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Here is the book you may have been waiting for for a long time, maybe for fifteen
years: a general introduction to the new representation theory of finite-dimensional
algebras. There has been a very surprising development in the last twenty-five
years, and the need for an exposition which outlines all the techniques which have
been found to be fruitful was felt by many mathematicians. The current represen-
tation theory is often referred to as the representation theory of quivers or as the
Auslander-Reiten theory, stressing in this way two highlights of the new theory.
One has to be grateful to the authors for a competent and readable introduction
to the subject.

There do exist different approaches to the representation theory of algebras, and
there have been fierce struggles about the relevance of various contributions. It is
remarkable that the present book tries to keep away from all these fights; it gives
a well-founded and balanced account, and even the historical references seem to be
done very carefully. Of course, it is the Auslander-Reiten approach which serves as
the guideline for the presentation, but other techniques are incorporated whenever
this seemed to be suitable.

It may be worthwhile to review at least partly the present status of the subject
before we look at the actual content of the book. What is an artin algebra A? It is
an artin ring (a ring satisfying the descending chain condition on left ideals) with a
“large” center; more precisely, there is given a commutative artin ring R, and one
considers an R-algebra A which is of finite length when considered as R-module.
For outlining the relevance of the subject, let me stick to the special case where
R = k is a field; thus we consider finite-dimensional k-algebras (a typical other
choice for R would be a ring of the form Z/p", where p is a prime number and
n > 2; artin Z/p™-algebras are of interest for example in number theory, but also
elsewhere). Some concepts such as duality are easier to understand in case R is a
field, and there should be no difficulty to visualize afterwards the general situation.

Thus, let k be a field and A a finite-dimensional k-algebra (algebras are always
assumed to be associative and with 1). We consider finite-dimensional represen-
tations of A; these are k-algebra homomorphisms from A into the endomorphism
algebra of some finite-dimensional k-space V. Equivalently, such a homomorphism
¢ : A — Endg(V) makes V into a left A-module: this means that one defines a
scalar multiplication av = ¢(a)(v) for a € A,v € V; thus one considers instead of
¢ a corresponding map A x V' — V (the fact that ¢ is an algebra homomorphism
can be reformulated in terms of this scalar multiplication, and one gets axioms of
the form (aiaz)v = ai(agv) and so on). Of importance is the notion of a direct
sum: given two A-modules My, My, one forms the direct sum M; @ My of the
underlying vector spaces and defines a(mi, m2) = (am1, ams). Non-zero modules
which cannot be written as the direct sum of two proper submodules are said to
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be indecomposable. Of course, any finite-dimensional module can be written as a
direct sum of indecomposable modules, and there is an old result called the theorem
of Krull-Remak-Schmidt which asserts that such a decomposition is unique up to
isomorphism. This means that for many questions one may restrict one’s self to the
consideration of indecomposable modules. One should be careful and distinguish
between indecomposability and irreducibility: A module M is said to be irreducible
(or, as it is now more common, to be simple) provided M # 0 and M has besides
0 and M no other submodules. A simple module is indecomposable, but an arbi-
trary indecomposable module may have plenty of submodules (what is excluded are
proper submodules M, Ms which have zero intersection and which together gen-
erate the module). For some well-known algebras A, all indecomposable modules
are simple: for example, Maschke’s theorem asserts this for the group algebra of a
finite group over a field k provided the characteristic of k does not divide the order
of the group. Such algebras are said to be semisimple. The representation theory
of algebras focuses attention on algebras which are not semisimple!

The first aim of the representation theory is to get information about the pos-
sible structure of indecomposable modules. One is looking for invariants which
distinguish the isomorphism classes but also for algorithms in order to construct
suitable indecomposable modules. A final aim may be the complete description
of all indecomposable modules up to isomorphism, but this seems to be hard to
achieve for most of the algebras, since they have what one calls wild representa-
tion type. At least in the case when one deals with an algebraically closed base
field k, it was conjectured by Donovan and Freislich and established by Drozd that
there is a trichotomy between finite, tame and wild representation type: An artin
algebra A is said to be of finite representation type, provided there are only finitely
many isomorphism classes of indecomposable A-modules. Only in this case, there
is a bound on the length of the indecomposable A-module: this was asserted by
the first Brauer-Thrall conjecture and was established by Roiter in 1968. It is
one of the themes considered in the book under review. One expects that any
artin algebra which is not of finite representation type will have families of pairwise
non-isomorphic indecomposable modules indexed by projective lines. The corre-
sponding second Brauer-Thrall conjecture was verified by Bautista and Bongartz
in the case of an algebraically closed base field, but these investigations are based
on many technical considerations and therefore are outside the scope of the book.

