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1. Introduction

Differential Galois theory has known an outburst of activity in the last decade.
To pinpoint what triggered this renewal is probably a matter of personal taste; all
the same, let me start the present review by a tentative list, restricted on purpose
to “non-obviously differential” occurrences of the theory (and also, as in the book
under review, to the Galois theory of linear differential equations in characteristic
0):

—In 1984, J.-P. Ramis [16] discovered that the classical Stokes phenomenon one
encounters in the resummation of divergent series has a Galoisian nature and can
therefore be viewed as the effect of a generalized monodromy operator.

—In 1986, F. Beukers, D. Brownawell, and G. Hekman [3] realized that the
technical hypothesis upon which Siegel had based his classical generalization of
the Lindemann-Weierstass theorem amounts to a simple condition on a differential
Galois group. This rejuvenated his approach to the theory of E- and G-functions.

—In 1988, N. Katz (cf. [10]) started a new way of investigating Sato-Tate con-
jectures on exponential sums by relating the measure involved in the associated law
to a differential Galois group.

—In 1990, P. Deligne [5] rewrote the fundamentals of tannakian categories. In
this theory, Galois groups preexist Galois extensions. This enabled him to give a
new construction of Picard-Vessiot extensions.

—Algebraic extensions of function fields are particular cases of differential ex-
tensions. In this way, differential Galois theory can contribute to our knowledge of
finite subgroups of classical groups (see, e.g., M. Singer and F. Ulmer [18]).

—Difference equations too have their own Galois theory. A number of authors
have recently applied it with success to the study of recurrence relations and of
their q-analogues.

Thus, interest in differential Galois theory is no longer restricted to specialists.
But (strangely enough for a theory with so much historical appeal), textbook in-
troductions are rare. Kolchin’s exhaustive book [12] covers a much broader area
(including, for instance, the Galois theory of nonlinear differential equations), at
the cost of a heavy machinery to set in place. Kaplansky’s excellent and brisk
introduction to the linear theory [8] has one drawback (more on this in §4). As for
Kuga’s delightful Galois’ dream [14], it is in fact concerned with Fuchsian equations
and their monodromy groups (a finer object for such equations than the differential
Galois group). So this new textbook is welcome.

The core of the book is expressed in a remarkably concise way on the first page of
its preface: “The structure of the differential Galois extension is a twisted form of
the function field of the differential Galois group, with scalars the base differential
field,” and it is on this fact that the whole theory will be based. We now explain
these terms and describe at the same time what differential Galois theory is about,
under the light of the tannakian approach (cf. [5, 10, 1]).
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2. The main characters

Classically, one starts with a differential system

∂Y = AY,(∗)

where Y = t(y1, . . . , yn) is the unknown vector of functions, A is a n × n matrix
with coefficients in the field K = C(z) of rational functions, and ∂ denotes the
usual derivation d/dz. Fix an ordinary point ω ∈ C of the system (∗) (see §4 for a
discussion on this choice), and let U(z) = (uij(z); 1 ≤ i, j ≤ n) be the fundamental
matrix of solutions of (∗) with initial condition uij(ω) = δij . Because of (∗), the
extension L = K(U) of K which the uij ’s generate in the field Mω of germs of
meromorphic functions at ω is stable under differentiation by ∂. This enables us to
define the differential Galois group of (∗) as the group

G = {σ ∈ Aut(L/K), σ∂ = ∂σ}(1)

of automorphisms of the field L which commute with ∂ and induce the identity on
K. The differential extension L/K is called a Picard-Vessiot extension for (∗).

Now let σ be an element of G. For any solution Y of (∗) in Ln, the vector
σ(Y ) = t(σy1, . . . , σyn) is again a solution of (∗), since

∂(σ(Y )) = σ(∂Y ) = σ(AY ) = σ(A)σ(Y ) = Aσ(Y ).

Therefore, there exists an invertible matrix ρ(σ) with coefficients in C such that
σ(U) = Uρ(σ), and one easily checks that the map σ → ρ(σ) is a faithful left
representation of G, so that G may be viewed as a subgroup of GLn(C). Just like its
classical namesake, the object of differential Galois theory is to set up a dictionary
between the subgroups of G and the intermediate differential extensions of L/K,
thereby enabling one to translate the properties of G (and of its representation ρ)
in terms of L (and of the differential system (∗) which gave rise to L).

