practice, and their nonconservative
nature presents forbidding mathematical difficulties.

Instead of giving the forces on the end-faces, we could specify y there. For
example, suppose that one end of the rod is welded to a rigid wall and the other
to a rigid piston whose position is prescribed. While the boundary conditions
corresponding to this realistic loading device are easy to write down, they have the
disadvantage of not leading to a homogeneously compressed prebuckled state. As
a compromise between reality and tractability we therefore instead consider the set
of boundary conditions consisting of (2) and

y1(0, x2, x3) = 0,

y1(L, x2, x3) = λL,(3)

σ21(Dy(0, x2, x3)) = σ31(Dy(0, x2, x3)) = 0,

σ21(Dy(L, x2, x3)) = σ31(Dy(L, x2, x3)) = 0,

for (x2, x3) ∈ D, where λ > 0, corresponding to end faces which are constrained to
lie in the planes {y1 = 0} and {y1 = λL} but are otherwise free to slide in these
planes. A loading device that approximates these boundary conditions consists
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of compression of the rod by parallel lubricated plates, provided contact of the
end-faces with the plates is maintained.

The classical view of buckling, due to Euler [8], is as an exchange of stability. As
the displacement parameter λ passes through a critical value, a trivial solution (e.g.
a uniformly compressed straight configuration of the rod) loses stability, and the rod
moves to a new nontrivial stable configuration. Stability is a dynamic phenomenon,
properly understood only through study of dynamical equations. However, we
can draw on one key piece of dynamical information following from the second
law of thermodynamics, the existence of a Lyapunov function for the governing
dynamical equations, to motivate the energy criterion for stability, namely, that a
configuration y is stable if it minimizes (at least locally) the total free-energy of the
body. This is given by (at constant temperature, which we are assuming)

I(y) =

∫
Ω

ϕ(Dy) dx,(4)

where ϕ = ϕ(A) is the free-energy function of the material. The corresponding
Euler-Lagrange equations are the equilibrium equations (1), the stress being given
by σ(A) = DAϕ(A), where DA denotes differentiation with respect to A. The
function ϕ is required to be frame-indifferent , i.e.

ϕ(RA) = ϕ(A) for all R ∈ SO(3).(5)

For simplicity, we suppose also that ϕ is isotropic, i.e. there are no preferred
directions in the material as regards its mechanical response. This is expressed by
the condition

ϕ(AQ) = ϕ(A) for all Q ∈ SO(3).(6)

Suppose further that the reference configuration corresponds to an absolute mini-
mum of ϕ, so that ϕ(A) > ϕ(1) if A 6∈ SO(3).

In order to analyze the exchange of stability we need a branch of trivial solutions
to (1)–(3), and under some further hypotheses on ϕ (including strong ellipticity, a
strengthened version of rank-one convexity defined below) such a branch ȳλ, λ > 0,
can be shown to exist having the form

ȳλ(x) = (λx1, v(λ)x2, v(λ)x3),(7)

where v(λ) > 0 with v(1) = 1. We now seek critical values of λ such that the
mixed boundary-value problem obtained by linearizing the equilibrium equations
and boundary conditions about ȳλ has a nonzero solution, corresponding to a po-
tential mode of instability of the rod. The greatest such critical value λc < 1 is a
candidate for the value of λ at which buckling occurs. An explicit calculation of the
critical values and corresponding linearized solutions is feasible in special cases (see
[7] for rectangular and circular rods, where the issue of whether the mode corre-
sponding to λc actually corresponds to buckling rather than barrelling is addressed;
corresponding 2D calculations can be found in [6, 18]). However, little is known for
more general cross-sections.

What can we deduce rigorously about solutions to the nonlinear problem from
such a linearized analysis? We would like to show, for example, that a branch
of buckled solutions bifurcates from the trivial solution at λ = λc. But a serious
obstacle is that in order to apply bifurcation theory to the quasilinear system (1)
we seem to be obliged to work in a space of quite smooth functions, such as the
Sobolev space W 2,p(Ω;R3) for p > 3, and then the required regularity properties
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of the linearized operators are in doubt because of the abrupt change in boundary
conditions at {0}×∂D and {L}×∂D. If this difficulty could somehow be overcome,
we could then ask whether an exchange of stability takes place at λc between the
trivial and bifurcating solutions. An important issue here concerns the different
possible meanings of “local minimizer”, depending on the norm used. For example,
under suitable hypotheses the trivial solution ȳλ for λc < λ ≤ 1 can be shown to
be a local minimizer of I in the space W 1,∞(Ω;R3), but more natural norms are
those of Lq(Ω;R3), 1 ≤ q ≤ ∞, or W 1,p(Ω;R3), 1 ≤ p < ∞. Unfortunately there
is no satisfactory theory of local minimizers in the multi-dimensional calculus of
variations that can handle these weaker norms.

