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ON SOME APPLICATIONS OF AUTOMORPHIC
FORMS TO NUMBER THEORY
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Abstract. A basic idea of Dirichlet is to study a collection of interesting
quantities {an}n≥1 by means of its Dirichlet series in a complex variable w:∑
n≥1 ann

−w. In this paper we examine this construction when the quantities

an are themselves infinite series in a second complex variable s, arising from
number theory or representation theory. We survey a body of recent work on
such series and present a new conjecture concerning them.

0. Introduction

The object of this paper is to give a survey of a body of recent work applying
methods from automorphic forms to problems in number theory. Generalizing this
work, we shall also formulate a new conjecture concerning Langlands L-functions,
which implies such results as the Lindelöf Hypothesis in twisted aspect. This
new conjecture arises from the work of various subsets of the three authors and
D. Goldfeld, and the authors gratefully acknowledge the influence of Prof. Gold-
feld’s ideas on this conjecture and on their work.

The analytic underpinning of these applications is a basic idea which goes back
to Dirichlet: suppose one has a collection of interesting quantities {an}n≥1 (inter-
esting, that is, from the viewpoint of arithmetic or representation theory). Take
these quantities and build a Dirichlet series out of them:

D(w) =
∞∑
n=1

an
nw

.

If the analytic properties of D(w) in a complex variable w can be discovered, they
may often be used to derive information about the an.

For example, take

an = Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1

0 otherwise.

Then

D(w) =
∑ Λ(n)

nw
= −ζ

′(w)

ζ(w)
,
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where ζ(w) =
∑∞
n=1 n

−w is the Riemann zeta function. In this case,D(w) converges
for Re(w) > 1 and has a simple pole at w = 1 (inherited from the simple pole of
ζ(w)). Since the sum over those n which are products of powers of a fixed set of
primes p1, · · · , pr is given by

r∑
i=1

∑
k≥1

log pi
pkwi

=
r∑
i=1

(log pi) p
−w
i (1− p−wi )−1,

convergent for Re(w) > 0, the existence of a pole at w = 1 implies that there are
infinitely many primes.

Dirichlet invented Dirichlet L-series in order to obtain the analytic continuation
of a somewhat more refined series. Choose any modulus q and an integer a such
that (a, q) = 1. Let

D(w, a, q) =
∑

n≡amodq

Λ(n)

nw
.

Then Dirichlet showed that D(w, a, q) also has a pole at w = 1, implying the
existence of infinitely many primes p ≡ a mod q.

These are examples of some of the simplest applications of the analytic study of
Dirichlet series: if D(w) has a pole in w, then infinitely many of the an must be
non-zero. By taking the analytic argument further, more can often be learned. For
example, in these cases by analytically continuing past Re(w) = 1 and obtaining a
thin region free of zeroes near Re(w) = 1, one may establish mean value estimates.
Stating these in asymptotic form (as x → ∞), one has first the Prime Number
Theorem ∑

n<x

Λ(n) ∼ x

and second Dirichlet’s theorem on primes in an arithmetic progression∑
n<x

n≡amodq

Λ(n) ∼ 1

φ(q)
x.

In this paper we will not be concerned with how such mean value results are estab-
lished. But it is worthwhile to note that they are always in principle obtainable,
given enough analytic information.

We are left with the questions of describing interesting choices of the coefficients
an and of indicating how such analytic information in w may be obtained. One
large family of interesting Dirichlet series was described by Langlands [La]. These
series, each associated to an automorphic form and some additional data, are series
with Euler product and, conjecturally, with analytic continuation and functional
equation as well. For an excellent survey, see Gelbart [Ge]. The study of the
Langlands Conjectures is ongoing and related to many fundamental problems in
number theory, such as Artin’s Conjecture. In this paper we shall suggest a new
family of interesting Dirichlet series. We shall make the case that for many different
types of {an}, which are themselves infinite series in a second complex variable s (!),
the construction of Dirichlet gives a series

(0.1) D(s, w) =
∑
n

an(s)

nw



APPLICATIONS OF AUTOMORPHIC FORMS TO NUMBER THEORY 159

in two complex variables s, w with nice properties, which moreover may be used
to obtain number-theoretic or representation-theoretic information. Though these
series are typically not Euler products, their behavior in w may be studied by using
variants on the Rankin-Selberg method from the theory of automorphic forms. As
for precisely which coefficients an(s) and as for what the Rankin-Selberg method
is and how it is used, it is useful to begin with some examples.

1. First cases: Sums of Dirichlet L-series

Let us begin with the case that the an(s) are series of classical number-theoretic
interest, namely, quadratic Dirichlet L-series. For n a fundamental discriminant,
let L(s, χn) be the L-series associated to the quadratic field Q(

√
n). That is, χn

is defined by the quadratic residue symbol χn(m) =
(
n
m

)
, and L(s, χn) is given by

the (analytic continuation of the) Dirichlet series

(1.1) L(s, χn) =
∑ χn(m)

ms
;

thus the Dedekind zeta function associated to Q(
√
n) is precisely ζ(s)L(s, χn).

Then the quantities L(s, χn) for fixed s but varying n carry interesting informa-
tion. For example, at s = 1 the value L(1, χn) encodes h(n), the class number
of the ring of integers of Q(

√
n), and the regulator if n > 0. Gauss made some

conjectures about the mean value of L(1, χn) as n varies over either positive or
negative discriminants that were eventually proved by Siegel and others (see [G-H]
for a brief history). Alternatively, one could consider s = 1/2. The best-known
upper bound for L(1/2, χn) is due to Burgess [Bu]:

L(1/2, χn)� |n| 3
16 +ε,

but the n-analog of the Lindelöf Hypothesis implies that the true upper bound
should be

L(1/2, χn)� |n|ε.
The value L(1/2, χn) has no known arithmetic significance, but the question of the
true size of L(1/2, χn) seems to be a very deep one, and there are also a number of
applications where it is desirable to have the best possible upper bound. Also, it is
of interest to determine the nature of the mean value of L(1/2, χn), for comparison
with the mean value predicted by the Lindelöf Hypothesis.