One should be aware that there are plenty of examples of finite-dimensional alge-
bras which arise in other parts of algebra, but also in geometry and even in analysis.

There are the group algebras of finite groups, there are semigroup algebras, there
2

are the incidence algebras of posets. The Kronecker algebra A = 0k is a four-

dimensional algebra, and the A-modules can be identified with the representations
of the quiver

O o
thus with pairs («, ) of linear maps o, 3 : V. — W, where V, W are k-spaces, or,
after choosing bases of V' and W, with pairs of matrices of the same size: such
pairs are sometimes called matrix pencils. The classification of the indecomposable
matrix pencils is of importance, for example, for solving differential equations. The
problem of classifying the indecomposable A-modules was considered by Weierstrafl
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and then solved by Kronecker in 1890 (in fact, they considered the equivalent
problem of classifying pairs of symmetric bilinear forms).

The next example to be presented are the B(n)-modules, where B(n) is the ring
of all (n+1)x(n+1)-matrices over k, with non-zero entries allowed only on the main
diagonal and in the last row. The B(n)-modules are just the representations of the

following quiver:
o o cee o
o

The algebra B(n) has n+1 simple modules, one of them being projective. The B(n)-
modules which do not split off a non-projective simple module (or, equivalently, the
representations of the quiver using only injective maps) may be identified with the
(n+1)-tuples (V, ..., V,41) where Vi, ..., V,, are subspaces of a k-space V;,4+1. The
problem of classifying B(n)-modules just means classifying the possible mutual
position of n subspaces in a k-space. For example, for n = 2, we deal with two
subspaces V7, V5 of a k-space V3, and we know from elementary linear algebra that
there exists a basis of V3 which is compatible both with V4 and V» (take a basis of
V1N Vs, extend it to a basis of V; and to a basis of V5; in this way we obtain a basis
of V1 + V4, and now we extend this to a basis of V3). For n = 3, there is already an
obstacle: consider Wy = k? with the subspaces W7 = kx 0, Wy = 0x k, and W3 =
{(z,z)|x € k}; clearly, no basis of Wy will be compatible with all three subspaces.
However, it is easy to see that for n = 3, this is the only difficulty; any k-space with
three subspaces may be written as the direct sum of one-dimensional subspaces and
copies of W = (Wy, Wa, W5, Wy) such that this decomposition is compatible with
the three subspaces. In particular, B(3) is of finite representation type. For n = 4,
there are infinitely many isomorphism classes of indecomposable B(n)-modules; a
complete classification has been exhibited by Gelfand and Ponomarev in 1970. Note
that in the case n = 4, the underlying graph of the given quiver is usually labelled
Dy; it is one of the so-called Euclidean diagrams, whereas for n = 3, one deals with
the Dynkin diagram Dy.

Another source of examples is the representation theory of Lie algebras. Starting
with a semisimple finite-dimensional complex Lie algebra g, there is the famous
category O introduced by Berstein-Gelfand-Gelfand in order to deal with highest
weight modules such as the Verma modules. The category O contains all finite-
dimensional representations of g, but most of the representations belonging to O are
infinite-dimensional. The category O decomposes into blocks Oy, and each block
has only finitely many simple objects. Such a block is equivalent to the module
category mod C()) of a finite-dimensional C-algebra C'(\). Namely, O, is, first,
an abelian category with only finitely many simple objects; second, any object in
O, has finite length and there is a bound on the Loewy length of the objects;
and, third, the Hom- and Ext!-groups are finite-dimensional C-spaces. These three
properties characterize the categories which are equivalent to the module category
of a finite-dimensional C-algebra. In order to display properties of arbitrary objects
of Oy, thus properties of (usually infinite-dimensional) representations of g, we can
use the equivalent category mod C()), thus dealing only with finite-dimensional
vector spaces. Since the category O is a highest-weight category, the algebras C())
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have an additional structure: they are quasi-hereditary, and this implies that we
deal with algebras C'(\) of finite global dimension.