A rather different definition of the differential Galois group of (∗) is given in
[9]. Although not formally needed in the discussion which follows, we shall now
recall it as a step towards a more adequate description of G itself. Write V for the
K-vector space Kn and D for the differential operator of order 1 on V given by
DY = ∂Y −AY . Note that on each of the classical constructions of linear algebra
(by which we mean here the K-vector spaces E deduced from V by taking its dual
V ∗, direct sums and tensor products, and iterating these basic constructions), there
exists a natural extension of D = DV to a differential operator D = DE of order 1
on E: for instance, if E = EndK(V ) = V ⊗ V ∗, the differential operator D = DE

is given in matrix terms by the rule D(P ) = ∂P − [A,P ]. This is the Lie algebraic
version of the fact that a K-automorphism g of V acts on each of the constructions
of V (on End(V ), the action of g is given matricially by g.P = gPg−1). Finally,
say that a K-subspace W of a construction E is a D-subspace of E if DW ⊆ W
(for instance, since we are in characteristic 0, we may view a symmetric power SpV
as a D-subspace of ⊗pV ). Now, consider the list X(V,D) of all D-subspaces in all
constructions of V , and define with Katz [9] the differential Galois group of (∗) as
the group

G′K = {g ∈ Aut(V/K), gW = W for all W in X(V,D)}.(2)

A good thing about G′K is that it is obviously canonically attached to (∗) (it is
“intrinsic” [1]), whereas G required a choice of base point ω and Cauchy’s existence
theorem to be defined. Another good thing is that by its very definition, G′K is a
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linear algebraic group. But it is a subgroup of Aut(V/K) = GLn(K), not, as ρ(G)
is, of GLn(C)! So, how can they be given the same name?

3. Enters a torsor

Let us first show that, via its representation ρ, G can be given a definition akin
to G′K . For every construction E of V , write E∂ for the C-vector space of solutions
of DEY = 0 in E(Mω), so that on V itself, V ∂ is the C-subspace of V (L) = Ln

generated by the columns of the fundamental matrix U . The definition of DE

and the wronskian lemma show that if E is given by a certain construction over
K (say, E = End(V )), then E∂ can be deduced from V ∂ by exactly the same
construction over C (which therefore lives in E(L)): for instance, (End(V ))∂ =
EndC(V ∂) ⊆ EndL(V (L)). Furthermore, DE induces a differential operator DW

on each subspaceW ofE in the list X(V,D), and the C-vector spaceW ∂ of solutions
of DWY = 0 is just W (L) ∩ E∂ .

With this notation in mind, consider the group (cf. [5], 9.2, [10], 2.1)

GC = {γ ∈ AutC(V ∂), γW ∂ = W ∂ for all W ’s in X(V,D)}.(3)

It is in fact a tautology that (the set of C-points of) GC coincides with (the
image under the representation ρ of) G. Indeed, Definition (1) immediately im-
plies that the elements of ρ(G) stabilize the W ∂ ’s. Conversely, an element γ of GC

acts by K-linearity on the linear forms on the symmetric algebra of
(V ∂ ⊕ · · · ⊕ V ∂) ⊗C K (n factors), i.e., defines an automorphism γ∼ on the poly-
nomial algebra K[Xij(1 ≤ i, j ≤ n)]. But since the set of K-linear forms on a
construction E which vanish on any given element Y in E∂ is a D-subspace W
of E∗, we deduce from (3) that γ∼ stabilizes the ideal of algebraic dependence re-
lations over K satisfied by the coefficients uij ’s of U ; in particular, this action of
γ may be specialized to an automorphism of the subring K[U ] of L and thereby
defines an element σ of Aut(L/K). Moreover, σ commutes with ∂, simply because
γ sends a solution to another one. Thus, σ lies in G, γ = ρ(σ), and GC = ρ(G).

In a sense, we have just recovered Galois’ initial vision of his groups: consider
only those permutations of the roots that respect all polynomial relations they
satisfy over the base field ([7], Prop. 1.2◦, p. 51). The outcome is that G = ρ−1(GC)
is endowed with a structure of an algebraic group over C, and we may speak of its
extension of scalars GK = GC ⊗K to K (which is, in fact, where we saw γ in the
argument above).

Now consider the following subset of HomL(V ∂ ⊗C L, V ⊗K L) (see [5], 9.2 to
9.6, [10], 2.3.2):

P (L) = {p ∈ IsomL(V ∂ ⊗C L, V ⊗K L), p(W ∂) ⊆W (L) for all W ’s in X(V,D)}.
(4)

Because all these D-subspaces W are defined over K, this is the set of L-points of
an affine K-subscheme, say, P , in HomK(V ∂ ⊗C K,V ). Furthermore, given p and
q “in” P, q ◦ p−1 (resp. q−1 ◦ p) is an automorphism of V (resp. V ∂ ⊗K) leaving
each W (resp. W ∂ ⊗K) stable. Thus, we deduce from (2) (resp. (3)) and (4) that
P is a left principal homogeneous space under G′K (resp. a right one under GK).
This is the torsor, or rather bitorsor (cf. [4], 2.4.3), we promised. This structure
immediately tells us that P is reduced and that P and GK become isomorphic over
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the algebraic closure Kalg of K, i.e., that the algebras

Kalg ⊗K K[P ] and Kalg ⊗K K[GK ] = Kalg ⊗C C[GC]

are isomorphic. Incidentally, it also gives an answer to the last question in §2: the
K-algebraic groups GK and G′K are isomorphic over Kalg.