As suggested in the introduction, it is then natural to introduce the (two) func-
tions of two complex variables s, w:

D±(s, w) =
∑
±n>0

L(s, χn)

|n|w ,

where in the sum here n varies over fundamental discriminants whose sign is speci-
fied by the index ±. This series was considered by Goldfeld and Hoffstein in [G-H].
They studied its analytic properties by linking it to certain automorphic forms:
Eisenstein series of half-integral weight. Let z = x + iy be in the Poincaré upper
half plane, and j(γ, z) be the classical theta multiplier

j(γ, z) = ε−1
d

( c
d

)
(cz + d)1/2,
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where γ =
(
a b

c d

)
is in the congruence subgroup Γ0(4) of SL2(Z), εd = 1 if d ≡ 1

(mod 4), εd = i if d ≡ 3 (mod 4),
(
c
d

)
is a modified Kronecker symbol as in Shimura

[Shi], and (cz + d)1/2 is chosen so that | arg((cz + d)1/2)| < π
2 . The half-integral

weight Eisenstein series is defined by

E∞(z, s) = ζ(4s)
∑

γ∈Γ∞\Γ0(4)

j(γ, z)−1 Im(γz)s.

This converges for Re(s) > 3/4 and is an automorphic form of weight 1/2 on Γ0(4).
Both E∞ and the translate of E∞ to the cusp 0,

E0(z, s) = z−1/2E∞(−1/4z, s)

are invariant under shifts in z, and so have Fourier expansions. The key point
(essentially due to Maass [Ma]; for an exposition see [Ho, Section 1]) exploited
in [G-H] is that the n-th Fourier coefficient of E0 involves the quadratic L-series
L(2s, χn). To be more precise, if

E0(z, s) =
∑

an(s, y) e(nx)

with e(nx) = exp(2πinx), then for n 6= 0

an(s, y) = An(s)Wsgn(n)(|n|y, s),

where Wsgn(n)(y, s) is a complicated Whittaker function depending on the sign of

n and An(s) is a Dirichlet series. If n = n0n
2
1 with n0 squarefree, then

(1.2) An(s) = L2(2s, χn0) bn(s)

where L2(2s, χn0) is the quadratic L-series associated to the field Q(
√
n0) with the

Euler factor corresponding to 2 removed, and bn(s) is a Dirichlet polynomial which
equals 1 if n1 = 1 and whose complexity grows as n1 increases.

Following Hecke, one may take the classical Mellin transform of E0(z, s) in a new
complex variable w (with some technical steps to insure convergence). This yields
the series

(1.3) I+(s, w)
∑
n>0

An(s)n−w + I−(s, w)
∑
n<0

An(s) |n|−w

where

I±(s, w) =

∫ ∞
0

W±(y, s) yw−1 dy.

The integrals defining I± are convergent for Re(s), Re(w) sufficiently large and
have meromorphic continuation to all of C2; they are not products of Γ-functions,
but rather products of Γ-functions and hypergeometric functions; see [G-H]. The
Hecke integral implies that, remarkably, the expression (1.3) satisfies a functional
equation in w. Going through some sieving to eliminate all but squarefree terms
and some asymptotic analysis of the Whittaker functions to separate positive and
negative discriminants, one may obtain the analytic properties of D±.
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As an application, one gets, as in [G-H], that for any s with Re(s) ≥ 1/2,∑
0<±n<x
n squarefree

L2(s, χn) = c1(s)x+ c2(s,±)x3/2−s + c3(s)x log x+ O
(
xθ(s)+ε

)
.

Here c2(s,±) = 0 for Re(s) ≥ 1, c3(s) = 0 if s 6= 1/2, and if s = 1/2, then
θ(s) = 19/32. In the past, as in Siegel [Si], this was treated by writing L2(s, χn) as
a finite sum using the approximate functional equation, interchanging the order of
summation, and using estimates for exponential sums; the best result obtained by
this method, due to Jutila [Ju], is θ(1/2) = 3/4.

Similar techniques allow one to study the series

(1.4) D±(s, w;χ) =
∑
±n>0

L(s, χχn)

|n|w ,

where χ is any fixed Dirichlet character. Rather than summing over fundamen-
tal discriminants, one may sum over all n of the given sign but define L(s, χχn)
to match (1.2) when n is a square times a fundamental discriminant. One may
also pass to an analogous series for an arbitrary number field, where χ is now a
Grössencharacter. Moreover, these series may also be studied by more exotic meth-
ods: they occur as the Whittaker-Fourier coefficients of certain Eisenstein series on
the metaplectic double cover of GL(3), and one may deduce their properties from
this fact.

One may obtain a second example of a Dirichlet series in w whose coefficients
are themselves Dirichlet series in s by considering the Rankin-Selberg convolution
of E0(z, s) with itself. Traditionally, if f, g are GL(2) cusp forms with Fourier
coefficients an, bn, then the Rankin-Selberg convolution of f with g is an integral
which represents the Dirichlet series

(1.5) L(w, f × g) =
∑ anbn

nw
,

and from which the analytic continuation of (1.5) may be deduced. (See [Bump]
for a detailed survey of the Rankin-Selberg method.) Though the details have
not yet been carried out, in this case such a convolution should give the analytic
continuation of the two series ∑

±n>0

|L(s, χn)|2
|n|w .

