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GAUSSIAN MEASURES IN TRADITIONAL
AND NOT SO TRADITIONAL SETTINGS

DANIEL W. STROOCK

Abstract. This article is intended to provide non-specialists with an intro-
duction to integration theory on pathspace.

§0: Introduction

Let Q1 denote the set of rational numbers q ∈ [0, 1], and, for a ∈ Q1, define the
translation map τa on Q1 by addition modulo 1:

τab =

{
a+ b if a+ b ≤ 1

a+ b− 1 if a+ b > 1
for b ∈ Q1.

Is there a probability measure λQ1 on Q1 which is translation invariant in the sense
that

λQ1(Γ) = λQ1

(
τ−1
a Γ

)
for every a ∈ Q1?

To answer this question, it is necessary to be precise about what it is that one
is seeking. Indeed, the answer will depend on the level of ambition at which the
question is asked. For example, if A denotes the algebra of subsets Γ ⊆ Q1 generated
by intervals

[a, b]Q1 ≡
{
q ∈ Q1 : a ≤ q ≤ b

}
for a ≤ b from Q1, then it is easy to check that there is a unique, finitely additive
way to define λQ1 on A. In fact,

λQ1

(
[a, b]Q1

)
= b− a, for a ≤ b from Q1.

On the other hand, if one is more ambitious and asks for a countably additive λQ1

on the σ-algebra generated by A (equivalently, all subsets of Q1), then one is asking
for too much. In fact, since λQ1({q}) = 0 for every q ∈ Q1, countable additivity
forces

λQ1(Q1) =
∑
q∈Q1

λQ1

(
{q}
)

= 0,

which is obviously irreconcilable with λQ1(Q1) = 1. Thus, in order to achieve
countable additivity, one has to leave Q1 behind. In particular, one can complete
Q1 and pass to [0, 1], where Lebesgue and his measure come to the rescue. Of course,
one pays a heavy price for this transition: Q1 is invisible to Lebesgue measure!
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The preceding is a somewhat primitive example of an issue which arises quite
often in the construction of measures. Namely, one has a space on which it appears
reasonable to construct a measure which reflects, in a natural way, one or more of
the defining properties of that space. Moreover, it is clear that a finitely additive
representative exists. However, one discovers an insurmountable obstruction to
extending this finitely additive representative as a countably additive measure. Of
course, in general, there will be no deus ex machina which comes to the rescue. On
the other hand, as N. Wiener was the first to discover, there is an interesting class
of examples for which the sort of subterfuge involved in passing from Q1 to [0, 1]
makes it possible (again at the same sort of heavy price paid above) to overcome
what looks, at first, like a fatal obstruction.

The problem to which Wiener addressed himself was that of putting a natural
probability measure on the space of R-valued paths on [0, 1], and, guided by physics,
natural meant that the paths should be distributed in the way that Einstein and
Smoluchowski predicted that trajectories of Brownian particles are.1 Thanks to
R. Feynman, I.E. Segal, and others, we now understand that Wiener’s construction
is just one example of a whole class of constructions growing out of the attempt
to put Gaussian measures on an infinite dimensional Hilbert space; and thanks to
K. Itô, we also know how to extend the construction to cover “Gaussian measures”
on certain non-linear structures, like the space of paths with values in a Riemannian
manifold.

The goal of this survey is to explain to the uninitiated what Wiener and his
successors have done.

§1: The classical setting

If H is a finite dimensional, real Hilbert space with norm ‖ · ‖H, then the standard
Gauss measure µH on H is the Borel, probability measure given by

(1) µH(dh) =
(√

2π
)−dim(H)

exp

(
−‖h‖

2
H

2

)
λH(dh),

where λH is the Lebesgue measure on H, in the sense that λH is translation invariant
and, for any choice of orthonormal basis

(
e1, . . . , edim(H)

)
in H, the corresponding

unit cube has measure one:

(2) λH

({
h : 0 ≤ (h, em)H ≤ 1 for 1 ≤ m ≤ dim(H)

})
= 1.

Thus, in the jargon of probability theory, when H = R and R is given the standard
Euclidean norm, µR is the distribution of a standard, normal random variable.

In spite of the obvious objections (a normalizing constant which vanishes and
a translation invariant measure which does not exist) to doing so, one might try

1Wiener was neither the only nor even the first mathematician to grapple with this problem.
Indeed, it is clear that the French school of analysis had a head start on Wiener and, in many
ways, they understood the abstract problem better than he did. In particular, they seem to have
realized that the measure would have to place most of its mass in a finite dimensional part of the
pathspace (cf. the discussion of Ulam’s lemma below). To what extent Wiener was aware of such
considerations is unclear. Certainly, he never addressed them directly, and perhaps his ignorance
of them played an essential role in his ultimate success.
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to adopt the same definition even when H is infinite dimensional.2 Indeed, one
might think that it is possible to circumvent the objections by replacing (1) with
a statement in which only finite dimensional objects appear. That is, ask that µH

be the Borel measure on H with the property that

(3) µH ◦Π−1
F = µF for every finite dimensional subspace F ⊆ H,

where ΠF denotes orthogonal projection onto F and the notation µ ◦ f−1 denotes
the pushforward or image of the measure µ under the map f :

µ ◦ f−1(Γ) ≡ µ
(
f−1Γ

)
.

Certainly (3) holds when H is finite dimensional. Moreover, even in the infinite
dimensional case, (3) still determines a unique finitely additive measure on the
algebra of subsets of the form Π−1

F (Γ), where F is a finite dimensional subspace
and Γ is a Borel subset of F. However, when H is infinite dimensional, there is no
countably additive Borel measure µH which both satisfies (3) and lives on H.

There are several ways in which to see what goes wrong in infinite dimensions,
but they all turn on Ulam’s Lemma, which says that a Borel, probability measure
on a Polish (i.e., complete, separable) metric space must be nearly supported on
a compact subset.3 To see that (3) is incompatible with Ulam’s Lemma, observe
that, were it to exist, µH would have to be rotation invariant, and there are no
non-trivial, rotation invariant, compact subsets of an infinite dimensional Hilbert
space.

At this point, one has to make a decision: either live with finite additivity or
abandon H. We will opt for the latter. To explain what we have in mind,4 let
an infinite dimensional H be given, ignore the warning contained in the preceding
paragraph, and pretend that µH on H exists. Next, choose an orthonormal basis
{hn}∞0 for H, and observe that, under µH,

h ∈H 7−→
((

h,h0

)
H
, . . . ,

(
h,hn

)
H
, . . .

)
∈ RN

is a sequence of mutually independent, standard normal random variables:

µH

({
h :

(
h,h0

)
H
∈ Γ0, . . . ,

(
h,hn

)
H
∈ Γn

})
=

n∏
0

µR
(
Γm
)

for all n ∈ N and all Borel subsets {Γm}n0 of R. Thus, to realize µH, it is reasonable
to run this observation backwards. That is,

(i) Define γ to be the infinite product measure µNR on RN. Under γ, the coordi-
nates of ξ ∈ RN form a sequence of mutually independent, standard normal random
variables. That is,

γ
(
Γ0 × · · ·Γn × R · · ·

)
=

n∏
m=0

µR
(
Γm
)

for any n ∈ N and Borel subsets
{

Γm
}n

0
of R.

