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Since oscillatory processes play a significant and often crucial role in many areas
of the physical and biological sciences, as well as in the mathematical modelling
of economic and social phenomena, it is not surprising that oscillation theory has
become an important part of contemporary applied mathematics. The theory is
well developed, not only for ordinary differential equations but also for more general
functional differential equations (compare the recent monographs [EKZ], [GL], and
[LLZ]). However, the numerical analysis of oscillatory processes is still far from
being complete.

The present book is devoted to periodical processes, the simplest kind of oscilla-
tory processes. It focuses on the analysis of numerical methods for the approximate
solution of nonlinear differential equations with periodic solutions, with particular
emphasis on the topological principles underlying their convergence theory. Most of
the main results are illustrated by applying them to systems of automatic control.
There are, however, no concrete numerical applications or numerical illustrations.

In order to convey an idea of the organization of the book and the topics treated
in it, it will be helpful to provide an outline of its contents. The list given below
shows the headings of the three chapters and their principal sections only (each
section contains anywhere from two to nine subsections).

Chapter I:: Basic concepts (42 pages)
§1: Equations for oscillatory systems
§2: The shift operator and first return function
§3: Integral and integrofunctional operators for periodic problem
§4: The harmonic balance method
§5: The method of mechanical quadratures
§6: The collocation method
§7: The method of finite differences
§8: Factor methods

Chapter II:: Existence theorems for oscillatory regimes (64 pages)
§1: Smooth manifolds and differential forms
§2: Degree of a mapping
§3: Rotation of vector fields
§4: Completely continuous vector fields
§5: Fixed point principles and solution of operator equations
§6: Forced oscillations in systems with weak nonlinearities
§7: Oscillations in systems with strong nonlinearities. Directing functions

method
Chapter III:: Convergence of numerical procedures (144 pages)
§1: Projection methods
§2: Factor methods
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§3: Convergence of the harmonic balance method and the collocation
method in the problem of periodic oscillations

§4: Convergence of the method of mechanical quadratures
§5: Convergence of the method of finite differences
§6: Numerical procedures of approximate construction of oscillatory regimes

in autonomous systems
§7: Affinity theory
§8: Effective convergence criteria for numerical procedures
§9: Effective estimates of the convergence rate for the harmonic balance

method

Notes on references (5 pages) / References (some 250 items) / Index

Periodic solutions of the nonautonomous system

dx

dt
= f(t, x) (x ∈ RN),(1)

where f(t, x) is T -periodic in t, continuous in all its variables, and locally Lipschitz
in x, have (known) period equal to an integer multiple of T and can be characterized
in terms of the shift operator Ut (also called the Poincaré-Andronov operator). Let
p = p(t, s, x) denote the (unique) solution x(t) of (1) corresponding to the initial
datum x(s) = x. If the solution p(t, s, x) is defined for all t ≥ s, then it is said to
be extendible to +∞. In this case there exists a (continuous) operator Ut (the shift
operator) from RN to RN given by

Ut(x) := p(t, 0, x) .

It is easy to show that the solution x(t) of (1) is T -periodic if, and only if, the point
x0 := x(0) is a fixed point of the operator Ut.

For the autonomous system

dx

dt
= f(x) (x ∈ RN) ,(2)

the problem of finding periodic solutions is more difficult: here, the period is not
known a priori. Let Uλ denote the shift operator over the time λ along the orbits
(paths) of equation (2). To find the initial data that lead to periodic solutions
for (2), one has to determine values of λ such that the operator Uλ has fixed points
and then to find those fixed points: if λ = λ0 is a value for which Uλ0 has a fixed
point x0, i.e. Uλ0(x0) = x0, then

x0(t) := Ut(x0)(3)

is a periodic solution of (2), and its period is λ0. A (theoretical and numerical)
difficulty arises from the fact that fixed points of the shift operator are in general
not isolated. To see this, assume that the function given in (3) is non-constant, and
consider the function xh(t) := x0(t+h). This function is a solution of (2): we have

dxh(t)

dt
=
dx0(t+ h)

d(t+ h)
= f(x0(t+ h)) = f(xh(t)) .

Also, xh(t + λ0) = xh(t); thus, xh(t) is a λ0-periodic solution of the autonomous
system (2). This implies that xh = xh(0) = x0(h) is, for any h, a fixed point of
the operator Uλ0 . In other words, the entire curve ` : xh = xh(t) consists of
λ0-periodic solutions to (2).



BOOK REVIEWS 279

In order to generate numerical approximations to T -periodic solutions of (1) and
(2) (where T is not known a priori) or to equations arising in a single-circuit system
of automatic control, e.g.