Such a continuation would imply formulas for the mean value of |L(s, χn)|2. For
example, at s = 1/2 one should find an estimate for∑

0<±n<x
n squarefree

|L(1/2, χn)|2,

where the main term C x (log x)3 (C a non-zero constant) is larger than the error
term by a power of x. A result of this form has been found by Jutila [Ju] by
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other methods, with a saving of a power of logx in the error term. Note that both
examples above are consistent with the Lindelöf Hypothesis.

In both these examples, the application of the integral transforms (Hecke or
Rankin-Selberg integrals) is more difficult than the standard situation, for the func-
tion E0(z, s) is not of rapid decay as y →∞ and this causes convergence problems.
However, this may be overcome, as in Zagier [Za] or Lieman [Li1]; for higher rank
groups the theory of truncations of such functions, though by no means simple, is
well understood, due to the work of Arthur [Ar, Lemma 1.4].

2. Further examples: GL(2)

The series L(s, χn) can be thought of as the quadratic twists of the GL(1) L-series
ζ(s). Can something similar be done in the case of a GL(2) L-series? Specifically,
let f be a newform with L-series L(s, f) =

∑
cmm

−s and let

L(s, f, χn) =
∑

cm χn(m)m−s

denote the twist of L(s, f) by the quadratic character χn. Suppose that these
series are normalized to have functional equations under s 7→ 1 − s. Then, for
a variety of applications, it is desirable to know that there are infinitely many
distinct fundamental discriminants n such that L(1/2, f, χn) 6= 0; moreover, it is
desirable to know that this remains true even if one imposes a finite number of local
conditions on n. Similarly, there are applications where it is useful to know that
L(s, f, χn) has a simple zero at s = 1/2 for infinitely many such n.

This leads us to our next examples of Dirichlet series of the form (0.1), the series

(2.1)
∑
±n>0

n≡amodN

L(s, f, χn)

nw

and

(2.2)
∑
±n>0

n≡amodN

L′(s, f, χn)

nw

for given N , and (a,N) = 1. Here the sums are over fundamental discriminants.
For example, if (2.1) can be shown to have a pole at w = 1 when s = 1/2, then
L(1/2, f, χn) 6= 0 for infinitely many n ≡ a mod N ; while if (2.2) has a pole at
w = 1 and a is chosen so that L(1/2, f, χn) = 0 for all such n (for example, because
of the sign of the functional equation), then L(s, f, χn) has a simple zero at s = 1/2
for infinitely many such n. Note that (2.2) is obtained by differentiating (2.1) with
respect to s.

These series were first studied in a series of papers by the authors [BFH1]–
[BFH3]. The basic idea of these papers is to form from f an Eisenstein series
Ef (Z, s) of half integral weight on the Siegel upper half-space of genus two. This
Eisenstein series may be viewed as a function on the metaplectic double cover of
the symplectic similitude group GSp(4); in this context it was first introduced by
Gelbart and Piatetski-Shapiro in [G-P]. The existence of Ef (Z, s) hinges on the ob-
servation that the double cover splits over an embedded copy of GL(2). The authors
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then proceed to study the Whittaker-Fourier coefficients of Ef (Z, s); these are cer-
tain analogues of classical Fourier coefficients, obtained by integrating Ef against
a character of the unipotent radical of a Borel subgroup of GSp(4). The authors
show that the Whittaker-Fourier coefficients of Ef (Z, s) may be expressed in terms
of the twisted L-series L(s, f, χn); here the parameter n is related to the character
of the unipotent radical. Then, using an integral transform due to Novodvorsky
[No], they are able to obtain the series (2.1) and (2.2) as sums of Whittaker-Fourier
coefficients of Ef and ∂

∂sEf . The properties of these series are thus linked to the
properties of the automorphic form Ef , and the desired behavior is obtained. In
particular one obtains information about the nonvanishing of L′(1/2, f, χn) which is,
due to the work of Kolyvagin [Ko], of arithmetic significance (cf. [BFH1, BFH3]).
We note that, when applied to a non-metaplectic automorphic form on GSp(4)
with non-zero Whittaker-Fourier coefficients, the Novodvorsky transform gives a
degree-four Langlands L-function with Euler product; it is another example of a
“Rankin-Selberg integral”.

At least over Q, the mean values for these series may also be studied by tra-
ditional analytic number theoretic methods, averaging à la Siegel. This method
yields the result ∑

n≡amodN , n squarefree

L′(1/2, f, χn)F (x/n) = c1x+ O(x1−δ).

Here F (x/n) is a smoothing function with compact support (for example, on [1, 2]).
This was obtained by Iwaniec [Iw] when f is modular over Q of weight 2. This
followed a similar result of Murty and Murty [M-M] (unsmoothed) with a somewhat
weaker error term. The averaging of a GL(2) form was considerably more difficult
than that of a GL(1) form, and it is not clear if this approach can be extended
beyond GL(2). It is also not clear what happens when the base field is changed.

The analysis of series analogous to (2.1) and (2.2) may be carried out when f
is replaced by an arbitrary automorphic representation of GL(2) over an arbitrary
number field. Moreover, it is rather surprising that these series (or more precisely
ones with coefficients identical to them except at finitely many primes) may be
obtained by two other Rankin-Selberg type integrals! First, the authors (unpub-
lished) have found a construction similar to the above, but where the metaplectic
group GSp(4) is replaced by the classical group O(5) and the Whittaker-Fourier
coefficients are replaced by certain coefficients called Bessel coefficients. (This is
perhaps not surprising, as automorphic forms on these two groups are linked by the
theta correspondence.) Second, a completely new construction, studied in [F-H], is
to consider the Rankin-Selberg convolution (1.5) of the (non-metaplectic) automor-
phic form f on GL(2) with a half-integral weight (metaplectic) Eisenstein series on
GL(2); that is, one studies

(2.3) L(s, f ×E0(·, w/2)).

