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In the title of a story [To] written in 1886, Tolstoy asks, “How Much Land
Does a Man Need?” and answers the question: just enough to be buried in. One
may ask equally well, “How much algebra does an algebraic geometer—man or
woman—need?” and prospective algebraic geometers have been known to worry
that Tolstoy’s answer remains accurate. Authors of textbooks have at times given
vastly different answers, albeit with a general tendency over time to be monotonely
increasing in what they expect will be useful. In crudely quantitative terms, one
has at one extreme the elegant minimalist introduction of Atiyah and Macdonald
[AM] at 128 pages, then Nagata [Na] at 234 pages, Matsumura [Ma] at 316 pages,
Zariski and Samuel [ZS] at 743 pages, and the present work at 785 pages.

I suspect that most of my fellow algebraic geometers, as a practical matter,
would answer my question by saying, “Enough to read Hartshorne.” Hartshorne’s
Algebraic geometry [Ha], appearing in 1977, rapidly became the central text from
which recent generations of algebraic geometers have learned the essential tools
of their subject in the aftermath of the “French revolution” inspired by the work
of Grothendieck and Serre (Principles of algebraic geometry by Griffiths and Har-
ris [GH] plays a comparable role on the geometric side for the infusion of com-
plex analytic techniques entering algebraic geometry at about the same period).
Hartshorne’s book is peppered with references to the then-existing texts in com-
mutative algebra, no one of which contained everything he needed. Indeed, one
of the goals of Eisenbud’s book was to provide a single work containing all of the
algebraic results needed in Hartshorne’s book.

It is sobering to consult Hodge and Pedoe’s Methods of algebraic geometry [HP]
and see how little commutative algebra they got away with—for example, there
is no entry for “Noetherian” in the index. The student reader (I was one) was
set loose in algebraic geometry armed with not much more than the fundamental
theorem of algebra, resultants, the Hilbert basis theorem, the Nullstellensatz, and
the Pliicker equations for the Grassmannian (which sneaks in a bit of representa-
tion theory), plus some splendid geometric insights. It is heartening to feel that
algebraic geometry has attained the point where we have at our disposal the power
of scheme-theoretic techniques without losing the inexhaustible wellspring of inspi-
ration supplied by geometric insights (these insights were kept alive most vividly
in the work of Griffiths and Mumford).

It is interesting to observe that about the time that Hartshorne’s book was being
published, a second wave of algebraic input into algebraic geometry, admittedly
less powerful than the first, was gathering strength. Rather than being insights
having universal application throughout algebraic geometry, such as Serre’s FAC
[Se], they tend to be more specific and to involve more specialized algebra. The
discovery by Kempf [Ke] and Kleiman-Laksov [KL] that the singularities of the
theta-divisor of the Jacobian variety of an algebraic curve may be studied using
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determinantal varieties (varieties defined by the minors of matrices whose entries
are polynomials) might serve as an opening of this phase of the influence of algebra
on algebraic geometry. About the same time, a theorem of Macaulay about what
we would now call Gorenstein rings appears as the crucial step in Griffiths’ proof
[Gr] that the derivative of the period map for projective hypersurfaces is injective
(infinitesimal Torelli). The beautiful use of the Eagon-Northcott resolution in the
bound by Gruson-Lazarsfeld-Peskine [GLP] for the regularity of ideals of projective
curves is another example. Eisenbud’s book has the great virtue of incorporating
the commutative algebra that lies behind this second wave of algebraic influence
on algebraic geometry as well.

There are certainly topics in algebra that lie outside the scope of Eisenbud’s book
which belong in the arsenal of many algebraic geometers. Representation theory
in many guises appears in algebraic geometry, for example, in the geometry of the
period domains which appear in Hodge theory, in geometric invariant theory, or
the various more specialized uses of the representation theory of the general linear
group, such as Kempf’s derivation of the Eagon-Northcott complex. A student
planning to work in arithmetic algebraic geometry might wish for a more abstractly
oriented package of tools—simplicial objects, the derived category, algebraic K-
theory. It should be noted that Tolstoy’s protagonist collapses in the attempt to
include just one additional tract of ground, and Eisenbud has managed to distill
the gist of some of these topics into a series of highly concentrated appendices.

