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The aim of this book is to present a detailed description of the theory of pseudo-
holomorphic 2-spheres in symplectic manifolds, with applications to symplectic
invariants, quantum cohomology, and Floer homology.

In order that the reader understand the contributions of this book and the gen-
eral context where they arise, I will first briefly outline the origins of symplectic
geometry and its relations with almost complex geometry and pseudo-holomorphic
curves. I will then explain what the Floer cohomology ring is and how it can be
interpreted in the context of quantum field theory. This will naturally lead to the
definition of quantum cohomology. At each step, I will describe the content of the
relevant chapters of the book.

1. THE DYNAMICAL ORIGINS

The origins of symplectic geometry go back to the development of analytical
mechanics in the eighteenth century but took a more definitive form with the
Hamiltonian formulation of the laws governing the motion of a classical system.
If V is an n-dimensional manifold whose points parametrize all possible configu-
rations of a system (here the parametrization takes into account the constraints a
priori imposed on the relative positions of each constituent of the system) and if
H: T*V — R denotes the energy associated to each configuration and momentum,
the equation of the motion of a point (¢,p) € T*V (where ¢ € V is the position
and p € T?V is the momentum) is given by:

H H
) S O=p) S0 =i,

The meaning of this equation is this. Take any chart ¢p: U(C V) — O(C R™) and
extend it by differentiation to a chart of diy: 7= () — OxR™ where m: T*V — V
is the projection, and write (*,) for the above system of ODEs where (g, p) belongs
to O x R™ and H is replaced by its pullback H o (di)~! on O x R™. It can be
easily checked that the solutions of these systems of ODEs are independent of the
choice of the chart; that is to say, the solutions of the equation (%, ) coincide with
the solutions of the equation (x,) under the identification given by g0t ! Thus
the Hamiltonian equations have an intrinsic meaning. Further, they are invariant
under any diffeomorphisms ¢: T*V — T*V induced by differentiation of a diffeo-
morphism of the base. Actually, the full group of diffeomorphisms which preserve
these equations (for all choices of H) is the group of symplectic diffeomorphisms
which is much larger than the subgroup Diff (V') — Diff(T*V).

Here is a more intrinsic point of view. On T*V there is a canonical 1-form, the
Liouville form A defined by Aq,(v) = ap(dr(v)) (or by A = > pidg; in a chart).
Its exterior derivative w = dX\ (= > dp1 A dg;) is a closed nondegenerate 2-form.
Thus it gives a pointwise pairing TPV — T,V at every p € V, which transforms dH
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into a vector field X (the symplectic gradient of H). In this context, Hamilton’s
equations simply say that the solutions are the (projection on V of the) integral
curves of Xg. The nondegeneracy of the form d\ is needed for the pairing, and
its closedness is needed in order that the one-parameter flow induced by Xy (the
Hamiltonian flow) preserves dA.

This is analytic mechanics, and a great deal of the theory of ODEs is devoted
to solving these equations. Fortunately, many of these equations that arise from
physics or mathematics have a rich group of symmetry. It can be shown that the
study of the space of solutions of such an equation can be reduced to the study
of a smaller symplectic space, obtained from the initial one T*V by a moment
map reduction that we do not need to describe here. The essential point is that,
even if one is solely interested in analytical mechanics on cotangent spaces (or its
quantized versions), one is naturally led to consider much more general spaces, the
symplectic manifolds (that can often be compact). The simplest example is the
Hamiltonian H = %(¢? + p?) on C" = R*® = T*(R"); since H is constant along
any integral curve of Xg, it is enough to consider a sphere H~!(c) whose moduli
space of solutions is the quotient by the Hopf fibration, leading to CP™ .

2. THE GEOMETRY OF SYMPLECTIC MANIFOLDS

The question now is how to extract symplectic invariants from a given closed
symplectic manifold? As in Riemannian geometry, these invariants are basically
2-dimensional, but Darboux’s Theorem states that a symplectic form has no local
invariants. Hence the (necessary) nonlocal invariants of a symplectic structure
w cannot be extracted from the integration of local invariants. A most interesting
approach to defining these invariants has been introduced by Gromov in his seminal
paper [7]. Tt is based on the following observations:

1. Up to homotopy, the space of nondegenerate 2-forms on a given manifold is the
same as the space of almost complex structures (essentially because both Sp(2n, R)
and GL(n, C) retract on their common maximal compact subgroup U(n)). Actually,
to each symplectic form w there corresponds a contractible (infinite-dimensional)
space J (w) of all almost complex structures compatible with w, that is those J €
Autgr (T'M) which satisfy (a) J2 = —id for every p € M and (b) w(-,J-) is a
Riemannian metric g on M. We recover all conditions defining a Kahler manifold
except the integrability of J. Thus symplectic geometry can be considered as the
geometry of almost Kahler manifolds.