If the Fourier coefficients of f are cn then, by (1.2) and (1.5), this convolution gives
the analytic continuation of a Dirichlet series which is roughly of the form

∑ cnL(w,χn)

ns
.
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Substituting the infinite sum (1.1) which represents the quadratic L-series L(w,χn)
and interchanging the order of summation gives, remarkably, the series (2.1), with
some shifts in s, w (after appropriate sieving). Using this, Friedberg and Hoffstein
[F-H] proved a non-vanishing theorem for the L-series of an arbitrary cuspidal
automorphic form on GL(2) over any number field under quadratic twists. In
the case of an imaginary quadratic field, such a result has applications to the
construction of `-adic representations from certain modular forms; see the work of
Harris, Soudry and Taylor [HST] and Taylor [Ta].

One naturally asks if this approach may be generalized. It has been carried over
to GL(2) automorphic forms over function fields by S. Gupta [Gu], who used it to
obtain non-vanishing and mean value theorems for such L-series under quadratic
twists. However, the higher rank case is more difficult. To carry out this construc-
tion for f on GL(r) with r ≥ 3 (and so obtain the analogue of (2.1)) would require
a Rankin-Selberg convolution for a (non-metaplectic) cusp form on GL(r) with an
Eisenstein series on the double cover of GL(2). There does not yet exist a way of
doing this when r ≥ 3. A different generalization may be obtained; this is one of
the constructions described in Section 5 below.

3. A higher rank example

In what ways may one seek generalizations of the two previous examples? One
direction comes immediately to mind. Namely, one might hope to replace the
standard GL(1) or GL(2) L-series by a more general Langlands L-function (see
Langlands [La], Borel [Bo], Gelbart [Ge]) and sum its quadratic twists. Surprisingly,
the examples of Sections 1 and 2 exhaust the list of cases where such a sum has been
analyzed in full detail. However, the case of the standard L-function associated to
a GL(3) automorphic representation is within reach, as we shall explain in this
section. Then, in Section 4, we shall state a general conjecture and present some
heuristic arguments suggesting that the situation is dramatically more complicated
if the degree of the Euler product in s is 4 or more.

In the constructions of Sections 1 and 2, automorphic objects (Eisenstein series)
were exhibited whose Whittaker-Fourier coefficients are twisted L-functions. These
coefficients were then “strung together” into the Dirichlet series (0.1) by means
of an integral transform. This raises the natural question (which is related to the
GL(3) example to be presented momentarily): how generally may one represent
the twists of a given Langlands L-function, up to a finite number of Euler factors,
as the coefficients of an automorphic form (more precisely, an Eisenstein series)?
Coefficient here has a representation-theoretic meaning: the value of a unique func-
tional, such as a Whittaker functional, depending on a character, which one varies
to obtain the different twists. This can be accomplished in two general instances.

Let π = ⊗πv be a factorizable automorphic representation of GL(m) overQ with
unitary central character. Then attached to π is an L-function, L(s, π), which is a
product of local L-functions Lv(s, πv), almost all given by degree m Euler factors
(see Langlands [La], Borel [Bo]). That is, L(s, π) =

∏
v L(s, πv), where the product

is over the places v of Q and, for almost all v,

Lv(s, πv) =
m∏
i=1

(1− αi,vv−s)−1.
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Similarly, one may define the twisted L-function L(s, π, χn) as the product of the
twisted factors, given for almost all v by the formula

Lv(s, πv, χn) =
m∏
i=1

(1− αi,vχn(v)v−s)−1.

Then it has been shown by the authors [BFH4] that, in analogy to the situations
when m = 1 and m = 2, the twists L(s, π, χn) do occur as Whittaker-Fourier coef-
ficients for any m ≥ 3 as well, this time of an Eisenstein series on the metaplectic
double cover of GSp(2m) induced from π on GL(m). Similarly, it has been shown
by Bump, Friedberg, and Furusawa [BFF] that these twists occur as Bessel coeffi-
cients of an Eisenstein series on the orthogonal group SO(2m+ 1) induced from π.
(A similar relation between the Whittaker and Bessel coefficients of cuspidal auto-
morphic representations in theta correspondence on these two groups was proved
by Furusawa [Fu] using different techniques.)

One would like to assemble these coefficients into the series (0.1). As described
in Section 2, working on the metaplectic double cover of GSp(4), the authors ac-
complished this assembly when m = 2 by applying an integral transform due to
Novodvorsky [No], which in the non-metaplectic case gives a Rankin-Selberg inte-
gral representing the degree 4 “Spin” L-function associated to a generic automor-
phic form on GSp(4). One is thus tempted to use higher degree “Spin” integrals.
For m = 3, 4, 5, Bump and Ginzburg [B-G] have given an integral which represents
the “Spin” L-function of a non-metaplectic cusp form on GSp(2m). For m = 3 the
same integral works on the double cover (of GSp(6)), and it should thus lead to the
analytic continuation of the series

(3.1)
∑
±n>0

L(s, π, χn)

|n|w

for π an automorphic form on GL(3). This, in principle, should yield results of the
form ∑

0<±n, n squarefree

L(1/2, π, χn)F (x/n) = cx+ O
(
x1/2+ε

)
for π with unitary central character (and, in particular, non-vanishing theorems
for quadratic twists, even at the center of the critical strip; compare Barthel-
Ramakrishnan [B-R]). We believe this to be inaccessible by current averaging tech-
niques. Also, considering non-cuspidal π induced from a parabolic subgroup whose
Levi factor is GL(2)×GL(1), one should be able to control sums such as∑

