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Broadly speaking, one of the primary tasks in the theory of compact Riemann
surfaces is the construction of meromorphic functions. A powerful tool in this
endeavor is the Riemann-Roch theorem which allows the construction of functions
with partially prescribed zeros and poles, such that the number of prescribed poles
exceeds the zeros by a fixed constant depending on the surface. To be more precise,
choose a finite collection of points p; and integers n;. This data, called a divisor, is
usually represented as a sum D = nipj +neps+.... The sum of the n; is the degree
of D, which is denoted by deg D. The vector space L(D) consists of 0 together with
meromorphic functions which vanish to order at least n; at p; if n; > 0, or which
have poles of order at most —n; at p; otherwise. The Riemann-Roch theorem gives
a formula for the dimension:

dimL(D)=degD +1—g+i(D)

where ¢ is genus of the surface (the number of holes) and (D) is a nonnegative
integer. Dropping (D) yields an inequality, called Riemann’s inequality, which is
already quite powerful. For example, this inequality guarantees the existence of a
nonconstant meromorphic function with simple poles at any g + 1 given points. In
a more modern approach, the divisor D would be replaced by a holomorphic line
bundle such that L(D) corresponds to the space of its holomorphic sections. The
degree of D coincides with a topological invariant of the line bundle called its degree
or first Chern number, and (D) can be interpreted as the dimension of a certain
first cohomology group. This abstract approach gives the right point of view for
higher dimensional Riemann-Roch theorems due to Hirzebruch and others [H]. One
complication in the higher dimensional setting is that the “error term” (D) would
get replaced by an alternating sum of dimensions of higher cohomology groups,
so one does not even have a Riemann type inequality in general. Thus in these
cases it becomes essential to have good criteria for the vanishing of these higher
cohomology groups. In the case of Riemann surfaces, it is known that (D) = 0 as
soon as deg D > 2g — 2, and the general principle is that the higher cohomology
should vanish when things are “sufficiently positive”.

An alternative approach to the construction of functions on Riemann surfaces
comes from the uniformization theorem. This theorem states that any simply con-
nected Riemann surface is biholomorphic to either CP! (the Riemann sphere), C
or the unit disc A. Thus the universal cover X of any Riemann surface X is bi-
holomorphic to one of the above surfaces. Therefore X can be represented as a
quotient of one of these surfaces by a discrete group I' of holomorphic transfor-
mations. Meromorphic functions on the original surface correspond to I' invariant
functions on the universal cover, and these can be constructed as ratios of holomor-
phic functions which are “almost” invariant or automorphic. These are holomorphic
functions satisfying the functional equation:

flyz) =J(v,2)f(2), €Tl
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where the J’s (the automorphy factors) are nowhere zero holomorphic functions
satisfying a cocycle condition:

T2, 2) = J(v1,722)J (2, 2).

For example, if T is a group of 2 x 2 matrices acting on A by fractional linear
transformations, then a standard example of an automorphy factor is

Jm(< “! ),z)— (cz + d)>™.

Given an arbitrary holomorphic function F', one can construct an automorphic form
at least formally as a Poincaré series:

> J(,2) F(yz).

vel

Convergence requires some care, but it can be established if F' is bounded and
J = Jy with m > 2 [S, p. 55]. Thus this approach works well when X is the
disk where a large supply of bounded holomorphic functions exist. By contrast,
the classical theory of automorphic functions on C (usually called theta functions)
has a rather different character. The automorphy factors {J(v,z)} determine a
holomorphic line bundle back on X such that the automorphic forms represent
holomorphic sections pulled back to X. For example, {J,,} corresponds to the
mth tensor power of the holomorphic cotangent bundle. This circle of ideas can be
completed by using the Riemann-Roch theorem to compute, or at least estimate,
the dimensions of various spaces of automorphic forms.

One of the goals of Kollar’s book is to attempt a similar program when X is
a complex smooth projective variety, i.e., when X is a complex submanifold of a
complex projective space. Namely, the goal of the book is to use automorphic forms
to construct holomorphic sections of line bundles on X; specifically sections of the
canonical line bundle Kx, which is the highest exterior power of the holomorphic
cotangent bundle, and its higher tensor powers. The dimensions of these spaces,
called plurigenera, are the fundamental invariants of a smooth projective variety.
Kollar devotes a few chapters to the classically studied case where the universal
cover is a ball or a bounded open subset of C%. Plenty of sections of large powers
of the canonical bundle can be produced using Poincaré series. In fact this method
shows that X has general type, which means that there is a constant C' > 0 and
an integer ng > 0 such that there are at least Cn? linearly independent sections of
the nth power of Kx for all n divisible by ng. Poincaré series do not give much
information for small powers of the canonical bundle. In this case, Kollar is able
to prove the existence of nonzero holomorphic sections of quadratic and higher
powers of Kx by using an appropriate Riemann-Roch theorem of Atiyah [A] and
a vanishing theorem of Andreotti-Vesentini [AV].