Highest-weight categories or, equivalently, the module categories of quasi-heredi-
tary algebras, have successfully been studied by looking at the corresponding de-
rived categories. Derived categories of module categories are presently one of the
main points of interest: after all, several abelian categories arising in analysis, in
topology and in algebraic geometry (the categories of coherent sheaves over suitable
projective varieties as well as categories of what are said to be perverse sheaves)
turn out to be derived equivalent to module categories. But derived categories are
also the natural setting for many problems inside the representation theory itself;
the use of tilting modules and tilting functors should always be interpreted in this
way.

Clearly, for a finite-dimensional k-algebra A, all the finitely generated A-modules
are finite-dimensional and therefore of finite length: Given such a module M, there
is a sequence 0 = My C My C --- C My of submodules such that all the factors
M;/M;_; are simple (they are called the composition factors of M). For any simple
module S the multiplicity of S occurring as a composition factor is an invariant of
the module; it is called the Jordan-Holder multiplicity of S in M. Note that there
are only finitely many isomorphism classes of simple A-modules, say Si,..., Sy,
and we denote by dim M the dimension vector of M: this is the function which
attaches to the simple module S; the Jordan-Hélder-multiplicity (dim M); of S;
in M. We may consider the dimension vector dim M of M as the element of the
Grothendieck group Ko(A) corresponding to M. Here, Ky(A) is the Grothendieck
group of all (finitely generated) A-modules modulo exact sequences. The Jordan-
Holder theorem just asserts that inside the Grothendieck group the module M is
identified with the formal sum of its compositon factors. There is the following
straightforward question: which indecomposable modules are determined up to
isomorphism by their dimension vectors? This question is one of the central motifs
of the Auslander-Reiten-Smalg book. It has turned out to be very fruitful to endow
Ko(A) with additional structures in order to be able to recover the dimension
vectors of the indecomposable modules. First of all, Ky(A) has a distinguished
basis, given by the dimension vectors of the simple modules, and thus there is a
notion of positivity. Second, in case we deal with algebras of finite global dimension,
in particular for hereditary algebras (these are the algebras of global dimension at
most 1), we may define an integer-valued function ¢ on dimension vectors by

q(dim M) =) "(—1)" dimy, Ext}y (M, M);

i>0

this is well-defined and extends to a quadratic form on all of Ky(A); it is called the
homological quadratic form of A.

The use of quadratic forms in representation theory has produced exciting re-
sults. The first result of this kind is due to Gabriel: he has shown that a hereditary
k-algebra A, where k is an algebraically closed field, is of finite representation type
if and only if the homological quadratic form gy on Ky(A) is positive definite and
that in this case dim furnishes a bijection between the isomorphism classes of
the indecomposable A-modules and the positive roots of gy. The quadratic forms
encountered by Gabriel are those labelled A,,, D,,, Eg, E7, Es in Lie theory. If one
removes the restriction that k is algebraically closed, then one obtains also the miss-
ing cases B,,C,, F4,G>. Note that in this setting one has to adopt a convention
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from Lie theory concerning the notion of a root; for example, for the simply laced
cases a vector z is called a root provided it satisfies ga(z) = 1 (after all, we deal
with a positive definite form, so there are no non-trivial vectors x with g (x) = 0).
A typical example of a hereditary algebra A of type Fg is the path algebra of the
quiver A

ol
o o \L o o
2 3 4 5 6

the quiver is obtained from the Dynkin diagram Fg by endowing the edges with
an orientation, and any choice of orientation is allowed. The orientation displayed
above is called the subspace orientation, since all arrows point to the central vertex.
Here, the interesting representations are those where all maps involved are inclusion
maps; thus one deals with a vector space V, (attached to the central vertex), and
five subspaces Vi, Vo, V3, Vs, Vs of Vy, with Vo C V3 and Vg C Vi. The corresponding
quadratic form is

6 5
NOX?T-X1Xa— ) XiXig
i=1 =2

It is well-known and easy to see that this quadratic form has a unique maximal
root; we want to display it in the shape of the quiver:

2
1 2 3 2 T

The bijection between the positive roots and the indecomposable A-modules assures
that there is (up to isomorphism) a unique representation M of the quiver A having
this dimension vector. One can show that any indecomposable A-module occurs as
a subquotient of M, in particular, M has to be faithful.