2Throughout, all Hilbert spaces will be real and separable.
3More precisely, for each ε ∈ (0, 1), there must exist a compact Kε for which µ(Kε) ≥ 1− ε.
4Details of this construction can be found in §4.2 of [S].
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(ii) Let `2(N) denote the subset of square summable elements of RN, and define

(4) η ∈ `2(N) 7−→ H(h) ≡
∞∑
n=0

ηnhn ∈H.

(iii) Show that γ
(
`2(N)

)
= 1, and take µH = γ ◦H−1.

Obviously, it is at step (iii) that the scheme comes apart. Namely, not only does
`2(N) fail to have full measure under γ, it has γ-measure 0. To see this, simply note
that ∫

RN
exp

(
−
∞∑
0

ξ2
m

)
γ(dξ) =

∞∏
0

∫
R
e−ξ

2
m µR(dξm) = 0.

Thus, on the one hand, if we are going to get anywhere, we must learn how to
extend the map H in (4) to a set which does have full γ-measure. On the other
hand, it is only for η ∈ `2(N) that H(η) can be in H. However, there is no a priori
reason to doubt that an extension exists if we take a more liberal attitude toward
what existence means, that is, if we look for an extension whose values lie in a space
which is strictly larger than H itself.

With the preceding ideas in mind, we will specialize to the particularly important
special case when H = H1(Rd), the space of absolutely continuous h : [0, 1] −→
Rd with h(0) = 0 and derivative ḣ ∈ L2

(
[0, 1];Rd

)
. Clearly, H1(Rd) becomes a

separable Hilbert space when we take

‖h‖H1(Rd) = ‖ḣ‖L2([0,1];Rd).

Thus, if it made sense, µH1(Rd) would be given by

(5) µH1(Rd)(dh) =
(√

2π
)−dim(H1(Rd))

exp

(
−1

2

∫ 1

0

|ḣ(t)|2 dt
)
λH1(Rd)(dh).

In order to implement the sort of program suggested at the end of the preced-
ing paragraph, choose an orthonormal basis {hn}∞0 for H1(Rd) and define H :
`2(N) −→ H1(Rd) as in (4). Next, for N ∈ N and ξ ∈ RN, let ξ(N) be the element
of `2(N) which is obtained from ξ by replacing ξn with 0 for all n > N . What we
want to do is find a space W

(
Rd
)
⊃ H with the property that

(6) H(ξ) ≡ lim
N→∞

H
(
ξ(N)

)
exists in W

(
Rd
)

for γ-almost every ξ ∈ RN.

The celebrated fact revealed by N. Wiener in [W] is that one can take W
(
Rd
)

to be
the Banach (a term to which Wiener himself might have taken exception) space of
continuous w : [0, 1] −→ Rd with w(0) = 0 and norm ‖w‖W(Rd) = supt∈[0,1] |w(t)|.

Actually, Wiener dealt with a particular choice of orthonormal basis and with the
lacunary subsequence H

(
ξ(2n)

)
. Thus, it is important to know that the measure

at which the above procedure arrives does not depend on the basis {hn}∞0 , the
subsequence extracted, or any other peculiarity. In addition, one should be curious
about the extent to which the resulting measure is a representation of the idea
expressed in (5). In other words, what is a direct characterization of µH1(Rd) on
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W
(
Rd
)

which captures the spirit of (5)? To answer this, note that, if it means

anything at all, (5) is trying to say that, for each g ∈H1(Rd),

h ∈H1(Rd) 7−→
(
h,g

)
H1(Rd)

∈ R under µH1(Rd)

is a Gaussian random variable with mean 0 and variance ‖g‖2H1(Rd).
5 Thus, one

should hope to have the characterization of µH1(Rd) say something like: for each

g ∈ H1(Rd),
w ∈W

(
Rd
)
7−→

(
w,g

)
H1(Rd)

∈ R

is Gaussian with mean 0 and variance ‖g‖2H1(Rd). However, there is a problem

here: µH1(Rd)-almost no w is an element of H1(Rd), and, so, what is the meaning

of
(
w,g

)
H1(Rd)

? To get around this technicality, we restrict our attention to g’s

for which one can use integration by parts to interpret
(
w,g

)
H1(Rd)

. Namely, by

the Riesz representation theorem, we can identify the dual space W
(
Rd
)∗

with the

space of totally finite, Rd-valued, Borel measures λ on (0, 1]. Next, for λ ∈W
(
Rd
)∗

,

let gλ be the element of H1(Rd) determined by

gλ(t) =

∫ t

0

λ
(
(τ, 1]

)
dτ, t ∈ [0, 1].

Since, for h ∈H1(Rd),

(
h,gλ

)
H1(Rd)

= 〈h,λ〉 ≡
∫

(0,1]

(
h(t),λ(dt)

)
Rd ,

it is clear that
w ∈W

(
Rd
)
7−→ 〈w,λ〉 ∈ R

provides the unique continuous extension of

h ∈ H1(Rd) 7−→
(
h,gλ

)
H1(Rd)

∈ R

to W
(
Rd
)
. Hence, the interpretation of (5) for µH1(Rd) as a measure on W

(
Rd
)

ought to be that, under µH1(Rd),

(7)

w ∈W
(
Rd
)
7−→ 〈w,λ〉 ∈ R is Gaussian with mean 0

and variance ‖gλ‖2H1(Rd) =

∫∫
(0,1]2

(s ∧ t)
(
λ(ds),λ(dt)

)
Rd

for every λ ∈W
(
Rd
)∗
.

It is an easy matter to check that there is at most one measure on W
(
Rd
)

for
which (7) holds. Moreover, suppose that, for some choice of orthonormal basis

5That is, a random variable which one gets by multiplying a standard, normal random variable
by ‖g‖H.
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{hn}∞0 and subsequence {Nm}∞m=0, H : RN −→W
(
Rd
)

is a measurable extension
of the map in (4) with the property that

H(ξ) = lim
m→∞

H
(
ξ(Nm)

)
for γ-almost every ξ ∈ RN.

Then, for each λ ∈W
(
Rd
)∗

and γ-almost every ξ ∈ RN,(
H
(
ξ(Nm)

)
,gλ

)
H1(Rd)

=
〈
H
(
ξ(Nm)

)
,λ
〉
−→ 〈H(ξ),λ〉.