2. The real surfaces ¥ — M which are (perhaps singular) 1c-dimensional J-
submanifolds of (M, J), that is to say, those surfaces whose tangent spaces are J-
invariant, are necessarily genuine holomorphic curves (because any almost complex
structure on a real surface is automatically integrable).

3. In the presence of the taming condition 1 above, the g-area of a J-curve C' in
class A € Ho(M,Z) is equal to its w-area and is therefore a homological constant
(like the Wirtinger inequality in Kahler geometry). This control on the energy of
any A — J-curve (that is to say, the control at the critical Sobolev level L?1) is
the essential feature of the theory: it implies, as Gromov showed, that the moduli
spaces of A — J-curves is not necessarily compact but can be compactified in a
very natural way by addition of reducible curves (that Gromov calls cusp-curves).
These moduli spaces of curves behave much as in the (integrable) Kahler case.
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4. Two symplectic forms w1, ws compatible with the same almost complex struc-
ture J are isotopic through the linear path Aw; + (1 — ANwsa, 0 < A < 1! This is
perhaps the most important observation of Gromov in this theory, which plays a
crucial role in the classification of symplectic manifolds'. But we will not discuss
this point further, since it is not directly related to the book under review.

Hence the first three conditions above suggest the following strategy. Given
(M,w), define a symplectic invariant associated to some genus g > 0 and some
class A € Hy(M,Z) in the following way: for each generic J € J(w), consider the
moduli space of unparametrized J-curves of genus g in class A, M(J, g, A), and
define the symplectic invariant as the cobordism class of M(J, g, A) as J varies in
the connected space J(w). Of course, one must choose g = g(A) so that the moduli
space is of nonnegative dimension.

But there are three problems with this definition: the first one is to ensure that
the space is not empty, which is a very nontrivial task that can only be solved by
exhibiting at least one J-curve for some generic J (or equivalently a w-symplectic
surface in class A)2. The second problem is due to the fact that nothing ensures in
general the compactness of M(J, g, A), so that the cobordism would then have no
meaning at all. The third problem, finally, is that even when M (J, g, A) is compact
(or can be nicely compactified), it might frequently be null-cobordant. Although
the first problem is essential, the last two can be overcome, as did Witten in [14],
Ruan in [11], or Taubes in the 4-dimensional case in [13], by defining the invariant
as the (signed) number of J-curves of genus g(A) in class A that meet a specified
finite set of fixed representatives of homology cycles in M. In many cases, this
number is nonzero even when M(/J, g, A) is null-cobordant?.

The first part of the book (Chapters 1 to 5) gives a quite complete account of
the theory of pseudo-holomorphic curves of genus 0 in symplectic manifolds, and
Chapters 6 and 7 present with all details the definition and main properties of the
invariants. More precisely, these seven chapters describe the local behaviour of
pseudo-holomorphic curves, the Fredholm setting leading to a correct definition of
the moduli spaces of J-curves, and a regularity criterion that ensures that a given
moduli space is a nonempty smooth manifold. It then proceeds with the definition
of the Gromov-Witten invariants that I briefly described above (I will come back
to them below). Apart from the interest of having all this material in a single
book, the main novelty of their approach is that they work in the Fréchet category
of smooth maps instead of the Sobolev or Holder spaces that usually appear in
this context and that were indeed used in the first book on pseudo-holomorphic
curves edited by Audin-Lafontaine [3]. The fact that the Sard-Smale theorem on
transversality works only in the Banach cases forces them to go back and forth
between Banach and Fréchet spaces. But their point of view has a more geometric
flavor and has the advantage of giving them the opportunity of making use of the

1See Lalonde-McDuff [9] for a review of the theory of J-curves and for its application to the
classification of some symplectic 4-manifolds.

2This can be shown either by starting from a w’-symplectic surface for some standard sym-
plectic form w’ which can be homotoped through symplectic forms to w, or by using spinor type
arguments and Taubes’s theory linking the zero set of the Seiberg-Witten equations to pseudo-
holomorphic curves.