The subject of commutative algebra itself has undergone considerable changes
in the period since Hartshorne’s book was written—although probably not, with
one exception, a revolution. There is one change which has overtaken commuta-
tive algebra that is in my view revolutionary in character—the advent of symbolic
computation. This is as yet an unfinished revolution. At present, many researchers
routinely use Macaulay, Maple, Mathematica, and CoCoA to perform computer
experiments, and as more people become adept at doing this, the list of theorems
that have grown out of such experiments will enlarge. The next phase of this de-
velopment, in which the questions that are considered interesting are influenced by
computation and where these questions make contact with the real world, is just
beginning to unfold. I suspect that ultimately there will be a sizable applied wing
to commutative algebra, which now exists in embryonic form. Eisenbud has been
very much involved in computational developments; he has, for example, authored
many of the basic scripts in use with Macaulay. He has included a highly useful
chapter on Grobner bases containing most of the basic theorems and with a series
of suggested computational projects. I am in agreement with him that this is an
area that most young algebraic geometers ought to learn.

Eisenbud’s book is clearly intended to serve both as an introduction for students
and as a reference work. It is difficult to harmonize these two goals, and indeed
many reference works, stating theorems in maximal generality, are virtually un-
readable. Eisenbud’s strategy for surmounting this difficulty is quite interesting
and successful. A typical chapter begins with an informal discussion, in which he
attempts to explain to the reader what is really going on and why the topic is
important and interesting. These discussions are almost invariably illuminated by
Eisenbud’s remarkable gift for producing the telling example. He then wipes the
slate clean and begins again, giving formal definitions and proofs. He frequently
takes the unusual step of explaining what is not true and why the theory is not
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simpler than it is. This is then followed by a profusion of exercises, drawn from the
heartland of commutative algebra and from algebraic geometry.

The book is informed by Eisenbud’s broad knowledge of algebraic geometry and
his encyclopaedic knowledge of commutative algebra; he works actively in both
fields. The algebra is illuminated whenever possible by its geometric interpretation,
a feature that I found extraordinarily useful and one which I imagine some readers
from the commutative algebra side will find enlightening. He brings the reader
as close as he can to late-breaking developments in commutative algebra, with
numerous references to many of the important things currently going on.

My friend Harsh Pittie once gave the following description of the styles of math-
ematical exposition of three of the leading mathematicians of the day: A paper
or lecture by X was like a walk in a beautiful garden. Y would take you up in
an airplane and show you the reservoir from which the garden ultimately got its
water, while with Z you got into a jeep and went careening through the shrubbery.
The expository style of this book is mostly of the “walk-in-the-garden” variety, al-
though Eisenbud does take the reader up in a plane when necessary, and there are
rare but occasional crashes through the shrubbery. The style is delightfully old-
fashioned, with digressions, interesting stories, apostrophes to the reader (including
one exhorting him or her to generalize a conjecture of mine), puns, historical excur-
sions, and advice. The book is infused with an evident affection for both subjects,
commutative algebra and algebraic geometry, and Eisenbud displays equal relish
in showing the reader the Hilbert-Burch Theorem and the geometry of a trigonal
canonical curve.

The existence of this book raises some interesting questions about how students
in algebraic geometry ought to be trained. Traditional first-year graduate courses
in algebra often have a rather perfunctory treatment of rings, ideals, and modules,
emphasizing instead group theory and field theory. For a future algebraic geome-
ter, field theory is essential, an introduction to representation theory would be more
useful than the Sylow theorems, and a solid introduction to commutative algebra
is vital. The increasing sophistication and diversity of the algebraic tools now in
use in algebraic geometry require students to be quite selective if they are going
to get a Ph.D. in a reasonable amount of time and make it really important to
acquire the habit of lifelong learning and persistently expanding one’s repertoire of
mathematical techniques. My advice to a student would be to read the portions
of Eisenbud’s book relevant to Hartshorne, skimming where appropriate and per-
haps shifting back and forth between the two books, and then to nibble further at
Eisenbud’s book over the succeeding years.

This volume is a major and highly welcome addition to the mathematical litera-
ture, providing a unified, elegant, and exhaustive survey of those topics in commu-
tative algebra likeliest to be of use to algebraic geometers. The rigorous treatment
is supplemented by substantial heuristic, historical, and motivational sections and
a wide range of exercises. There is an exceptionally thorough bibliography and nu-
merous links to recent developments. I anticipate that it will soon be found on the
bookshelf of virtually any practicing algebraic geometer or commutative algebraist.
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