At the same time, if Fm denotes the span of {h0, . . . ,hNm}, then, under γ,

ξ ∈ RN 7−→
(
H
(
ξ(Nm)

)
,gλ

)
H1(Rd)

∈ R

is Gaussian with mean 0 and variance (cf. (3))
∥∥ΠFmgλ

∥∥2

H1(Rd)
. Hence, under γ,

ξ ∈ RN 7−→ 〈H(ξ),λ〉 ∈ R

is Gaussian with mean 0 and variance ‖gλ‖2H1(Rd). In other words, γ ◦H−1 satisfies

(7).
However one arrives at it, the measure µH1(Rd) on W

(
Rd
)

satisfying (7) is called
Wiener measure, and, because Wiener was motivated by the Einstein–Smoluchowski
model of Brownian motion, “µH1(Rd)-typical” elements of W

(
Rd
)

are sometimes
called Brownian paths.

Before moving on, it may be helpful to mention one of the basic properties of
Brownian paths. We already know that almost none of them is in H1(Rd), but
matters are even worse. To wit, µH1(Rd)-almost no w ∈ W

(
Rd
)

is differentiable
anywhere, a fact which, as we will see below, haunts every attempt to deal with
Brownian paths. The reason why this unfortunate property is not fatal is that
Brownian paths compensate for their lack of differentiability by having remarkable
cancellation properties, of which we have already seen an example. Namely, al-
though we side-stepped the issue of defining (w,h)H1(Rd) for arbitrary h ∈ H1(Rd),
we now have a way to deal with it. Indeed, a dividend of the preceding paragraph
is the observation that

gλ ∈ H1(Rd) 7−→ “
(
· ,gλ

)
H1(Rd)

” ≡ 〈 · ,λ〉 ∈ L2
(
µH1(Rd)

)
is an isometry. Hence, since {gλ : λ ∈ W

(
Rd
)∗} is dense in H1(Rd), there

is a unique way to extend this map as a continuous mapping from H1(Rd) to
L2
(
µH1(Rd)

)
. That is, even though µH1(Rd)

(
H1(Rd)

)
= 0, the inner product

(w,h)H1(Rd) makes (some) sense for each h ∈ H1(Rd) and µH1(Rd)-almost every

w ∈ W
(
Rd
)
. As it turns out, this extension, which is due to Paley and Wiener,

is essential as soon as one attempts doing calculus involving µH1(Rd). Namely, el-
ementary manipulation of Gaussian integrals quickly leads to the conclusion (cf.
Lemma 4.2.15 in [S]) that µH1(Rd) is quasi-translation invariant in the directions of

H1(Rd). More precisely, if h ∈H1(Rd) and

Rh(w) ≡ exp
((

w,h
)
H1(Rd)

− 1
2‖h‖

2
H1(Rd)

)
,
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then (just as (1) would seem to be predicting)

µH1(Rd)

({
w : h + w ∈ Γ

})
=

∫
Γ

Rh(w)µH1(Rd)(w)

for all Borel subsets Γ of W(Rd). This important observation was made originally
by R.H. Cameron and T. Martin and is the reason why H1(Rd) is sometimes called
the Cameron–Martin space of µH1(Rd). The complementary assertion that µH1(Rd)

becomes singular to itself when translated in directions outside of H1(Rd) was first
proved by I.E. Segal (cf. Exercise 5.2.38 in [S]).

§2: Brownian motion on a Riemannian manifold

Up to this point, all the ideas with which we have been dealing stem from Wiener,
although our treatment benefits immeasurably from the interpretation given them
by I.E. Segal and his school (especially, L. Gross). Due, in part, to the efforts of
Segal et al., Wiener’s ideas had a renaissance during the heyday of constructive
quantum field theory. Most notably, in the early ’60s, K. Symanzik initiated the
study of Euclidean quantum field theory,6 and his program was taken up by a host
of mathematicians, especially E. Nelson, A. Jaffe, and J. Glimm. However, we will
take a quite different tack. Namely, following in K. Itô’s footsteps, we will explain
how to transfer Wiener’s ideas about Brownian paths in a linear space, like Rd,
to “Brownian” paths on a non-linear space. Thus, this section is devoted to the
construction of Brownian motion on a d-dimensional, Riemannian manifold M .7

To get started, we adopt the same heuristic approach as we did in Rd. Thus,
choose an initial reference point x0 ∈M (alias 0 ∈ Rd), and take H1(M) to be the
space of continuous paths h : [0, 1] −→M with

(8) h(0) = x0 and ‖h‖H1(M) ≡
(∫

[0,1]

∣∣ḣ(t)
∣∣2
Th(t)(M)

dt

) 1
2

<∞.

Our goal is to make sense out of specifying a measure µH1(M) by the “Gaussian”
prescription

(9) µH1(M)(dh) =
(√

2π
)−dim(H1(M))

exp

(
−1

2

∫ 1

0

∣∣ḣ(t)
∣∣2
Th(t)(M)

dt

)
λH1(M)(dh).

6Symanzik’s idea (cf. [Sym]) was to start with a Gaussian measure on an appropriate function
space over R×RN , which represents (imaginary time)×space. If one uses analytic continuation to
define the moment generating function for such a Gaussian field on

√
−1R×RN , (real time)×space,

then one gets what physicists would call a Schwinger function. More precisely, they would call it
a trivial Schwinger function. To use this procedure to arrive at non-trivial Schwinger functions,
Symanzik knew that the original Gaussian field must be replaced by a non-Gaussian one, and
his idea was to “perturb” the Gaussian field. However, except when N = 0 and one is basically
dealing with Brownian motion, the “perturbation” is highly singular and the computations are
formidable. For introductions to this fascinating but technically horrendous topic, the books [GJ],
by Glimm and Jaffe, and [Sim], by B. Simon, are hard to beat.

7To avoid technical difficulties, the reader should assume that M is connected and compact. As
will be apparent, connectedness is not so important, since nothing is lost by restricting attention
to a connected component. On the other hand, compactness simplifies matters considerably. In
particular, it eliminates concerns about possible explosion.
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If (5) seemed problematic, then (9) has to be considered downright ridiculous!
In the first place, H1(M) has no linear structure, and so, even if we were to suspend
our disbelief, what is (9) supposed to be saying? For example, in view of the absence
of any linear structure on H1(M), how is one to give even a fanciful interpretation
to λH1(M)? (Presumably dim(H1(M)) =∞, for whatever good that does.) Thus,
no matter what one’s political persuasion, (9) calls for quite a lot of explanation.

Our explanation will rely on the typical mathematical subterfuge of mapping the
problem at hand to the problem which we have already solved. We begin with the
remark that H1(M) can be easily8 made into a Polish space in which convergence
of {hn}∞1 to h is equivalent to∥∥ϕ ◦ hn − ϕ ◦ h∥∥H1(R)

for every ϕ ∈ C1(M ;R).

Thus, at least it is a reasonable place in which to discuss measures. More important,
although H1(M) appears to possess no linear structure of its own, the Levi–Civita
connection provides a canonical relation between H1(M) and H1(Rd). Namely,
first choose and fix an orthonormal basis e0 =

(
E1(0), . . . , Ed(0)

)
in Tx0(M). Next,

for each h ∈H1(M), let

t ∈ [0, 1] 7−→ e(t) =
(
E1(t), . . . , Ed(t)

)
∈
(
Th(t)(M)

)d
be defined so that, for each 1 ≤ k ≤ d and t ∈ [0, 1], Ek(t) is obtained from Ek(0) by
parallel (relative to the Levi–Civita connection) transport along h � [0, t].9 Finally,
define h ∈ H1(Rd) so that10

(10) ḣ(t) = e(t)ḣ(t), t ∈ [0, 1].