3This was realised early by Gromov in [7]. He considered in this paper a special case of Ruan’s
definition in his study of Lagrange submanifolds; note also that the same kind of definition occurs
in Donaldson’s polynomials.
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strongest properties of pseudo-holomorphic curves (that were at that time known to
hold only in the smooth category). So this approach and style will be appreciated
by anyone who likes a geometric presentation; on the other hand, one should not
expect from this book the optimal estimates or the statement of the theorems in
the optimal Holder categories. The reader will not find either the treatment of
higher genus curves (see [3] for this). But this has the pedagogical advantage of
presenting the Gromov compactness theorem in its simplest version, where only the
bubbling-off phenomenon can occur (since the conformal structure of the Riemann
surface is automatically fixed in genus 0).

3. FLOER COHOMOLOGY

The second part of the book (Chapters 8, 9, and 10) concerns the definition and
properties of the quantum cohomology of symplectic manifolds and its equivalence
with Floer cohomology.

Let (M, w) be a weakly monotone* symplectic manifold and H; = Hy, a periodic
Hamiltonian on M of period T' = 1. Let ¥ be the time-one flow of the Hamiltonian.
This is the symplectic transformation of M which assigns to each point p € M the
point z(1) where z: [0,1] — M is an orbit of H; (i.e., satisfies dx/dt(t) = Xi(x(t)))
with initial condition z(0) = p (here X, is the symplectic gradient of H; defined
by w(X;, ) = dH;). Of course, the fixed points of ¢ coincide with the 1-periodic
closed orbits of H;. If the Hamiltonian were autonomous, the number of these fixed
points would be bounded from below by the number of critical points of H, and
actually one would be able to define the ordinary Morse complex on these points,
whose homology is well known to coincide with the singular homology of M. Arnold
conjectured in the sixties that this should continue to hold in the nonautonomous
case: the lower bound on the closed orbits should still be bounded from below by
the minimal number of critical points that a (Morse) function M — R can have.
A topological version of this conjecture was proved by Floer, who showed in [6]
that, even in the nonautonomous case, one can define a complex on the closed
contractible orbits of H; whose homology coincides—as a graded group—with the
ordinary homology of M (at least when 7o (M) = 0). The idea is to replace points
of M by contractible loops and the usual Morse theory of the autonomous case
by the infinite-dimensional Morse theory of the action functional (roughly, the key
idea is to apply to this problem what string theory does to quantum mechanics:
replace points by closed strings and change correspondingly the Lagrangian and
the action).

So we are interested in constructing a cohomology whose generators are the 7-
periodic contractible closed orbits of H;. If x is such a closed contractible orbit
bounding two discs u1,uz : D? — M, let’s say that (z,u;) is equivalent to (z,us)
if uy#(—u2) is homologous to zero. Denote simply by Z such a class and by LM
the space of all these classes (on which the spherical 2-classes of Hz (M) obviously
act). On this space is defined the following symplectic action functional:

aH(:r,u)—/Bu*w+/01Ht(x(t))dt

4A monotone symplectic manifold obeys ¢1 = A[w] for some nonnegative real number \, where
c1 is the first Chern class of the tangent bundle of (M, w). The condition of weak monotonicity
is a technical generalization of monotonicity that ensures that the J-curves in (M, w, J) are well
behaved.
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which satisfies ag (A#Z) = an (%) +w(A) for any spherical class A € Ho(M). Thus
the functional is defined on the covering LM of the loop space LM . On this latter
space, the action functional is a closed 1-form: thus Morse theory in this setting
is precisely an infinite-dimensional version of the Novikov homology associated to
a closed 1-form on some manifold. It is easy to see that the critical points of ay
on LM are the points & = (x,u) with = a closed 1-periodic orbit of H;. These
points are graded by the Conley-Zehnder index which is computed by trivialising
the tangent bundle of M over the disc u(B) and considering the path of symplectic
matrices generated by the linearized Hamiltonian flow around z(t). One can then
define the Floer-Novikov complex by C*(H) = > ind(#)=k CZ. In order to avoid
problems with noncompacity of the moduli space of gradient flowlines of af, we also
require that, for any ¢ € R, the latter sum contains only a finite number of Z with
ap(Z) < c. Thus this complex is a module over the Novikov ring A = A,, defined in
the following way: let ' C Ha(M) be the image of the Hurewicz homomorphism,
and define A as a kind of completion of the group ring of I. It is the ring of all
sums with, say, integer coefficients

A\ = Z )\A627TiA
Ael

such that for any ¢ there are only finitely many nonzero terms with w(A) < ¢. This
ring carries a natural grading given by deg(e?™) = 2¢;(A). The choice of the
grading is dictated by the fact that ind(A#Z) = ind(Z) + 2¢1(A).