±n<x
L(1, χn)L(1/2, E(n))

where L(1, χn) is expressible in terms of the arithmetic of Q(
√
n) (see Section

1) and where L(1/2, E(n)) is the value at the center of the critical strip of the
n-th twist of a modular elliptic curve E (whose value is predicted by the refined
Birch-Swinnerton-Dyer Conjecture). Unfortunately, for m = 4, 5 the integrals of
Bump and Ginzburg do not work on the double cover. This is consistent with the
complications in higher degree suggested in Section 4 below.
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Similarly, Ginzburg [Gi] has obtained a Rankin-Selberg integral which assembles
the Bessel coefficients of an automorphic form on SO(7), which, combining with
Theorem 6.1 of Bump, Friedberg, and Furusawa [BFF], should give the series (3.1).
However, for SO(9) and beyond no such construction has been found.

As in some of the other cases mentioned in this paper, the details of summing
the GL(3) quadratic twists have not yet been carried out. Obstructions include
the treatment of the archimedean integrals obtained when one applies the Rankin-
Selberg integrals described above and convergence difficulties to be resolved by
truncation. To obtain theorems about the non-vanishing of L-values, one must also
verify that the residue at a given value of s is non-zero. Overcoming the first of
these obstructions may require new information about the (archimedean) Whittaker
functions on these groups.

4. A general conjecture. Applications and related questions

Based on these examples, it is natural to conjecture that the sum of the quadratic
twists of any Langlands L-function has meromorphic continuation as a function of
(s, w). For expositional purposes, we consider only the standard L-functions on
GL(m) (according to the functoriality conjecture, this is in fact the general case).
As we shall explain below, if m ≥ 4, the series in two variables is not expected to
continue to all of C2, but only to a certain piece.

Once again we work over the base field Q for simplicity; the general case may be
formulated as in [F-H]. Let π = ⊗πv be a factorizable automorphic representation of
GL(m), and let L(s, π) denote the standard L-function for π, described in Section 3.
Suppose for convenience that π has unitary central character. Let S be a finite set of
finite primes containing 2 and those primes v for which the local representation πv is
not unramified principal series. If n = n1n

2
2 with n1, n2 ∈ Z, n1 squarefree, then by

L(s, π, χn) we shall mean the standard twisted L-factor
∏
v/∈S,(v,n2)=1 Lv(s, πv, χn1)

times a certain finite factor in the primes v dividing n2 and those in S, depending on
πv and ordv(n2) (the precise dependence of this finite factor on n2 may be described
by using the formula presented in [BFH4]; it is compatible with the GL(1) situation
described in Section 1 and with induction). Define the two functions

Z±(s, w, π) =
∑
±n>0

L(s, π, χn)

|n|w .

These series converge in the tube domain Re(s), Re(w) > 1.
To describe the continuation of these series, let us introduce a group of transfor-

mations Γm of C2 for each m ≥ 1. By definition, Γm is the group generated by the
two involutions

(4.1)
(s, w) 7→(1− s, w +ms−m/2)

(s, w) 7→(s+ w − 1/2, 1− w).

It is easy to check that if m ≤ 3, then Γm is finite. More precisely, if Dn denotes the
n-th dihedral group (|Dn| = 2n), then Γ1 = D3, Γ2 = D4, and Γ3 = D6. By contrast
if m ≥ 4, then Γm is infinite; indeed it is an affine Weyl group in two generators.
Intriguingly, if W (g) denotes the Weyl group of the Cartan classification type g,
then Γ1 = W (A2), Γ2 = W (B2) = W (C2), Γ3 = W (G2). For m = 1, 2, the series
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Z± may also be obtained by consideration of Eisenstein series on the metaplectic
double cover of the corresponding groups GL3 and GSp4.

Let Rm be the region in (s, w)-space described as follows. For m ≤ 3, Rm = C2.
For each m ≥ 4, let λ±(m) denote the two numbers

λ±(m) =
m±

√
m2 − 4m

2
.

(When m = 4, λ+(4) = λ−(4).) Then, for m ≥ 4,

Rm =

{
(s, w) ∈ C2

∣∣ Re (w + λ±(m)s) >
λ±(m) + 1

2

}
.

Note that the region Rm is fixed by Γm. Then we make the following conjecture.

Conjecture. Each function Z± has meromorphic continuation as a function of
two complex variables (s, w) to the region Rm ⊆ C2. Moreover, each function Z±
has a polar divisor stable under Γm and containing the line w = 1. If π is cuspidal,
then all poles are simple, and the polar divisor is precisely the image of w = 1
under Γm. The region Rm is the largest domain to which the functions Z± may be
meromorphically extended.

The conjectured behavior of Z± is consistent with the known cases described
above. One may also formulate a sieved version of the conjecture, where one sums
over only those n such that a finite set of finite primes has prescribed behavior in
the extension Q(

√
n)/Q.

In the remainder of this section we shall motivate this conjecture and explore its
consequences. Let us begin with some heuristics pointing to the conjecture.

Let us suppose that π is of “level one”, that is, that an automorphic form in the
space of π is invariant under the full modular group GL(n,Z). Then the twisted
L-function L(s, π, χn) satisfies a functional equation

(4.2) L(s, π, χn) = ε(s, π, χn)L(1− s, π, χn)

where the epsilon-factor in the functional equation satisfies

(4.3) ε(s, π, χn) = |n|m(1/2−s)ε(s, π).