In seeking to understand the structure of the set of all solutions an important
role is played by absolute minimizers of the energy. For example, it can in many
cases be proved that the trivial solution ȳλ ceases to be a local minimizer even
in W 1,∞(Ω;R3) for λ < λc; if the absolute minimum of I subject to (2), (3) is
attained, we are then assured of the existence of nontrivial solutions. The question
of the existence of configurations absolutely minimizing the functional I subject to
mixed displacement-traction boundary conditions such as (2), (3) is a story both of
success and failure of modern applied analysis. The existence of such configurations
was proved by the reviewer [2] in 1977 using the direct method of the calculus of
variations (to a large extent inspired by Antman’s work) under the hypotheses that
the free-energy ϕ is polyconvex, i.e. that ϕ(A) = g(A, cof A, detA) for some convex
function g and that ϕ satisfies a suitable growth condition, for example in the
version [15],

ϕ(A) ≥ c0(|A|p + | cof A|q)− c1,(8)

where p ≥ 2, q ≥ 3/2 and c0 > 0, c1 are constants. This class of ϕ covers a
wide range of useful models of materials, for example, various widely used isotropic
free-energy functions for natural rubbers. But this result is known to be far from
optimal. The hypothesis of polyconvexity should be replaced by the much weaker
condition of quasiconvexity, introduced by Morrey [13] in 1952; namely, that for
any bounded open E ⊂ R3∫

E

ϕ(Dv) dx ≥
∫
E

ϕ(A) dx = L3(E)ϕ(A)(9)

for all 3×3 matrices A, whenever v is Lipschitz with v(x) = Ax in a neighbourhood
of the boundary ∂E. Quasiconvexity plays a pivotal role in the multi-dimensional
calculus of variations and in particular is necessary and sufficient for sequential weak
lower semicontinuity of I, this semicontinuity being the basis of the direct method.
It is even in a sense necessary and sufficient for the existence of minimizers (up to
the addition of a lower order perturbation). Unfortunately this desired weakening
of the polyconvexity hypothesis suffers from two serious unresolved difficulties as
the current theory stands. First, there is no known way of adapting the methods
of Morrey to treat elasticity theory; the method makes essential use of piecewise
affine approximations, and no one knows how to handle these in the case of elasticity,
where ϕ has the singular behaviour (highlighted by Antman in his early work)

ϕ(A)→∞ as detA→ 0+,(10)

corresponding to the requirement that it takes infinite energy to compress an elastic
body to zero volume. Second, even if such an adaptation were possible, it would be
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next to useless because no one really understands, or knows in general how to verify,
the nonlocally defined quasiconvexity condition (9). In his 1952 paper, Morrey
discussed whether or not quasiconvexity was equivalent to the still weaker condition
of rank-one convexity that t 7→ ϕ(A+ ta⊗n) be convex for all A and vectors a, n ∈
R3. He thought not, but apparently was not so sure when writing his 1966 book [14],
and the matter was only finally resolved in 1992 by the now famous counterexample
of Šverák [16]. Although quasiconvexity is a mathematically natural hypothesis,
stored-energy functions ϕ that are not quasiconvex are of interest because they can
model materials that undergo phase transformations, and their study is a currently
very active research area (see, for example, [3]).

Even for polyconvex free-energies little is known about the properties of the
energy minimizers that are known to exist, in particular practically nothing about
their smoothness. In fact it is not even known whether they satisfy the Euler-
Lagrange equation (1). As usual, the problem is the singular behaviour (10) of ϕ;
this precludes the application, for example, of the partial regularity theory of Evans
[9].

Another issue over which care must be taken is that of interpenetration of matter .
We want configurations y to be invertible on Ω, though not necessarily on Ω̄. Thus
the rod must not intersect itself, but self-contact could occur. When there is self-
contact, the boundary condition (2) needs modification. However, when minimizing
I, we ignore (2), since it is a natural boundary condition for the variational problem,
and one can then attempt to handle the invertibility problem using the device of
Ciarlet & Necas [5].

We have seen that a satisfying treatment of buckling of a rod on the basis of
nonlinear elastostatics is at present out of reach. To carry out a corresponding
dynamic analysis would require further breakthroughs. One aim of such an analysis
would be to study connecting orbits between the unstable trivial solutions and the
buckled states of the rod, another to establish whether or not the dynamically
stable equilibria are really those that are local energy minimizers in an appropriate
norm. Unfortunately, there is no set of physically reasonable dynamical equations
known for nonlinear elastic materials in 3D for which there is a theory of existence
and qualitative behaviour of solutions of sufficient scope to answer such questions.

Are we making the buckling problem unnecessarily complicated by insisting on
using 3D nonlinear elasticity? Most engineers would answer yes and would be
satisfied by an analysis based on a rod theory, the approach used by Euler. Accord-
ing to such theories, and ignoring thermal effects, a configuration of a thin rod is
represented by a mapping y : [0, L] → R3, together possibly with other variables
dk : [0, L]→ R3 called directors ( their number depending on the degree of sophis-
tication of the theory) giving information about the deformation of cross-sections
of the rod. In the case of statics the governing equations are ordinary differential
equations, for which many of the obstacles encountered in the analysis of the 3D
theory can be overcome. Using a simplified rod theory, the elastica, Euler was
able to give a definitive treatment of planar buckling with explicit formulae for the
compressive load Pc at which buckling occurs; for a uniform rod with hinged ends
Pc = EI(π/L)2, where E is the Young’s modulus and I the second moment of area
of the cross-section.