__Now consider the upward gradient flowlines of ay with respect to a L2 metric on
LM induced by an almost complex structure on M (which together with w defines
an almost Kahler structure on M). They are given by solutions v: R x R/Z — M
of the elliptic PDE 9;(v) = VH;(v) whose ends converge to closed orbits #~, &
with the disc u™ obtained from the disc 4~ by gluing the cylinder v. When the
indices of 27, %7 differ by 1, the space of these flowlines, once quotiented out by
the time shift, is a compact 0-dimensional manifold. One can therefore define the
coboundary operator of the complex C*(H) in the usual way in Morse theory, that
is, by 6% = 3 i 4 gj=ina 541 1(Z, §)§ where (Z,§) counts the gradient flowlines from
Z to . This complex gives rise to the Floer cohomology HF*(M,w, Hy, J). Floer
[6] (and Hofer-Salamon [8] in this general setting) showed that this cohomology is
actually independent of the choice of Hy and .J. Moreover:

Theorem 3.1 (Hofer-Salamon [8]). If either M is monotone, or ci1(A) =0 for all
A €T, or the minimal Chern number is greater or equal to half the real dimen-
sion of M, then HF*(M,w, Hy, J) is isomorphic, as graded groups (with rational
coefficients), to H*(M) ® A,,.

In particular, HF* is isomorphic to H* if mo(M) = 0.

All this is very nicely presented in the last chapter (Chapter 10) of McDuff-
Salamon’s book, which concludes with the definition of the ring structure on Floer
cohomology. This definition is quite natural: the map

C*(H) x CY(H) — C**'(H)
sends (Z1,Z2) to &1 x T2 = > az& where oz counts the number of elements in the
moduli space M(Z1,Z2, Z3) consisting of spheres S with three punctures presented

as flat cylindrical ends, which are J-holomorphic outside the ends, satisfy the gra-
dient flowline equation on each end (more precisely, one replaces H by H defined
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on the product S x M with a bump function in order to smooth out each H=H
(defined on each end) to 0 where it approaches the compact part of S), and converge
to ¥y, To, T3 on the ends.

The associativity (Z1 x Z2) * T3 = &1 * (T2 * T3) is now obvious: the left-hand
side is obtained by gluing two spheres with three cylindrical ends along a long
neck; this procedure cancels out one hand on each sphere. The right-hand side is
obtained similarly. In both cases we get spheres with four punctures as the result
of the gluing. To prove that they both lead to the same counting in moduli spaces,
one deforms the conformal structure of the first sphere with four punctures to the
conformal structure of the second. Therefore, under the hypotheses of the above
theorem, we get a ring structure on HF*(M,w) = H*(M) ® A,.

The end of Chapter 10 gives a sketch of an argument showing that this ring
coincides with the so-called quantum cohomology of M.

4. QUANTUM FIELD THEORY AND THE ATIYAH-WITTEN POINT OF VIEW
ON FLOER HOMOLOGY

As T mentioned above, the central chapters of the book (Chapters 6, 7, 8, and
9) are devoted to a mathematical definition of the Gromov-Witten invariants and
of quantum cohomology.

Since I have already described an alternate definition of quantum cohomology
(via Floer cohomology), I begin by explaining briefly the motivation, arising from
quantum field theory, that led Witten in [15] to the definition of the invariants
entering in the definition of quantum cohomology (I will come back below to the
mathematical definition given by McDuff and Salamon, based on works by Ruan
and Tian [12]).

The “physical” definition of quantum cohomology was in some sense motivated
by Atiyah’s suggestion in [1] that Floer theory can be interpreted as a quantum field
theory, either in the context of string theory or of the (nonlinear) sigma model. This
program was realised by Witten in [14], and this led him to introduce the quantum
cohomology in [15]. So first, let’s briefly recall what a nonrelativistic QFT should
be, following Feynman’s approach (see [5]).