The passage from h ∈ H1(M) to h ∈ H1(Rd) is a familiar one in geometry.
However, geometers usually prefer to stay in Tx0(M), instead of moving all the way
to Rd. Thus, they would consider the path

t ∈ [0, 1] 7−→ e0h(t) ∈ Tx0(M)

and would call this path the development of h in Tx0(M).11 Moreover, the devel-
opment map is homeomorphic, its inverse being the map which rolls a curve in

8For instance, one might embed M in RN (for some sufficiently large N) so that x0 = 0, and
then give H1(M) the metric which it inherits as a closed subset of H1

(
RN

)
.

9For the reader who is wondering whether this parallel transport makes good sense along
a curve h from H1(M), as opposed to C1

(
[0, 1];M

)
, be assured that an easy approximation

procedure shows that it does. Also, be forewarned that things are only going to get worse.
10Here and elsewhere, we think of f ∈ O(M) as an isometry from Rd onto Tπ(f)(M). Thus, if

f = (x, e) and v ∈ Rd, then fv is the element of Tx(M) for which v are the coordinates relative to
the basis e.

11An intuitive description of the development can be given as follows. Take a marker and lay
down an excess of ink along the path h. Next, thinking of M as a submanifold in RN , take the
tangent space Tx0(M) to M at x0, and press it down along the path h in such a way that it
remains tangent at its point of contact with M . The development of h is the curve which gets
inked onto Tx0(M).
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Tx0(M) onto M . That is, given h ∈ H1(Rd), transfer it to Tx0(M) via e0, and roll
the resulting curve onto M by solving the system of equations

(11)
ḣ(t) = e(t)ḣ(t) with h(0) = x0

∇ḣ(t)e(t) = 0 with e(0) = e0,

where ∇XY denotes the covariant derivative of Y with respect to X .
With the preceding discussion in mind, we now give H1(M) the linear structure

which it inherits from H1(Rd) via the homeomorphism just described. In this way,
we can interpret λH1(M) heuristically as the image of λH1(Rd) under the rolling map;

and, because ‖h‖H1(M) = ‖h‖H1(Rd) if h ∈ H1(Rd) gets rolled onto h ∈ H1(M),
it is now only consistent to interpret (9) as saying that µH1(M) on H1(M) is the

image of µH1(Rd) on H1(Rd) under the rolling map. Equivalently, under µH1(M), the
distribution of developed paths is the Gaussian measure µH1(Rd). Of course, since

neither λH1(Rd) nor even µH1(Rd) actually exists on H1(Rd), this interpretation does
not really solve our problem. On the other hand, it represents progress and tells us
what still has to be done. Specifically, we must show that the rolling map admits
an extension to a subset of w ∈W

(
Rd
)

having full µH1(Rd)-measure. Obviously, we
cannot expect the image of this extension to be H1(M). Instead, we should hope
that it will be

W(M) ≡
{
w ∈ C

(
[0, 1];M

)
: w(0) = x0

}
.

In other words, we are now at the same place in the present program as we were
earlier at the end of step (ii) in the construction of µH1(Rd) from γ, and our strategy
for taking the next step will resemble the one which we adopted there.

The procedure with which we will extend the rolling map derives from a general
scheme developed by K. Itô.12 In more or less the same way as Paley and Wiener
carried out their extension (cf. the last paragraph of §1), what Itô’s scheme provides
is a machine for extending maps which are originally defined on H1(Rd) to ones
which are defined, up to a µH1(Rd)-null set, on W

(
Rd
)
. However, in order to apply

Itô’s machine, it is important to have the original map arise as the solution to a first
order, ordinary differential equation into which ḣ enters linearly. For this reason,
it is important for us to develop such a representation of the rolling map, and, to
facilitate matters, it is best13 to move all our considerations to the bundle O(M)
of orthonormal frames.14 That is, as an abstract set, O(M) is the collection of
all pairs (x, e) as x varies through M and, for a given x ∈ M , e runs over all the
orthonormal bases in Tx(M). Clearly, the fiber map π : O(M) −→M , which takes
(x, e) to x, is onto, and, for each x ∈ M , the fiber π−1(x) is an isomorphic image
of the orthogonal group O(d). In fact, given a coordinate chart (U,ψ) for M at x,

12The cognoscienti will realize that Stratonovich introduced the flavor of Itô’s methodology
which we are going to use.

13The origins of this important observation are a little murky. However, the credit should
be shared by J. Eells, E.D. Elworthy, and P. Malliavin (the significance of the order being only
alphabetical). All three mentioned the idea in lectures given in the early ’70s. Papers followed:
[EE] and [M]. In a less elegant form, their program was anticipated by R. Gangolli [G]. Of course,
the first words on the subject are Itô’s in [I1] and [I2].

14The author’s own introduction to the orthonormal frame bundle was provided by [BC], and
the notation which follows is derived from that source.
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use the Gram–Schmidt orthogonalization procedure to produce a smoothly varying
section

y ∈ U 7−→ e(y) ∈
(
Ty(M)

)d
so that e(y) is an orthonormal basis in Ty(M) for each y ∈ U . Then the mapping

(y, e) ∈ π−1(U) 7−→
(
y, e(y)−1e

)
∈ U ×O(d)

is an isomorphism, and so, by declaring that such maps be diffeomorphisms, we get a
differentiable structure on O(M). Next, let f = (x, e) ∈ O(M), and observe that the
tangent space Tf

(
O(M)

)
contains a subspace Vf

(
O(M)

)
of vertical directions: the

tangents at f to curves in O(M) along which π is constant. Clearly, Vf

(
O(M)

)
is Lie

algebraically isomorphic to the Lie algebra o(d) of O(d), and every complementary
subspace of Vf

(
O(M)

)
will be linearly isomorphic to Tx(M). Moreover, the Levi–

Civita connection provides us with a canonical choice of complementary subspace.
Namely, given Xx ∈ Tx(M), choose γ : R 7−→ M to be a smooth curve satisfying
γ(0) = x and γ̇(0) = Xx, and define

s ∈ R 7−→ e(s) ∈
(
Tγ(s)(M)

)d
so that e(s) is obtained from e via parallel translation along γ. Then s ∈ R 7−→
Γ(s) =

(
γ(s), e(s)

)
∈ O(M) is a smooth curve in O(M) which passes through f at

time 0, and we will call X̂f ≡ Γ̇(0) ∈ Tf

(
O(M)

)
the horizontal lift of Xx to f.15

Finally, the horizontal subspace Hf

(
O(M)

)
of Tf

(
O(M)

)
consists of the vectors

X̂f obtained by horizontally lifting every Xx ∈ T (M). Note that the distribution
f ∈ O(M) 7−→ Hf

(
O(M)

)
admits a globally defined family of sections which form

a basis at each point. To see this, for each v ∈ Rd, define f ∈ O(M) 7−→ E(v)f ∈
Hf

(
O(M)

)
so that E(v)f is the horizontal lift of fv. Clearly, if {e1, . . . , ed} is an

orthonormal basis in Rd and

(12) Ek(f) ≡ E(ek)f, 1 ≤ k ≤ d and f ∈ O(M),

then
{
E1(f), . . . ,Ed(f)

}
is a basis in Hf

(
O(M)

)
for each f ∈ O(M).