L

(
d

dt

)
x = M

(
d

dt

)
f(t, x) ,

with L(p) := p` +
∑`
j=1 ajp

`−j and M(p) :=
∑m
j=0 bjp

m−j (` > m), the given
problem is usually reformulated as an operator equation of the form

x = A(x) (x ∈ E),(4)

where A is a (completely continuous) nonlinear (integral) operator on an appro-
priate Banach space E. For example, the problem of finding T -periodic solutions
of

dx

dt
= Ax+ f(t, x) (x ∈ RN ),(5)

where A is a constant matrix (with eigenvalues not equal to 2πki/T, k ∈ Z) and
f(t, x) is T -periodic in t, is equivalent to finding T -periodic solutions of the integral
equation

x(t) =

∫ T

0

G(t, s)f(s, x(s)) ds .(6)

Here, the kernel G is given by the Green’s function associated with (the linear part
of) the differential operator in (5),

G(t, s) = (I − eAT )−1 eA(t−s) (0 ≤ t− s < T ).

Typically, E will be some Banach space of functions x(t) defined on [0, T ] and
possessing Fourier series expansions

x(t) ∼ a0 +
∞∑
k=1

{ak cos(2πkt/T ) + bk sin(2πkt/T )} .

Let

En := span{1, cos(2πt/T ), sin(2πt/T ), . . . , cos(2πnt/T ), sin(2πnt/T )} (n ≥ 1),

and denote by Pn : E −→ En the projection operator which assigns to x ∈ E its
nth partial Fourier sum.

The Galerkin method generates an approximation xn ∈ En which is the solution
of the equation

xn = PnA(xn).(7)

The collocation method applied to (4) requires the approximation xn ∈ En to
satisfy (4) at 2n+ 1 distinct points {tk} in [0, T ],

xn(tk) = A(xn)(tk), (k = 0, 1, . . . , 2n).(8)

(In the present book (Chapter 3) the convergence analysis is restricted to equally
spaced points.) If the basis of the space En is given by 2n + 1 trigonometric
polynomials ψk possessing the canonical property

ψk(tj) =

{
1, if j = k
0, if j 6= k,
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then the collocation equation (8) can be written in the form (7), where Pn is now
the interpolatory projection operator for the collocation points {tk}.

In the harmonic balance method (introduced by N.N. Bogolyubov and N.M.
Krylov in the mid-1930s) the approximation xn ∈ En is found directly from the
given differential equation: in the case of (1), xn is to satisfy the equation

d

dt
xn(t) = Pnf(t, xn(t)) .

The last two methods, as well as the method of mechanical (numerical) quad-
rature and the finite-difference method, can be interpreted as (perturbed) Galerkin
methods, and hence their convergence properties can be studied within the com-
mon theoretical framework of projection methods. However, it is more natural to
analyze the method of numerical quadrature and the finite-difference method in
appropriate “discrete” spaces. Two powerful (and closely related) approaches for
doing this were suggested in the 1960s by P.M. Anselone and R.H. Moore, K.E.
Atkinson, and others (the monograph [A] contains a comprehensive account of this
theory), and by G. Vainikko (compare the collection of papers [V1] and the mono-
graphs [V2], [KV]). Many of the ideas leading to this theory of discrete convergence
occur already in the contributions by I.P. Mysovskikh (1956), H. Brakhage (1960),
and L.V. Kantorovich and V.I. Krylov (1962); they were complemented by those
of F. Stummel and R.D. Grigorieff in the early 1970s.

Anselone and Moore made use of the notion of collectively compact operators for
analyzing discrete approximations to the operator equations (4), (6), while Vainikko
viewed the methods yielding such approximations as particular realizations of the
factor method.

In the factor method the given equation (4) is approximated in factor spaces of a
given Banach space E rather than in subspaces. Let En (n ≥ 0) be Banach spaces,
and let pn : E −→ En be a linear bounded operator with the property that

||pnx||En −→ ||x||E as n→∞ (x ∈ E).

The operator pn is called a connecting operator, inducing the notion of a P-
convergent sequence of approximating operators An for A (cf. (V1),(V2)). As
an illustration, let E = C[0, T ] (=: C), with standard norm, and let En = Eh
be the space of mesh functions xn defined on the mesh Πn := {kh : k =
0, 1, . . . , n} (h := T/n, n ≥ 1); if xn = (xn0, xn1, . . . , xnn), then its norm is
given by ||xn||Eh := max0≤i≤n |xni|. The connecting operators pn : C −→ Eh are
defined by pnx := (x(0), x(h), . . . , x(T )). The space Eh is isomorphic to the factor
space C/Fn, where Fn denotes the space of functions x(t) possessing zero values on
Πn. If the isomorphism is Φ : C/Fn −→ Eh, and if qn : C −→ C/Fn is a canonical
mapping, then the connecting mappings are given by Φqn.