A classical mechanical theory is determined by the choice of a Lagrangian on
TV or of a Hamiltonian on 7%V, where V is a manifold, the configuration space.
A classical field theory is defined in a similar way by the choice of a bundle over V'
whose sections are the fields ¢, and by the choice of a Lagrangian L(t, q, #(q), ¢(q))
whose integral for a given path ¢; = ¢(¢, -) is the action. In both cases, the dynamics
(or time evolution) is given by following the paths which are critical points of
the action. A quantum mechanical theory assigns to V the space L(V) of wave
functions ¥(q) with complex values. Its dynamics v¥:(q) = 9(t, q) is determined by
the following integral equation:

Yt q) = /V K¢, q:t' —t)9(t,q) dg

assuming that an initial state ¢(t,q) is given. Here the propagation kernel K
reflects the density of probability that the particle be at position ¢’ at time ¢’
given that it was at ¢ at time ¢. This kernel must satisfy the initial condition
lim; o K(q', q;t) = 6(¢' — q) and the composition law

K" gt —1t) = /K(q",q';t” —t)K(¢,q;t' —t)dq'.
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By iterations of this formula as At — 0, and based on considerations of Dirac,
Feynman in [5] concludes that the kernel has the following functional integral rep-
resentation:

K(d gt —1) = /C 2SI D g (1)

where the integral is taken over the space C of all paths from ¢, ¢ to ¢/, ¢’ and where
S = [ L is the action of each path. This is the Feynman “sum-over-histories”
formulation of the dynamical law of a system with a finite number of degrees of
freedom.

The same quantization applies to field theory: here the unknown is the wave
function ¥4(¢) defined on the space of fields, and the same considerations lead to
a similar formula for the propagation kernel (or “partition function”):

K(¢, 5t —t) = / 2S/hD(g(8)),

C
but this time C consists of paths on the space of fields. Hence the quantum dynamics
is determined by an integral over the space of classical fields (or points).

More generally, an intrinsic d + 1-quantum field theory associates to a d-dimen-
sional manifold W a complex vector space H(W), to a manifold V with oV =
W an element Z(V) € H(W), in such a way that (1) H(W; [[W2) = H(W1) ®
H(Wa), (2) H(=W) = H(W)*, and (3) the following composition law holds: if
V =V1 Uw Va where 0V = W1 [[W and 0V = —W [[Ws, then Z(V) = Z(V4) o
Z(Va): H(W1) — H(W2). The fields on V are functions, sections of a bundle, or
maps to a manifold M (in which case the space of fields is not a vector space:
then the theory is called a nonlinear sigma model). Finally the action S(¢) is
the integral over V of some Lagrangian depending on ¢ and its derivatives. The
(classical) observables are complex valued functions on the space of fields.

The partition function (or propagation kernel when there is a time direction) is
as above

Z(M) _ / 627ric5(¢)D¢
¢'s

where 1/cis a coupling constant. The correlation value of the observables O, ..., O
is by definition

(O1---0) = / 2SO, . 0D
¢'s

which are, as above, expressed uniquely in terms of classical fields. The theory is
topological if the partition function and the observables do not depend on the choice
of the metrics on the manifolds involved.

Now Witten in [14] (but see also Baulieu-Singer [4]) considers the topological
sigma model with V' equal to a Riemann surface ¥ (the Riemann sphere for in-
stance), M a symplectic manifold, and the fields being the triplets (¢, x, p) where
¢ is a smooth map from ¥ to M, and y, p € QU(%, ¢*TM), QY (X, ¢*TM). His Lan-
grangian leads to an action which essentially coincides with the energy®. Witten
shows further that, essentially, the only global observables are those of the form
Ou(2), where z € ¥ and « is a closed differential form: it is zero except if the map
¢ sends z to the Poincaré dual of « (in which case it is equal to the intersection
number). Physical considerations (BRST-invariance) suggest that the correlation

5One might look at this from the point of view of string (field) theory: see the book [16] edited
by Yau, and in particular the first four papers.
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functions (Oq, (21) - - - Oq, (21)) are topological invariants in the sense that they are
invariant under continuous change of w,J, and change of the k points on X. In
order to evaluate®

(Oui(1) - On )y = [ EOX0, (21) -+ Oy () D
bX5P

Witten uses the invariance of the expression with respect to changes in the metric:
changing g to cg for arbitrarily large ¢ produces a similar change in £ which becomes
cL. Thus the above Feynman integral is dominated by fields which are minima of
L. These minima are easily seen to coincide with J-holomorphic maps ¥ — M.
Hence, the integral reduces to the sum (counting multiplicities) of all rational .J-
curves which send the marked points z1, ..., z; to representants of the Poincaré
duals of oy, ..., ", This sum splits into sums related to given homology classes of
J-rational curves, so that finally one is led to define the Gromov-Witten invariant
U4 g(ou,...,ar) as the number of rational J-curves in class A that send the fixed
marked points to the given representatives of the Poincaré duals of the «/s.