The virtue of these considerations is revealed in their application to the discussion
of quantities like the rolling map. To see their relevance, let h ∈H1(Rd) be given,
and determine the path Ff0( · ,h) on O(M) from

(13) Ḟf0(t,h) = E
(
ḣ(t)

)
Ff0

(t,h)
with Ff0(0,h) = f0 ≡ (x0, e0).

After tracing through all the definitions, one discovers that

(14) Rf0(h) ≡ π ◦ Ff0( · ,h)

is precisely the path h ∈ H1(M) described in (11). That is, Rf0(h) is the path in
M which results from rolling t ∈ [0, 1] 7−→ e0h(t) ∈ Tx0(M) onto M , and so we

15It is important to note that this definition does not depend on the particular choice of γ but

only on f and Xx. In addition, one should check that Xx ∈ Tx(M) 7−→ X̂f ∈ T̂f

(
O(M)

)
is linear

and that, if x ∈ U 7−→ Xx ∈ Tx(M) is a smooth vector field on the open set U , then the vector

field f ∈ π−1(U) 7−→ X̂f ∈ Tf

(
O(M)

)
is also smooth.
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have achieved our goal of representing the rolling map in terms of a solution to a
first order, ordinary differential into which ḣ enters linearly.

Although the remaining step is far from trivial, it is completely standard ever
since Itô taught probabilists how to make it. In general terms, the procedure
runs as follows. For w ∈ W(Rd) and n ∈ N, use wn to denote the polygonal
path which is obtained from w by linear interpolation between points of the form
m2−n, 0 ≤ m ≤ 2n. What Itô’s theory facilitates is the proof that

(15)
Ff0( · ,w) ≡ lim

n→∞
Ff0

(
· ,wn

)
exists in W(M)

for µH1(Rd)- almost every w ∈W
(
Rd
)
,

where the limit is taken in the topology of uniform convergence.16 Thus, in view
of (14), this means that we can find a measurable Rf0 : W

(
Rd
)
−→W(M) so that

(16) Rf0(w) = lim
n→∞

Rf0(wn) for µH1(Rd)-almost every w ∈W
(
Rd
)
.

It remains only to take

(17) µH1(M) = µH1(Rd) ◦
(
Rf0

)−1
.

To complete the analogy with the Euclidean case, a µH1(M)-typical w ∈W(M) is

said to be a Brownian path on M .17

§3: Another point of view

Thus far, the slant of this article has been devoutly Gaussian. The Gaussian
slant has the advantage that it encourages one to write down intuitively appealing,
if not entirely meaningful, expressions like that in (9). The disadvantage is that,
except in the Euclidean setting, the Gaussian approach leaves one high and dry
when it comes to computations. In fact, at the end of its construction, we know
so little about the measure µH1(M) that we cannot even characterize it as “the
only measure on W(M) with the property that. . . ” All we know is that, after
development, the paths under µH1(M) are distributed according to the Gaussian
measure µH1(Rd). However, this is cold comfort when one considers just how hard
it must be to actually develop a nowhere differentiable path.

In order to carry out computations with µH1(M), it is helpful to broaden one’s
perspective and consider the Markovian aspects of µH1(M) along with the Gaussian.
Loosely speaking, a Markov process is a generalized dynamical system in which the
underlying dynamical mechanism may be random, and, in the case of Brownian
motion, the analogy with classical dynamical systems can be made quite compelling.
In fact, the goal of this section is to persuade the reader that the assertion

(*)

µH1(M) is the unique probability measure on W(M) under which typical

paths w are integral curves of the Laplace–Beltrami operator 1
2∆M

issuing from x0

holds water.

16See [ST] for a treatment of Itô’s theory from the point of view adopted here.
17Brownian motion has been constructed on other, and more exotic, non-linear spaces. In

particular, for reasons which elude this author, physicists want to put Brownian motion on fractals.
Whether or not they make sense physically, beautiful constructions of Brownian motion on the
Sierpinski gasket and related fractals have been carried out by S. Kusuoka [K] and improved by
M. Barlow and E. Perkins [BP].
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The preceding assertion is based on the following version of the renowned18 Itô’s
formula. To be precise, let Bs(Rd) denote the smallest σ-algebra over W(Rd) with
respect to which w ∈ W(Rd) 7−→ w(σ) ∈ Rd is measurable for every σ ∈ [0, s].
(In words, Bs(Rd) contains the history of the paths during [0, s].) Then, for all
0 ≤ s < t ≤ 1, A ∈ Bs(Rd), and Ψ ∈ C∞

(
O(M);R

)
:

(18)

∫
A

(
Ψ
(
Ff0(t,w)

)
−Ψ

(
Ff0(s,w)

))
µH1(Rd)(dw)

=

∫
A

(∫ t

s

1
2∆O(M)Ψ

(
Ff0(τ,w)

)
dτ

)
µH1(Rd)(dw),

where (cf. (12)) ∆O(M) ≡
∑d

1 E2
k is Bochner’s Laplacian on the orthonormal frame

bundle. While proving (18), we may and will assume that 2Ns and 2N t are both
integers for some N ∈ N, in which case19

Ψ ◦ Ff0(t,w)−Ψ ◦ Ff0(s,w) =

[2nt]−1∑
m=[2ns]

Dn,m(w)

where Dn,m(w) ≡ Ψ ◦ Ff0

(
2−n(m+ 1),w

)
−Ψ ◦ Ff0

(
2−nm,w

)
for every n > N . Next, set wn,m = w

(
2−n(m+ 1)

)
−w

(
2−nm

)
and apply Taylor’s

Theorem to write

Dn,m(w) = E
(
wn,m

)
Ff0

(2−nm,w)
Ψ + 1

2E
(
wn,m

)2
Ff0

(2−nm,w)
Ψ +En,m(w)

where
∣∣En,m(w)

∣∣ ≤ C∣∣wn,m

∣∣3.
The key observation is that, because wn,m is independent of B2−nm(Rd) and because
2
n
2 wn,m has distribution µRd ,∣∣∣∣∫

A

Dn,m(w)µH1(Rd)(dw) − 2−n
∫
A

1
2∆O(M)Ψ

(
Ff0(2−nm,w)

)
µH1(Rd)(dw)

∣∣∣∣
≤ C2−

3n
2

and therefore, after summation and a passage to the limit as n→∞, we get (18).