The bijection between the indecomposable A-modules, where A is a hereditary
artin algebra of Dynkin type A, and the positive roots of the corresponding qua-
dratic form has a deeper reason: If we assume that our base field k is finite, then
the free abelian group with basis the set of isomorphism classes of A-modules can
be made into an associative algebra, the product being defined by counting the
number of suitable filtrations of modules. The (twisted generic) Hall algebra which
one obtains in this way is just the Drinfeld-Jimbo quantization of the positive part
of the Lie algebra of type A. The hereditary artin algebras are an interesting start-
ing point for constructing quantum groups, and the quantum Serre relations occur
as universal relations for dealing with the possible composition series of modules.

The use of quivers, integral quadratic forms, and root systems, but also similar
considerations invoking posets and integral bilinear forms, give a strong combinato-
rial flavour to the representation theory. At least for algebras of finite representation
type, the invariants of the indecomposable modules are discrete ones, and the given
base field usually will play no essential role. Also for a representation infinite al-
gebra, part of the structure theory of the module category in question will rely on
combinatorial data, but in addition one will have to use methods from algebraic
geometry. Until now, only a few cases have been studied carefully.

Of particular interest is the Auslander-Reiten quiver T'(A) of A. It is defined
for any artin algebra A and is a locally finite quiver whose vertices are just the
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isomorphism classes of the indecomposable A-modules. The components of T'(A)
are usually infinite, the only exception occurs (necessarily) for algebras of finite
representation type. This result due to Auslander was the starting point of many
investigations. After all, in this way any indecomposable A-module M is related
usually to countably many other ones, and the position of these modules inside the
module category describes the interrelation of M with the remaining modules.

Let me return to the algebras of finite representation type, since they are in the
center of the representation theory as described by Auslander-Reiten-Smalg. An
effective study of the corresponding module category will use the covering theory
as introduced by Gabriel and his school, and also by Gordon and Green, in order
to reduce the investigation to representation directed algebras. For representation
directed algebras, the construction of preprojective components provides a con-
venient method for obtaining all the indecomposable modules. In this way, the
complete module category is displayed, and it seems that all standard questions
(for example, concerning the homological behaviour or possible degenerations) can
be answered without problems. The indecomposable modules over a representation
directed algebra can be related to corresponding modules over hereditary algebras
using tilting theory. The possibility of reducing problems about algebras of finite
representation type via covering theory and tilting theory to those dealing with
hereditary algebras shows the importance of the representation theory of heredi-
tary algebras, and this is a topic which is (at least partly) covered in the book by
Auslander, Reiten and Smalg.

Let us now turn our attention to the various chapters of the book. I have tried
to outline the broad scope of the present theory, but a textbook which wants to
start with first principles has to be more modest. The only application which is
treated in detail is the modular representation theory of groups, but one should
not expect to find references to something like quantum groups. Also, there are no
quasi-hereditary algebras and no perverse sheaves: the use of derived categories is
not touched at all. The authors concentrate on the internal structure theory for
artin algebras and their module categories, and this they do very well.

The general setting of the book is the following: there is given a fixed commu-
tative artin ring R, and one investigates an artin R-algebra A and the (finitely
generated left) A-modules. Now A usually will be non-commutative; thus one may
be tempted to work also with right A-modules. Instead of doing so, the authors
consider besides A also the opposite ring A°P; note that the right A-modules are
just left A°?-modules. Since one deals with an R-algebra A, there exists a duality
between the category of (finitely generated left) A-modules and the category of
(finitely generated left) A°P-modules.

The first two chapters of the book are of an introductory nature, on artin rings
and on artin algebras: in particular, the structure of the projective and of the injec-
tive modules is explained. Of particular interest is a section called projectivization;
it deals with the relationship between a module M and its endomorphism ring E.
Many properties of M can be read off from properties of E. Note that the inde-
composable direct summands of M correspond bijectively to the indecomposable
projective E-modules; the bijection is furnished by the functor Homy (M, —). This
seems to be the natural framework for many constructions in representation theory;
in particular, the Morita equivalences arise in this way.