(The functional equation (4.2) requires the inclusion of an archimedean factor,
but let us ignore this.) Combining (4.2) and (4.3), one arrives at once at the
invariance of the series Z±(s, w) under the transformation (s, w) 7→ (1 − s, w +
ms −m/2). Similarly, suppose that the Dirichlet series representing L(s, π, χn) is∑
m>0 amχn(m)m−s. Substituting this expression into Z±(s, w) and interchanging

the order of summation, one arrives at the series

(4.4)
∑
m>0

( ∑
±n>0

χn(m)|n|−w
)
amm

−s.

The inner sum is (essentially) a GL(1) Dirichlet L-function in w; using its functional
equation gives the invariance of the series Z± under the transformation (s, w) 7→
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(s + w − 1/2, 1− w). Also, the existence of a polar divisor of w = 1 is suggested
by (4.4), since the summand when m = 1 is just ζ(w). In fact, this argument
is slightly sloppy; after applying the law of quadratic reciprocity, one sees that
the precise functional equation requires combining Z+ and Z−; compare (1.3). In
general, one should expect an exact functional equation under the transformation
(s, w) 7→ (s+w− 1/2, 1−w) only for a sum of the form I+(s, w, π∞)Z+(s, w, π) +
I−(s, w, π∞)Z−(s, w, π) where the I±(s, w, π∞) are non-zero functions depending
in π only on π∞.

This argument and the examples above suggest the statements concerning the
polar divisor. For higher level, though the situation is more complicated, one can
make similar arguments, and one should expect the same polar divisor. Moreover,
if m = 4, then there is one line which is pointwise fixed under the maximal infinite
subgroup of the group Γ4 (this subgroup is generated by the product of the two
transformations (4.1)); while if m > 4, then there are exactly two lines which are
stable under the maximal infinite subgroup of Γm. In all cases, these lines contain
the fixed point of Γm, (1/2, 1/2). It seems natural to expect continuation to the
region bounded by these lines and containing the region of absolute convergence
(this region is convex). This is the region Rm described above. If m ≤ 3, then the
fixed lines are not given by real equations. However, one may argue, by combining
the functional equations in Γm with Hartogs’s Theorem concerning continuation to
the convex hull of a tube domain (see, for example, [Hor, Theorem 2.5.10]), that
the functions Z± should have continuation to all of C2; in this sense the heuristics
presented here are consistent with the results described in Sections 1–3. It seems
likely that these methods can in fact be used to give alternate derivations of the
continuations described in those sections, though the technical details have not
yet been carried out. Note that the calculation of the residues requires additional
information. The combination of the functional equations with Hartogs’s Theorem
may also be used when m ≥ 4 to extend the region of meromorphicity of Z± beyond
the region Re(s), Re(w) > 1, but this approach stops far short of allowing us to
establish the conjecture.

Let us add one remark about the conjectured behavior of the polar divisor. One
sees easily that the conjecture implies that there are half-lines of poles approaching
arbitrarily closely the boundary of the region Rm. This suggests that the half-lines
bounding the region are lines of essential singularities and that they form a natural
boundary of the series.

We turn to applications of this conjecture.

The first application is to the non-vanishing of L-functions. Suppose that Z± has
a pole in w for given s0. Then one concludes that infinitely many L(s0, π, χn) with
±n > 0 are non-zero. Similarly, differentiating with respect to s, one may prove the
non-vanishing of derivatives. Results concerning the non-vanishing of GL(m) L-
series under finite order twists have been obtained by Barthel and Ramakrishnan
[B-R]; however, this method would yield results for quadratic twists and would
allow one to establish non-vanishing at the center of the critical strip, which is
outside the region given in [B-R]. At the center of the critical strip s = 1/2 the
lines of poles occur in intersecting pairs (due to the first functional equation in (4.1)
above), and one expects that the condition that the pairs of poles in w not cancel
at s = 1/2 will be connected to epsilon-factors (see [BFH2], [F-H]). Moreover, it
is an observation of Luo, Rudnick, and Sarnak [LRS] that the non-vanishing of
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twists of the standard L-function on GL(m) for all m would imply the Ramanujan-
Petersson conjecture for all automorphic representations of GL(2). (This conjecture
states that the Fourier coefficients of π are bounded by a particular bound or,
equivalently, specifies that no complementary series representations occur as the
local constituents πv. For holomorphic modular forms over Q it was proved by
Deligne, using algebraic geometry.)

There are other variations on this theme. For example, if one could establish the
continuation for π on GL(4), then one could study the question of the simultane-
ous non-vanishing of pairs of L-series under quadratic twists, as follows. Suppose
that f, g are two newforms on GL(2). Then there exists an Eisenstein series on
GL(4) whose twisted Whittaker-Fourier coefficients are the products of quadratic
twists L(s, f, χn)L(s, g, χn). The conjecture then asserts that one should be able
to control the behavior of

(4.5)
∑
±n>0

L(s, f, χn)L(s, g, χn)

|n|w .

If there exists a quadratic character χn with the property that L(s, f, χn) and
L(s, g, χn) do not both have negative signs in their functional equations, then one
should be able to show that (4.5) has a pole at w = 1 when s = 1/2. This would
imply that there are infinitely many χn such that

L(1/2, f, χn)L(1/2, g, χn) 6= 0.

To show such a non-vanishing by averaging techniques would require controlling a
degree 4 Euler product, something that is well beyond current techniques. As an
arithmetic application, in the case that f and g correspond to elliptic curves Ef ,
Eg, the work of Kolyvagin (together with the results described in Section 2) would
then imply that there are infinitely many fundamental discriminants n such that

the twisted elliptic curves E
(n)
f and E

(n)
g both have Mordell-Weil rank zero.