18Itô’s formula is now the bread and butter of the “quant” department of several major fi-
nancial institutions. Actually, the application of what we now call Brownian motion to finance
antedates its application to Brownian motion and goes back to the thesis, written at the turn
of the century (five years before Einstein’s famous paper about the kinetic theory of gases) by
L. Bachelier. Bachelier was trying to model the fluctuations of prices on the Bourse. From a
purely mathematical standpoint, his insights are far more penetrating than anyone else’s prior to
Wiener. In addition, their practical impact on all our lives is also far more penetrating. In fact,
models, like that of Black & Scholes, which are the form in which Bachelier’s ideas have been rein-
carnated, constitute the basis on which modern business makes decisions about how everything
from stocks and bonds to pork belly futures should be priced. The role that Itô’s formula plays
in all this is very much the same as the one which it plays in our considerations. Namely, Itô’s
formula provides the link between various stochastic quantities and differential equations of which
those quantities are the solution.

19We use [s] to denote the largest integer dominated by s ∈ R.
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To explain what (18) has to do with our assertion (*), we show that (18) spe-
cializes to a statement about µH1(M) when we apply (18) to Ψ’s which come from
a function on M , in the sense that Ψ = ψ ◦ π. For this purpose, first note that
∆O(M)(ψ ◦ π) is not only well-defined as a function on M (i.e., is constant on
each fiber), it is equal to ∆Mψ, the action of the Laplace–Beltrami operator ∆M

on ψ. Second, observe that, for each n ∈ N and 0 ≤ m ≤ 2n, Ff0

(
2−nm,wn

)
is B2−nm(Rd)-measurable. Hence, if the σ-algebra Bs(M) is defined over W(M)
in the same way as Bs(Rd) was over W(Rd), then it is not hard to see that, for
each s ∈ [0, 1] and A ∈ Bs(M),

{
w : Ff0( · ,w) ∈ A

}
∈ Bs(Rd). Therefore, after

elementary manipulation, we conclude that (18) specializes to the statement that
(19)∫

A

(
ψ
(
w(t)

)
− ψ

(
w(s)

))
µH1(M)(dw) =

∫
A

(∫ t

s

1
2∆Mψ

(
w(τ)

)
dτ

)
µH1(M)(dw),

for all 0 ≤ s < t ≤ t, A ∈ Bs(M), and ψ ∈ C∞(M ;R).
To appreciate why (19) supports the claim in (*), recall that w is an integral curve

of the vector field X on M means that, for each 0 ≤ s < t ≤ 1 and ψ ∈ C∞(M ;R),

ψ
(
w(t)

)
− ψ

(
w(s)

)
−
∫ t

s

Xψ
(
w(τ)

)
dτ = 0.

By comparison, (19) says that, at least on the average, the analogous relation-
ship holds between 1

2∆M and paths distributed according to µH1(M). This analogy
becomes even more compelling after one introduces the terminology of prediction
theory. Namely, because (19) holds for every A ∈ Bs(M), it says that the condi-
tional expectation value of

ψ
(
w(t)

)
− ψ

(
w(s)

)
−
∫ t

s

1
2∆Mψ

(
w(τ)

)
dτ

under µH1(M) given Bs(M) is 0. In other words, based on information about
w � [0, s], the best prediction that one can make about the value of

ψ
(
w(t)

)
− ψ

(
w(s)

)
−
∫ t

s

1
2∆Mψ

(
w(τ)

)
dτ

is that it will be 0. Alternatively, one can say that, under µH1(M), the quantity

ψ
(
w(t)

)
−
∫ t

0

1
2∆Mψ

(
w(τ)

)
dτ

is conditionally constant in the sense that, for each 0 ≤ s < t ≤ 1 its conditional
expectation value given Bs(M) is

ψ
(
w(s)

)
−
∫ s

0

1
2∆Mψ

(
w(τ)

)
dτ.

Because they arise in so many contexts, families of random variables which are
conditionally constant (in the sense just described) have been the subject of in-
tensive study by probabilists, who call such a family a martingale. Adopting this
terminology, we can summarize the statements in (18) and (19) as saying that

(20)

(
Ψ
(
Ff0(t,w)

)
− 1

2

∫ t

0

∆O(M)Ψ
(
Ff0(τ,w)

)
dτ,Bt

(
Rd
)
, µH1(Rd)

)
is a martingale for every Ψ ∈ C∞

(
O(M);R

)
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and

(21)

(
ψ
(
w(t)

)
−
∫ t

0

1
2∆Mψ

(
w(τ)

)
dτ,Bt(M), µH1(M)

)
is a martingale for every ψ ∈ C∞(M ;R).

For future reference, it will be convenient to have remarked that (20) and (21)
self-improve to cover functions which depend on time as well. In fact, they lead,
respectively, to
(20′)(

Ψ
(
t,Ff0(t,w)

)
− 1

2

∫ t

0

d∑
1

(
∂
∂τ + 1

2∆O(M)

)
Ψ
(
τ,Ff0(τ,w)

)
dτ,Bt

(
Rd
)
, µH1(Rd)

)
is a martingale for every Ψ ∈ C1,2

(
[0, 1]×O(M);R

)
and

(21′)

(
ψ
(
t, w(t)

)
−
∫ t

0

(
∂
∂τ + 1

2∆M

)
ψ
(
τ, w(τ)

)
dτ,Bt(M), µH1(M)

)
is a martingale for every ψ ∈ C1,2

(
[0, 1]×M ;R).

The immediate importance of these considerations for us is that (21) charac-
terizes µH1(M). That is, µH1(M) is the only probability measure on W(M) with
the property described in (21). To see this, we introduce the heat flow semigroup{
Pt : t ∈ [0, 1]

}
generated by 1

2∆M : if ψ0 ∈ C2(M ;R) and u(t, · ) = Ptψ0, then u
solves the heat equation

(22)

∂u

∂t
(t, x) = 1

2

[
∆Mu(t, · )

]
(x) for (t, x) ∈ (0,∞)×M

u(0, x) = ψ0(x) for x ∈M

with initial data ψ0. Now suppose that µ is any probability measure with the
property described in (21), and therefore (21′) as well. If, for some T ∈ (0, 1], we
apply (21′) with ψ(t, · ) = PT−tψ0, then we arrive at

(23)

∫
A

ψ0

(
w(T )

)
dµ =

∫
A

[
PT−tψ0

](
w(t)

)
dµ for all t ∈ [0, T ) and A ∈ Bt(M).

Proceeding inductively and using (23) at each stage, one finds that, for all n ≥ 1,
ψ1, . . . , ψn ∈ C2(M ;R), and 0 = t0 < t1 < · · · < tn ≤ 1:∫

W

ψ1

(
w(t1)

)
· · ·ψn

(
w(tn)

)
µ(dw) =

[
Pτnψn

(
Pτn−1ψn−1

(
· · ·
(
Pτ1ψ1

)
· · ·
))](

x0

)
,

where τm = tm − tm−1. Thus (21), or its equivalent (21′), determines

µ
({
w : w(t1) ∈ Γ1, . . . , w(tn) ∈ Γn

})
for all n ≥ 1, 0 < t1 < · · · < tn ≤ 1, and Borel subsets Γ1, . . . ,Γn of M . Since,
at least in theory, the probability of an arbitrary Borel subset of W(M) can be
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determined from such information, we now know that there is at most one Borel
probability measure µ for which (21) holds.