While rod theories provide a simpler route to modelling buckling, their use raises
conceptual and mathematical issues of the type well known in other areas of physics



274 BOOK REVIEWS

where models at different levels are used to describe the same phenomena. Ideally,
we would like theorems saying that in appropriate circumstances solutions to the
3D theory are well approximated by those obtained from a rod theory. Although
there has been much interesting recent work in identifying various rod and shell
models through postulated asymptotic expansions of solutions to the 3D theory,
the validity of such expansions is rarely addressed. An exception, but in a very
special situation, is the work of Mielke [12]. For buckling problems we would in
particular like to know if the critical buckling displacements/loads as calculated
from the 3D theory converge to those of a rod theory as the thickness of the rod
goes to zero. Such results have been proved on the basis of explicit formulae in
special cases (see [10]), but general results are lacking.

The monograph takes an unusual but logical path through the theory, in the op-
posite direction to that given above, and starting with a careful and comprehensive
treatment of the theory of elastic strings that has no counterpart in the existing
literature. First the equilibrium equations are derived following the method of
Euler. Then the classical dynamical equations are obtained, the derivation being
used to introduce key concepts such as hypotheses on constitutive equations, frame-
indifference and weak solutions. The weak form of the equations is shown to be
equivalent to the balance of linear momentum for arbitrary sub-bodies, anticipat-
ing the three-dimensional version of this key conceptual result (due to Antman &
Osborn [1]) given later. Classical problems, such as the catenary, suspension bridge
and velaria are discussed from a modern perspective, with the emphasis on rigorous
results concerning the existence and multiplicity of solutions.

Next, a theory of planar equilibrium for elastic rods that can stretch and shear is
developed, the theory of the elastica arising as a special case when the constraints
of unshearability and inextensibility are imposed. Special problems such as in-
flated rings and the straight equilibria of whirling rods are discussed. Continuing a
steady build-up towards more complex and testing problems, the buckling of rods,
nonstraight equilibria of whirling rods and the buckling of arches are treated in
turn. The necessary analytic tools of degree theory, bifurcation theory and the
calculus of variations are introduced and explained as needed, with the help of use-
ful appendices on linear and nonlinear analysis. There is an emphasis on careful
problem formulation, especially concerning constitutive hypotheses and boundary
conditions. A more general theory of rods with directors, the special Cosserat
theory, is then developed and analyzed, followed by a corresponding theory for ax-
isymmetric shells, the assumption of axial symmetry retaining the advantage that
the governing equations in statics are ordinary differential equations.

The 3D theory makes its long awaited appearance half way through the book,
happily in a self-contained treatment of continuum mechanics that includes a good
discussion of kinematics, stress, constitutive equations, material constraints, isot-
ropy and thermomechanics. The theory is then specialized to 3D elasticity, covering
such topics as constitutive restrictions, semi-inverse solutions for compressible and
incompressible bodies, universal deformations and motions, perturbation methods
and the relationship of linear to nonlinear elasticity. Armed with 3D elasticity,
Antman returns to the discussion of general rod and shell theories, via a projection
method by which they may be regarded as being constrained 3D theories. This
method has the advantage of clarifying the relationship between the constitutive
equations for the rod and shell theories and those for the 3D theory. He discusses
necking, Mielke’s treatment of St. Venant’s principle, buckling of plates, and the
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status of the von Karman equations with respect to the 3D theory. The book
concludes with a chapter on nonlinear plasticity and one on dynamical problems
that treats Riemann problems, travelling waves and blow-up of solutions. There
is an excellent bibliography in support of the historical and other notes, and the
book comes equipped with those other politenesses to the reader, a good index and
careful proof-reading.

There are three other books available which adopt comparable mathematical
approaches to nonlinear elasticity and which complement Antman’s monograph.
That of Ciarlet [4] is an excellent introduction to 3D elastostatics and methods for
studying the existence of solutions. Valent [17] gives a careful discussion of methods
of proving existence based on the implicit function theorem. Finally, the book of
Marsden & Hughes [11] covers a broader range of topics, including dynamics, is
notable for an original approach to constitutive equations using covariance, and
will appeal to those comfortable with methods of differential geometry. Antman’s
monograph has little overlap in material with these books. A scholarly work, it
is uncompromising in its approach to model formulation, while achieving striking
generality in the analysis of particular problems. It will undoubtedly become a
standard research reference in elasticity but will be appreciated also by teachers of
both solid mechanics and applied analysis for its clear derivation of equations and
wealth of examples.
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