The second application concerns moments and the size of twisted L-values. To
study these, one once again applies the conjecture in a case when the automorphic
representation π is not cuspidal. For example, take the case that π is the automor-
phic representation associated to a minimal parabolic Eisenstein series on GL(m).
Then, as a special case of a theorem of Jacquet [Ja],

L(s, π, χn) = L(s, χn)m,

i.e. one obtains the m-th power of the original quadratic Dirichlet L-series. If m is
even, simply obtaining the convergence of Z±(1/2, w, π) back to Re(w) > 1 would
imply that, for either choice of sign of n,

L(1/2, χn)� |n| 1
m+ε.

In other words, the analytic continuation of this Z for arbitrarily large even m
would imply the Lindelöf Hypothesis in n-aspect! A similar result may be obtained
for odd m under some additional assumptions. Unfortunately m = 3, accessible by
present methods as explained above, is not enough to even break the well-known
1/4 convexity bound for L(1/2, χn).
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Note that in both applications mentioned above the crucial matter is the analytic
continuation of Z to a neighborhood of (1

2 , 1). This lies inside the region Rm, and
it is for this reason tha the conjecture would have such interesting consequences.

We remark that since π here is not cuspidal, one expects that the poles in
(s, w) should coalesce when s = 1/2 to give a higher order pole in w. In fact one
expects that each of the series

∑
±n>0L(1/2, χn)m|n|−w, absolutely convergent for

Re(w) > 1 + 3
16m by the bound of Burgess [Bu], has a pole of order 1 + (m2 +m)/2

at w = 1. Perhaps more surprising is that the heuristics described above predict
that these series behave very differently to the left of w = 1 for different values of
m. That is,

Conjecture. For each choice of sign, the series∑
±n>0

L(1/2, χn)m|n|−w

has meromorphic continuation to the entire complex plane when m ≤ 3, while it
has continuation up to an essential singularity at w = 1/2 for m ≥ 4.

Similarly, the general conjecture would give control over quantities such as∑
±n>0,|n|<x

L (s0, π, χn)
m
.

For π on GL(2), this quantity is related to the constants arising in Szpiro’s conjec-
ture (see Goldfeld-Szpiro [G-S]).

One may also formulate a conjecture for a series in more than two complex
variables, such as the sum

∑ L(s1, π1, χn) · · ·L(sm, πm, χn)

|n|w .

Similar heuristics show that the group of functional equations is expected to be
finite only if the total degree of the Euler product in the numerator is at most 3.
A few additional finite groups arise in these low-degree cases.

To conclude this section, let us pose an additional question. Automorphic L-
functions may conjecturally be used to construct the zeta-functions associated to
algebraic varieties defined over number fields or function fields. Are there algebreo-
geometric analogues of this conjecture? Is there a natural construction for `-adic
representations? In the case that π is the automorphic representation corresponding
to a holomorphic cusp form f of weight 2, so that the L-function for f is that of an
elliptic curve E defined over Q, do the series Z± have a natural meaning in terms of
E? In the function field case, is there a connection to the arithmetic of arithmetic
surfaces?

5. Higher twists

In this last section, we present yet another variation on the basic theme described
here. Namely, in some instances the quadratic characters χn of Sections 1–4 may
be replaced by characters of higher order! That is, one may consider the sum of
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cubic or higher-order twists of a given L-function. The constructions to date which
do this make use of the higher metaplectic covers of groups such as GL(n). These
covers are constructed using a 2-cocycle whose properties are closely tied to the
higher reciprocity laws studied by Legendre, Gauss, Hilbert, Hasse and others. For
a survey, see [Ho, Section 2]; for a detailed treatment, see Kazhdan-Patterson [K-P]
or Matsumoto [Mat].

Let us begin with GL(1). If χ is on GL(1) and the base field contains the r-th
roots of unity, then for any r it is possible to obtain the twists of χ by all its r-th
order characters as the Whittaker-Fourier coefficients of an Eisenstein series on the
r-cover of GL(r). When r = 2, this is the content of our first example above. When
r = 3, this was demonstrated by Bump and Hoffstein in [B-H]. For r ≥ 4, it was
demonstrated in an ad hoc way by Bump and Hoffstein (see [Ho, Section 5]; the
proofs there are incomplete), while work in progress of Bump and Lieman seeks to
develop a satisfactory theory based on the uniqueness of Whittaker models which
explains why the phenomenon occurs [B-L].

By taking an integral transform of this Eisenstein series on the r-cover of GL(r),
one can obtain the analytic continuation and functional equation of a Dirichlet
series whose coefficients are r-th order L-series. For example, if the character χ on
GL(1) is the trivial one, then one obtains the analytic continuation and functional
equation (in w) of ∑ Lr(s, χ

(r)
n )

Nnw

where n varies over the non-zero integers in the ground field, N denotes the absolute
norm, and

χ(r)
n (m) =

( n
m

)
r

is given by the value of an r-th order power residue symbol. The subscript r in
the expression Lr indicates that the Euler factors at the primes dividing r must be
removed. By applying analytic techniques, one may then obtain mean value results

for
∑

Nn<x Lr(s, χ
(r)
n ). In the case r = 3 this is being done by Farmer, Hoffstein,

and Lieman (the work was begun long ago by Hoffstein but became bogged down
in many difficult analytic details). The functional equation in w in this last case

interchanges L3(s, χ
(3)
n ) and L3(s, χ

(3)
n2 ). Note that an attempt to use a Siegel type

direct averaging technique will not succeed for s close to 1/2, as the approximate
functional equation gets affected by the argument of the cubic Gauss sums.