More generally, (21) and (21′) act as a bridge between µH1(M) and equations
which, like the heat equation, involve ∆M . Unfortunately for probabilists, most of
the traffic on this bridge flows from the analytic to the probabilistic side. Indeed, the
existence and uniqueness of a µ satisfying (21) constitute little more than a fancy,
albeit often convenient, way in which to catalogue information which is already
implicit in properties of solutions to the heat equation (23). In fact, if all that one
wants is to produce such a µ, there is a far more direct route than the circuitous one
which we have taken. For example, as soon as one shows that a heat flow semigroup
exists and possesses a few elementary properties, one can follow the route mapped
out by A.N. Kolmogorov (cf. [D] or [SV]) and one will arrive quickly at both the
existence and uniqueness statements. Thus, it is not until one takes advantage of
particular, probabilistically inspired representations of the measure µ that one can
hope that probability theory will have something really new to contribute. Not
surprisingly, the equation

(24) µH1(M) = µH1(Rd) ◦
(
π ◦ Fe

)−1

is a wonderful example of just such a representation: it is built by taking an in-
trinsic, geometric construction for smooth paths and using probabilistic machinery
to extend that construction to paths which are not smooth. Some examples of its
virtues are the subject of the next section.

§4: Some applications

The basic connection between probability theory and partial differential equa-
tions resides in formulae like

(25)
[
PTψ

]
(x0) =

∫
W(M)

ψ ◦ π
(
Ff0(T,w)

)
µH1(Rd)(dw).

However, in spite of the intuitively appealing picture it provides of heat flowing
along random paths, there remains the question whether useful information about
solutions to partial differential equations can be gleaned from (25). The answer
is that (25) does contain interesting information, even if it divulges it with some
reluctance.

As our first example, we will show how (25) leads to a particularly attractive
formulation of Bochner’s identity. For this purpose, we define ∇O(M)Ψ : O(M) −→
Rd for Ψ ∈ C1

(
O(M);R

)
so that (cf. (12) and try to avoid any confusion arising

from our earlier use of ∇ for covariant differentiation)

[
∇O(M)Ψ

]
(f) =

d∑
1

(
EkΨ

)
(f)ek,

and set

∇Mψ = ∇(ψ ◦ π) when ψ ∈ C1(M ;R).
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(Notice that, although ∆O(M)(ψ ◦ π) is well-defined on M when ψ ∈ C2(M ;R),

∇Mψ is not.) Finally, define the Ricci curvature matrix Ric : O(M) −→ Rd ⊗ Rd
so that

(
v,Ric(f)v′

)
Rd =

d∑
k=1

(
Riem(fek, fv)fek,v

′
)
Tπ(f)(M)

, v,v′ ∈ Rd,

where Riem : Tx(M)2 −→ Hom
(
Tx(M);Tx(M)

)
is the Riemann curvature (cf.

[doC]).
In the preceding notation, Bochner’s identity becomes the commutation relation:

(26) [∇O(M),∆O(M)](ψ ◦ π) = −Ric∇Mψ for ψ ∈ C3(M ;R).

After combining (22) with (26), we get

(27)
d

dt
∇Ptψ = 1

2∇M∆MPtψ = 1
2∆M∇Ptψ − 1

2Ric∇MPtψ.

In other words, ∇Ptψ is a solution to a d-dimensional system of heat equations in
which coupling occurs only in the zeroeth order terms, and this is precisely the sort
of equation to which the following mild extension20 of the famous Feynman–Kac
formula applies.

Lemma F–K. Suppose that M : [0, 1]×W(Rd) −→ Rd and A : [0, 1]×W(Rd) −→
Hom

(
Rd;RN

)
are bounded, measurable functions which are adapted.21 Further,

assume that

M( · ,w) ∈ C
(
[0, 1];Rd

)
and A( · ,w) ∈ C1

(
[0, 1]; Hom(Rd;Rd)

)
for µH1(Rd)-almost every w ∈W(Rd) and that the uniform norm of ‖Ȧ( · ,w)‖op is

in L∞(µH1(Rd)). If
(
M(t,w),Bt(Rd), µH1(Rd)

)
is a martingale, then so is(

A(t,w)M(t,w)−
∫ t

0

Ȧ(τ,w)M(τ,w) dτ,Bt(Rd), µH1(Rd)

)
.

To apply Lemma F–K here, set U(t, f) =
[
∇P1−tψ

]
(f), note that, by (27),

∂U

∂τ
+

1

2
∆O(M)U =

1

2
RicU,

and use (20′) to conclude that(
M(t,w)≡U

(
t,Ff0(t,w)

)
− 1

2

∫ t

0

Ric
(
Ff0(τ,w)

)
U
(
Ff0(τ,w)

)
dτ,Bt(Rd), µH1(Rd)

)
20Actually, one can think of it equally well as a special case of Itô’s formula. For an elementary

proof, see Theorem 7.1.19 in [S].
21A function F on [0, 1]×W(Rd) is said to be adapted if, for each t ∈ [0, 1], F (t, · ) is Bt(Rd)-

measurable.
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is a martingale. Next, define the Ricci flow A : [0, 1]×W(Rd) −→ Hom(Rd;Rd) so
that

(28) Ȧ(t,w) +
1

2
A(t,w)Ric

(
Ff0(t,w)

)
= 0 and A(0,w) = I.

Then, because

A(t,w)U
(
t,Ff0(τ,w)

)
= A(t,w)M(t,w) + A(t,w)

∫ t

0

1
2Ric

(
Ff0(τ,w)

)
U
(
τ,Ff0(τ,w)

)
dτ

= A(t,w)M(t,w)−
∫ t

0

Ȧ(τ,w)M(τ,w) dτ,

we know that

(29)

(
A(t,w)

[
∇MP1−tψ

](
Ff0(t,w)

)
,Bt(Rd), µH1(Rd)

)
is a martingale for each ψ ∈ C3(M ;R).

In particular,

t ∈ [0, 1] 7−→
∫

W(Rd)

A(t,w)
[
∇MP1−tψ

](
Ff0(t,w)

)
µH1(Rd)(dw) ∈ R

is constant, and so

(30)
[
∇MP1ψ

]
(f0) =

∫
W(Rd)

A(1,w)
[
∇Mψ

](
Ff0(1,w)

)
µH1(Rd)(dw).