Finally, by its very definition, the fundamental matrix U represents an element of
P (L), and the argument on γ∼ above shows that the Zariski closure over K of that
point contains its orbit under ρ(G). Since GC is K-dense in GK , we infer that P is
an irreducible variety over K, which admits U as a generic point. In other words,
the affine algebra K[P ] coincides with the subring K[U, (detU)−1] of L. Putting
everything together, we have eventually established the algebra isomorphism

Kalg ⊗K K[uij(1 ≤ i, j ≤ n), (det(uij))
−1] ≈ Kalg ⊗C C[GC],(5)

hence the isomorphismKalg⊗K L ≈ Kalg(G) announced at the end of §1. Moreover,
a short argument shows that a K-rational function on P which is fixed under GK
(or equivalently, under GC) must belong to K; for the fixed field of L ≈ K(P )
under G, this translates as:

LG := {x ∈ L, σx = x for all σ in G} = K.(6)

4. The book under review

As we said in §1, the isomorphism (5) forms the cornerstone of Magid’s approach
to the Galois correspondence. The results we described in §3 will be found in
Chapter 4 of the book (algebraicity of the Galois group), Chapter 5 (structure of
the Picard-Vessiot extension) and part of Chapter 3 (the fixed field). However, the
proofs are given in the more algebraic language of cogebras, which makes our explicit
introduction of P unnecessary (see [17] for a general perspective on cogebras).

A more serious difference concerns the construction of the Picard-Vessiot exten-
sion L/K, for which the a priori knowledge of such overfields as Mω enabled me to
cheat in §2. What we need to check in general is not only that there exists a differ-
ential extension L of K splitting (∗), but also that it contains no new constants and,
finally, that it is well defined up to (a non-unique) isomorphism. Kaplansky’s book
([8], p. 22) does not address the question of existence, referring instead to an early
paper of Kolchin [11], which, at least formally, still appealed to these overfields! On
the other hand, Kolchin’s book contains a purely algebraic proof of the existence
and uniqueness of L ([12], IV, §5, Corollary 2, and VI, §6, Prop. 13; cf. also [6],
[2]). These questions are studied in Chapters 1, 2, and 3 of Magid’s book, together
with comments on infinite Picard-Vessiot extensions. (We refer to [5], 9.3, for a
construction of L from the a priori knowledge of the torsor P.)

Combining (5) and (6), Magid easily derives in Chapter 6 the main theorem
of differential Galois theory: the map H → LH gives a dictionary between the
algebraic subgroups of G and the differential extensions of K inside L, where a
normal subgroupH corresponds to a Picard-Vessiot extension ofK, with differential
Galois group isomorphic to G/H. This reflects the fact that any representation of
G is a subquotient of a construction of V ∂ ([17], Prop. 8) and can thus be tracked
back to a subquotient of a construction of (V,D).

The book closes with a chapter on the differential analogue of the inverse problem
in Galois theory, when the base field K is C(z), viz.: given an algebraic subgroup
H of GLn(C), find a differential system (∗) over K whose differential Galois group
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G is isomorphic to H. Various types of answers to this problem can be found in
the literature (see [15] for a list of references). The last to date, announced by
Ramis, bears a striking resemblance to Abhyankar’s conjecture on the coverings
of algebraic curves in finite characteristic. As in the work of Kovacic [13], the
author here searches for an algebraic (more specifically, a constructive) solution
(unfortunately, Theorem 7.13 is incorrect as stated; see [15]). Let me here take
advantage of this review to mention yet another algebraic version of these inverse
problems, which does not seem to have attracted attention until now. As we saw
in §3, the differential Galois groups GK and G′K one can attach to (∗) could be
different over K. Thus, given a reductive K-algebraic group H ′ in GLn(K), can
one always construct a differential system (∗) over K whose intrinsic Galois group
G′K is K-isomorphic to H ′?

There are many other aspects of the book, and in particular, a large supply of
classical examples which illustrate the theory in a convincing way. One may regret
that no mention is made of the more recent computations of differential Galois
groups obtained for families such as Airy or hypergeometric equations (cf. [10],
[3]) or for equations of low order (cf. [18]). But it is probably the price to pay
for its success that it is not possible anymore to do justice to the development of
differential Galois theory within the format of Kaplansky’s book. To paraphrase
[8], differential algebra is no longer “(99 per cent or more) the work of Ritt and
Kolchin”; the self-contained introduction Magid’s 100-page book provides should
help the newcomer to proceed further into this beautiful and active field.
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E-mail address: bertrand@mathp6.jussieu.fr