By taking non-trivial χ, one can sum higher twists of Hecke L-series (compare
(1.4)). In certain instances these correspond to a family of elliptic curves. For
example, the L-series of the family of CM elliptic curves x3 + y3 = D are the cubic
twists of a Hecke L-series with Grössencharacter defined over the field Q(

√
−3). In

[Li2], Lieman uses this approach to deduce non-vanishing theorems for subclasses
of these L-series. By the theorem of Coates-Wiles, this non-vanishing implies that
for infinitely many such D the corresponding elliptic curves have only finitely many
rational points.

Another example involving higher twists, this time of a GL(2) L-series, is ob-
tained by generalizing the construction (2.3). One may convolve an Eisenstein series
on the r-fold cover of GL(2) with f , a non-metaplectic form on GL(2), provided
that the ground field contains the r-th roots of unity. This produces the analytic
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continuation of something of the form

D(s, w) =
∑
n

S(w, n) cn
Nns

where

S(w, n) =
∑
d

G(n, d)

Ndw

is a Dirichlet series built out of the r-th order Gauss sums

G(n, d) =
1√
Nd

∑
αmodd

(α
d

)
r
e
(

tr
(nα
d

))
,

with tr denoting the absolute trace and cn denoting the Fourier coefficients of f .
Interchanging the order of summation, one gets

(5.1) D(s, w) =
∑
d

G(1, d)L(s, f , χ̃
(r)
d )

Ndw

where the L-series in the numerator is the twist of the L-series of f by the r-th

order character χ̃
(r)
d (m) =

(
m
d

)
r
. For fixed s, it may be shown that D(s, w) has

poles at w = 1
2 + 1

r and at w = 3
2−2s+ 1

r . Thus, for example, at s = 1/2 these poles
coalesce at w = 1/2+1/r. The residue at w = 1/2+1/r is an interesting new object:
L(s+ 1/2r, f × θr), that is, the Rankin-Selberg convolution of f with θr, the theta
function on the r-fold cover of GL(2), evaluated at the point s+1/2r. If it could be
proved that at this special value the Rankin-Selberg convolution does not vanish,

then the pole would exist, and it would follow that L(s, f, χ̃
(r)
d ) 6= 0 infinitely often.

Unfortunately, this is a challenging problem, for the Rankin-Selberg convolutions
in question do not have Euler products and moreover, except for the cases r = 2, 3,
the θr are not well understood. In particular instances this non-vanishing has been
established for r = 3 by She [Sh], using a combination of computer calculation and
theoretical arguments.

Though the study of higher-order twists is not well developed, there is one other
construction involving the twists of GL(2) automorphic L-series. A way has been
found to convolve the theta function on the 3-fold cover of GL(3) with a cusp
form f on GL(2). This construction, discovered by Bump, Ginzburg and Hoffstein
[BGH], was used to express the symmetric cube L-series of f as a Rankin-Selberg
integral. The same Rankin-Selberg construction should work if one replaces the
cubic theta function by the maximal parabolic Eisenstein series on the triple cover
of GL(3) considered by Bump and Hoffstein [B-H]. If one did this and applied the
same “interchange in the order of summation” argument, then one would probably
obtain the analytic continuation of

∑ L(s, f, χ̃
(3)
d )

Ndw

where the L-series are cubic twists of the L-series for f , i.e. the same series as (5.1)
but with the Gauss sums removed. If s = 1/2, the residues of the poles in w would
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then be proportional to the symmetric cube L-series at the point 3/2, and these
would certainly not vanish. This construction also provides some evidence that the
double Dirichlet series in (s, w) has a finite group of functional equations.

It appears that this is the only remaining example where a finite group of more
than two functional equations is to be expected. In other cases of higher twists,
the heuristics described in Section 4 do not carry over, since the functional equa-

tions of the series L(s, χ
(r)
n ) involve higher-order Gauss sums, and this prevents an

interchange of summation from giving a functional equation in (s, w). One is left
with simply posing the following question:

Fix r > 2, and let π = ⊗πv be a factorizable automorphic representation of a
connected reductive linear algebraic group G over a global field F containing the
r-th roots of unity. Let ρ be a finite-dimensional representation of the L-group of
G. If χ is an idele class character of F , let L(s, π, ρ, χ) denote the twist of the
Langlands L-function L(s, π, ρ) by χ; this is a product of local factors Lv. We
suppose for convenience that the ring of integers O of F has class number one; the
general case may be formulated as in [F-H]. Let N denote the absolute norm. Let
S be a finite set of finite primes containing those dividing r and those for which
the local representation πv is not unramified principal series. If n = n1n

r
2 with

n1, n2 ∈ O, n1 r-th power free, then by L(s, π, ρ, χ
(r)
n ) we shall mean the twisted

L-factor
∏
v/∈S,(v,n2)=1 Lv(s, πv, ρ, χ

(r)
n1 ) times a certain finite factor in the primes v

dividing n2 and those in S, depending on πv and ordv(n2) (the precise dependence
on the primes v|n2 is specified by requiring that these factors be consistent with
the GL(1) case above when the representation is unramified principal series).

Question. Define the function

Z(r)(s, w, π, ρ) =
∑

n∈O/(O×)r

L(s, π, ρ, χ(r)
n ) Nn−w

convergent for Re(s), Re(w) sufficiently large. To what region of (s, w) space does
this function have meromorphic continuation? What is its precise polar divisor?

The construction described here may be regarded as roughly summing over all
cyclic extensions of F of order r; one sums the twist of L(s, π) by the automorphic
object associated by class field theory to each such extension, divided by a complex
power of its conductor. One may also ask if there are analogous constructions for
other extensions of F of fixed Galois group which admit non-trivial continuation.
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