Clearly, (30) can be used to gain estimates on the gradient of the heat flow
semigroup in terms of the gradient of the initial data. To wit, from its definition in
(28), it is an easy matter to obtain

(31) ‖A(1,w)‖op ≤ e−κ where κ ≡ inf
f∈O(M)

ξ∈Sd−1

(
Ric(f)ξ, ξ

)
Rd ,

which, together with (30), leads immediately to the estimate

(32)

∣∣[∇MP1ψ
]
(f0)
∣∣ ≤ e−κ ∫

W(Rd)

∣∣[∇Mψ](Ff0(1,w)
)∣∣µH1(Rd)(dw)

= e−κ
[
P1

(
|∇Mψ|

)]
(f0),

which, at least when κ > 0, has interesting implications about the ergodic properties
of {Pt : t > 0} (cf. [BE]). On the other hand, (32) is a poor advertisement for (30):
it can be proved far more easily, via the weak maximum principle, directly from
(27) (cf. [LY]). Thus, before one can gain a full appreciation of (30), one has to go
further. The further here entails the removal of the derivatives from the ψ in the
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integrand on the right-hand side of (30). Obviously, if this can be done at all, one
would expect to do it by some sort of integration by parts.

Actually, when one considers the situation at hand, integration by parts is a quite
reasonable suggestion. Namely, the measure µH1(Rd) is a smooth (i.e., behaves well

under translation in the directions of H1(Rd) in the sense explained at the end of §1)
on W(Rd) and the map π ◦ Ff0(1, · ) is non-degenerate in the sense that a (formal)
computation indicates that its Jacobian dπDFf0(1,w) maps H onto TFf0

(1,w)(M).

Hence, one ought to be able to use Ff0(1, · ) to first pull back the vector fields onM to
vector fields on W(Rd), then integrate by parts using µH1(Rd), and finally push for-
ward the resulting expression. These are the principles which underlie a collection of
techniques known, somewhat loosely, as Malliavin’s calculus,22 but, unfortunately,
rigorous application of them entails quite a lot of rather tedious work. Thus, we are
lucky that, for the particular case under consideration, there is an alternate way to
proceed. Namely, let B : [0, 1]×W(Rd) −→ Hom(Rd;Rd) be any bounded, adapted,
measurable map with the properties that B( · ,w) is twice continuously differen-

tiable for µH1(Rd)-almost every w ∈ W(Rd), supt∈[0,1] ‖Ḃ(t, · )‖op ∈ L∞(µH1(Rd)),

B(0,w) = 0, and B(1,w) = I. Next apply Lemma F–K to see (cf. (29)) that

B(t,w)A(t,w)
[
∇MP1−tψ

](
Ff0(t,w)

)
−
∫ t

0

Ḃ(τ,w)A(τ,w)
[
∇MP1−τψ

](
Ff0(τ,w)

)
dτ

is a µH1(Rd)-martingale. In particular, by comparing expectation values taken at
t = 0 and t = 1 and using (30), we get the equation
(33)[
∇MP1ψ

]
(f0)

=

∫
W(Rd)

(∫ 1

0

Ḃ(τ,w)A(τ,w)
[
∇MP1−τψ

](
Ff0(τ,w)

)
dτ

)
µH1(Rd)(dw).

Of course, (33) still has derivatives on the right-hand side and therefore may not
appear to represent much of an improvement over (30). On the other hand, after
staring at (33) for a second, one realizes that the derivatives on the right-hand side
of (33) are getting integrated with respect to time. Thus, there is a chance that one
will be able to remove the derivatives by integrating by parts in time (as opposed
to W(Rd)). In fact, that is precisely what can be done, but in order to carry out
the details (see, [SZ]) one must know a little stochastic integration theory as well
as the full statement of Itô’s formula. For this reason, we will simply write down
the answer:
(34)[
∇MP1ψ

]
(f0)

=

∫
W(Rd)

(∫ 1

0

ΞB(t,w)
(
w(1)−w(t)

)
dt

)
ψ ◦ π

(
Ff0(1,w)

)
µH1(Rd)(dw)

where ΞB(t,w) ≡ Ḃ(t,w)Ric
(
Ff0(t,w)

)
A(t,w) + B̈(t,w)A(t,w).

22The idea of integrating by parts in Wiener space antedates P. Malliavin. Most notably, first
R.H. Cameron and then his student M.D. Donsker developed integration by parts formulae for
Wiener measure, and their formulae were re-discovered and sharpened by constructive quantum
field theorists. However, it was not until Malliavin got into the game that anyone had the courage
to apply these formulae to functions as complicated as Ff0

(1, · ).
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In particular, by taking B(t,w) = tI, one recovers the integrated form of a beautiful
formula due to J.–M. Bismut (see [B]).

Equation (34) is the starting place for a variety of different calculations. To give
a sense of what these are, let pT (x, y) denote the fundamental solution to the heat
equation (22). That is,

[
PTψ

]
(x) =

∫
M

ψ(y)pT (x, y)λM (dy),

where λM is the Riemann measure on M . As is well-known (in fact derivable from
the sort of considerations discussed here), pT (x, y) is a positive, smooth function of
(T, x, y) ∈ (0, 1]×M ×M , and, for each T ∈ (0, 1], it is symmetric with respect to
(x, y) ∈ M2. What (34) does is provide, for each choice of B, a representation of
the logarithmic gradient

[
∇M log p1( · , y)

]
(f0) as the conditional expectation value

under µH1(Rd) of

∫ 1

0

ΞB(t,w)
(
w(1)−w(t)

)
dt given π ◦

(
Ff0(1,w)

)
= y.

Indeed, it is not until (34) (with B(t,w) = tI) is interpreted this way that one
has Bismut’s formula in all its glory. More generally, after rescaling time, one
gets analogous expressions for

[
∇M log pT ( · , y)

]
(f0) with general T ∈ (0,∞), and

from these one can derive effective estimates on the gradient of pT ( · , y) in terms of
pT ( · , y) itself (cf. [SZ]). Perhaps more interesting are the asymptotic results which
one can obtain by combining Bismut’s formula with the theory of large deviations.
For instance, one can show (cf. [MS]) that if x0 is outside the cut locus (cf. [doC])
of y, then

lim
T↘0

2T
[
∇M log pT ( · , y)

]
(f0) = −θ(f0, y)

where f0θ(f0, y) is the initial velocity of the minimal geodesic on [0, 1] running from
x0 to y. In particular,

x0 outside the cut-locus of y =⇒ lim
T↘0

2T
∣∣∣[∇M log pT ( · , y)

]
(f0)
∣∣∣ = dist(x0, y).

By contrast, if x0 lies in the cut locus of y, then, under additional technical condi-
tions, one can show that

lim
T↘0

2T
∣∣∣[∇M log pT ( · , y)

]
(f0)
∣∣∣ < dist(x0, y).

Other, and more intriguing, results can be proved from higher derivative analogs
of Bismut’s formula. (However, to develop such formulae, it seems that one has to
invoke the sort of reasoning alluded to earlier as Malliavin’s calculus.) Moreover,
the applications of these ideas is not restricted to the generation of estimates on
pT ( · , y). For instance, throughout the last decade, Malliavin [FG] and his school
have been applying them to the analysis of diffusions on loop spaces, and, more re-
cently, B. Driver ([Dr1] and [Dr2]) has successfully constructed the number operator
on loop space. (See also [H], [ES1], and [ES2].)
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