The reader will find in Chapters 6 and 7 of McDuff-Salamon’s book a rigorous and
concise definition of this invariant, as well as the definition of another similar invari-
ant that they denote ® 4 x(a1, ..., o) which counts the number of unparametrized
rational curves in class A which meet each of the given representants of the Poincaré
dual of the forms «;. This indeed requires some care, since one has to “count” the
rational curves with sign and multiplicities for “generic” data. Their presentation
of the subject is inspired from Ruan-Tian’s work in [12]. Note that the invariants
are nonzero only when the dimension of the moduli space of J-A-rational curves
(as given by the Atiyah-Singer index theorem) and the dimensions of the cycles
PD(a;) are properly chosen.

5. QUANTUM COHOMOLOGY

Finally, Chapters 8 and 9 of the book give a mathematical presentation of quan-
tum cohomology. This cohomology was first introduced by Witten in [15] as a
particular case of the fact that the correlation functions (which define the above
Gromov-Witten invariants) must satisfy the composition law. Here is the definition
of this cohomology, as given by McDuff and Salamon.

Define QH*(M) = H*(M) ® A where A is the Novikov ring defined above and
H*(M) is H*(M,Z) mod its torsion subgroup. It is graded by

2n

QH"(M) = @Hj(M) @ Ag—j,

J=0

and thus any class there can be written as > , a4e?™4, for ay € HF=2e1(A) (M),
Note that QH*(M) is a module over A in an obvious way. The cup product

QH*(M)® QH' (M) — QH"'(M)

SIn this formula, v/—1 does not appear in the exponential, but this is in the spirit of this
kind of computation where one usually extends the value of the integral to complex values of the
coupling constant.

"Here the invariance of the correlation function with respect to the change £ — c£ makes the
computation quite easy; however, in general, a similar method in computing Feynman integrals,
the stationary phase approximation, leads to a more complicated computation.



BOOK REVIEWS 393

is defined by
axfl= Z(a * 3) ae>miA
A

where (o * §) 4 € HFH=21(A) (M) is given by

/ (% B)a = Balas )

C

for ¢ € Hyqi—2¢,(4)(M) and 7y equal to the Poincaré dual of c.
The authors establish the following theorem as in [12], but with a new argument
for the proof of the associativity:

Theorem 5.1. Assume that (M,w) is weakly monotone. Then the cup product on
QH*(M) is associative, distributive, and skew-commutative.

Recently, Piunikhin, Salamon, and Schwarz [10] have showed that this ring struc-
ture on QH*(M) does agree with the ring structure coming from the pair-of-pant
product on the Floer cohomology. As mentioned above, the book by McDuff and
Salamon contains a sketch of this proof at the end of the last chapter.

Note that, in the definition of the quantum product, the contribution of the class
A = 0 gives the ordinary cup product structure of M. Thus, morally, the quantum
product is a deformation due to the presence of nontrivial holomorphic 2-spheres.

6. CONCLUDING REMARKS

This book is nicely written, very timely, and technically correct. Two appendices
that cover the technical aspects of the analysis involved in the study of holomor-
phic 2-spheres have been added at the end of the book. Chapter 8 contains a lot
of intriguing relations between quantum cohomology and other subjects such as
the Verlinde algebra, the Givental homological geometry, Frobenius manifolds, and
integrable systems. Chapter 8 also contains the computation of the quantum co-
homology ring of some manifolds due to various authors. The only criticism that
I would make is that the book seems sometimes a bit too eclectic: there is not
much place for explaining the relationships between the various subjects treated
(but this is normal, since much of the content of Chapter 8 is the result of very
recent research) and there is no motivation from physics. I hope that this review
can help fill that gap, at least partially.

I am very grateful to Lisa Jeffrey for illuminating discussions on some parts of the
dictionary between physics and geometry. I also thank John Harnad for a discussion
on the BRST-invariance. I mention, finally, the recent article [2] (in French) by
Audin in the 1995-96 Bourbaki Seminar, entitled “Cohomologie quantique”, which
contains a quite complete review of the mathematical aspects of the subject.
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