M. Urabe in 1965 was one of the first to analyze the numerical application of the
Galerkin method to autonomous systems with periodic solutions (see, e.g., Chapter
11 in [U]). The fundamental paper by L.V. Kantorovich in 1948 on the abstract
treatment of projection methods for linear equations was followed two years later
by the work of M.A. Krasnosel′skii who presented a convergence theory of Galerkin
methods for general nonlinear operator equations (4); its principal topological tool
was the rotation of completely continuous vector fields (the monograph [KZ] has
become the standard reference for this theory and its applications).
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The analysis of collocation methods for integral equations and more general
(linear) operator equations dates back to the work of L.V. Kantorovich and G.P.
Akilov (1959); it reached its maturity with the subsequent contributions of G.
Vainikko from 1970 onwards.

Although, as mentioned before, the harmonic balance method dates back to the
1930s, its use for systems of automatic control with forced oscillations and the (a
posteriori) error estimation are still the subject of considerable research activity, as
shown by the recent work of, e.g., G. Vainikko and the authors of this book during
the last six years.

Since about 1970 the first author, N.A. Bobylev, has also played a major role
in the development of the theory of numerical quadrature methods for oscillatory
problems (and—with M.A. Krasnosel′skii and others—in the application of affinity
theory to systems of automatic control). The origins of the general theory of discrete
convergence for integral operators may be found in the work of L.V. Kantorovich
and S.L. Sobolev in the late 1940s and early 1950s.

In the book under review the general convergence theory of projection methods
and factor methods and a detailed discussion of the underlying topological principles
(degree of a mapping; rotation of completely continuous vector fields, in particular
those given by Φ(x) := x−A(x); fixed-point theorems) form its core. A large part of
the presentation of these topics reflects the development of the theory and numerical
analysis of operator equations in the former Soviet Union from the early 1930s to the
late 1980s. These topological principles form the foundation of the error analyses,
in Chapter 3, for the Galerkin, harmonic balance, and collocation methods, and
for the methods of numerical quadrature and finite differences. Results are first
given for nonautonomous systems, with single-circuit and multi-circuit systems of
automatic control serving as illustrations. Particular attention is then paid to the
more complex case of autonomous systems where the period T is not known a priori
and where, as indicated earlier, we may have a manifold ` of T -periodic solutions
(leading to degeneracy in the underlying vector field).

Often the topological criteria of convergence of a numerical procedure for approx-
imating periodic solutions of nonlinear systems are difficult to apply because the
direct evaluation (or estimation) of the rotation of the underlying completely con-
tinuous vector field is not possible. In such cases affinity theory furnishes a possible
alternative: it reduces the evaluation of the rotation of the completely continuous
vector field in infinite dimensions to the same problem in a finite-dimensional set-
ting where the role of A in Φ(x) is now assumed by the shift operator UT (x). A
concise description of affinity theory and its application to the derivation of effective
convergence criteria and stability results for the harmonic balance method conclude
Chapter 3.

The book is carefully written, and the organization and exposition of the mate-
rial are quite attractive. Chapter 1 is essentially used to introduce the reader to the
numerical methods for solving (nonautonomous) systems and to describe how these
seemingly very different methods are related and fit into the general frameworks
of Galerkin or factor methods. Chapter 2 is a more or less self-contained intro-
duction to smooth manifolds, exterior differential forms, and the topological tools
described above; it assumes that the reader knows the “basic facts of functional
analysis” (Preface). While the convergence analyses in Chapter 3 are comprehen-
sive and elegant, the authors do not deal with topics like computable error bounds
and the question of optimal order. In my view, the authors also missed an obvious



282 BOOK REVIEWS

opportunity to elaborate on the connection between, and the relative merits of, the
factor method and Anselone’s method of collectively compact operator approxima-
tions.

The book would have benefitted considerably from some careful copy-editing
(incorrect expressions such as variety instead of variant (p. 22,40); network instead
of mesh or grid (p. 33,37); numeric instead of, or in addition to, numerical (p.
33,34,39); closing instead of closure (p. 107), to mention just a few examples, could
have been avoided) and by a more helpful index. In spite of these minor criticisms
the book is a timely and significant contribution to this important field; it contains
many results on the theory of numerical methods for oscillatory problems not easily
accessible elsewhere.
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