For arbitrary smooth projective varieties, a major difficulty is that the universal
cover X is not well understood. A couple of decades ago, Shafarevich asked whether
this manifold would be holomorphically convex [Sh, p. 407]. An affirmative answer
together with Remmert’s reduction theorem [GPR, p. 229] would imply that the
compact connected subvarieties of X could be contracted to points so as to obtain a
possibly singular analytic space Sh(f( ) without any positive dimensional compact
subvarieties. There has been quite a bit of work on this problem (e.g. [Gu], [KR],
[N]); however, it is far from solved. Rather than attempting to solve it, Kolldr
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draws inspiration from it and uses it to motivate his notion of the Shafarevich map.
The idea is that the fundamental group 71 (X) would act properly discontinuously
on Sh(X) (were it to exist), resulting in a surjective holomorphic map of algebraic
varieties:

X — Sh(X)/m (X).

This is the prototype of the Shafarevich map. Its characteristic property is that a
subvariety Z of X would get contracted to a point if its preimage in Xisa disjoint
union of compact varieties, or equivalently, if the image of the 71 (Z) in m(X) is
finite. Kollar relaxed this condition to the requirement that the Shafarevich map
X — — > Sh(X) is a rational or meromorphic map with connected fibers, such that
the above property holds only for sufficiently general Z’s. The existence of Sh(X)
was established in an earlier paper [K] (see also [C]) and is also discussed in the
book under review. This variety is not quite unique since there is some freedom
built into the definition. However any two candidates for Sh(X) are birationally
equivalent, which means that they have isomorphic fields of meromorphic functions.

The structure of the Shafarevich map for a compact complex torus or a projective
variety covered by the unit ball in C¢ is particularly simple: it is a birational
equivalence (it would be an isomorphism but for the fact that Sh(X) is only well
defined up to birational equivalence). Kollar calls a variety with this property a
variety with generically large fundamental group. An equivalent formulation is that
X has generically large fundamental group provided that the fundamental group
of any “very general” subvariety should have infinite image in 7;(X). Additional
examples of such varieties can be obtained by taking products of complex tori and
projective varieties covered by the unit ball (ball quotients from now on). The
ball quotients can be singled out from among all these examples by the fact that
they are of general type. These examples are (conjecturally) fairly typical, as they
should exhibit some features of the whole class. For example, Kollar conjectures
that any smooth projective variety with generically large fundamental group can be
“fibered” over a base which also has generically large fundamental group and is of
general type such that the smooth fibers are complex tori. The ball carries nonzero
bounded holomorphic functions, and in general, Kollar shows that a variety with
generically large fundamental group has general type as soon as its universal cover
carries nonzero top degree holomorphic forms with finite LP norm. The proof is an
adaptation of an argument of Gromov [G]. The condition of having general type
is an asymptotic condition about plurigenera; the above results for ball quotients
suggests that it should be possible to obtain lower bounds for smaller plurigenera
for varieties possessing generically large fundamental groups. In the second to last
chapter, Kollar establishes some key theorems along these lines, and this is certainly
the high point of the book. This chapter is entitled “Existence of Automorphic
Forms”. However, unlike the case of ball quotients, the techniques used here come
primarily from within algebraic geometry.

I believe that Kollar has written a powerful book, and not coincidentally, a fairly
demanding one. However, the explanations are clear, and I think that more than
half of it would be accessible to anyone who has mastered the basics of complex
algebraic geometry (say, the first 200 pages of [GH]). In attempting to describe
some of the basic themes of the book, I may have been guilty of misrepresenting
it as a narrowly focused research monograph when in fact it is quite the opposite.
There are a number of general sections, such as chapters 9 through 11 on vanishing
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theorems, which could be read independently of the rest of the book and which
would be of interest to almost any algebraic geometer. But to read only those
sections would be a shame, because one would be missing a great deal of wonderful
mathematics.
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