Chapter III is devoted to the exhibition of important classes of examples: First
of all, the path algebras of finite quivers are introduced. It is shown that the
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representations of a quiver are nothing else than the modules over the corresponding
path algebras (II1.1.5). Recall that for any artin algebra A, the factor algebra A
modulo the radical is a product of matrix rings over division rings, and up to Morita
equivalence, one may assume that A is actually a product of division rings. In case
A is a k-algebra and A is actually a product of copies of k, the authors call A an
elementary algebra. Note that any elementary algebra can be written as a factor
algebra of the path algebra of a finite quiver. In this chapter also, group algebras
are introduced and basic properties such as Maschke’s theorem are derived. In
later parts, there are frequent references to group algebras: the authors present the
characterization of those of finite representation type: the group algebra kG is of
finite representation type if and only if the p-Sylow groups of G are cyclic, where p
is the characteristic of k, and they give the precise structure of the corresponding
blocks.

Chapters IV, V, and VII may be considered as the heart of the book. Here,
the existence of almost split sequences is shown, and related notions such as the
dual of the transpose of a module and that of an irreducible map are discussed.
For any artin algebra A, the object to be considered is its Auslander-Reiten quiver:
as we have mentioned, its vertices are the isomorphism classes of the indecompos-
able A-modules, and one draws an arrow from the isomorphism class of X to the
isomorphism class of Y provided there exists an irreducible map X — Y. What
one obtains in this way is a locally finite quiver, usually with infinitely many com-
ponents, and it is the structure of this Auslander-Reiten quiver which is of main
concern.

In between, there is Chapter VI dealing with artin algebras of finite representa-
tion type. Maybe the authors want to stress that a large part of the theory of artin
algebras of finite representation type can be presented without the explicit notion
of the Auslander-Reiten quiver. However, in this way there is some cumbersome
repetition and actually some awkward duplication of notions: they introduce in this
chapter the notion of a component of ind A for what later are called the connected
components of the Auslander-Reiten quiver of A (what should be non-connected
components?). Three main results in Chapter VI have to be singled out: First of
all (VI.1.4), if the Auslander-Reiten quiver of a connected artin algebra A has a
component with a bound on the length of the modules in the component, then A is
of finite representation type and such an artin algebra has just one component. In
this way, Auslander has strengthened the assertion of the first Brauer-Thrall con-
jecture as proved before by Roiter: an artin algebra of bounded representation type
is of finite representation type. The proof given in the book follows Yamagata and
is based on the Harada-Sai Lemma (and the existence of almost split sequences).
Second, given an artin algebra A of finite representation type, say, with M, ..., M,,
being a complete list of indecomposable A-modules, then the endomorphism ring of
the direct sum @."; M; is what now is called an Auslander algebra: it has global
dimension at most 2 and dominant dimension at least 2. Actually (VI.5.7) one ob-
tains in this way a bijection between the Morita equivalence classes of artin algebras
of finite representation type and Morita equivalence classes of Auslander algebras.
The third result to be mentioned (V1.4.2) is a result for general artin algebras, not
being restricted to those of finite representation type: Two modules M;, M, are
isomorphic, in case the R-modules Homy (N, M;) and Homy (N, Ms) have the same
length, for any A-module N, and also in case the R-modules Homp (M7, N) and
Homyp (M2, N) have the same length, for any A-module N.
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Chapter VIII deals with hereditary algebras: first, the preprojective and the
preinjective modules are constructed starting with the indecomposable projective
or the indecomposable injective modules, respectively, and using the Auslander-
Reiten translation. These are directing modules; thus they are uniquely determined
by their dimension vectors. In case we deal with a hereditary algebra of finite repre-
sentation type, all indecomposable modules are preprojective and also preinjective.
The hereditary algebras of finite representation type can be characterized by the
positivity of the homological quadratic form (VIL.3.6), or equivalently (VIL.5.4), by
the fact that one deals with a disjoint union of Dynkin diagrams. For a heredi-
tary algebra which is not of finite representation type, no indecomposable module
is both preprojective and preinjective, and there are additional components, the
regular ones. It is shown (VIL.4.15) that the regular components are either tubes
or of the form ZA.,. The only representation infinite algebra which is discussed in
detail is the Kronecker algebra; here the full classification of all indecomposables is
given (VIL.7.5).

Chapter IX presents properties of directing modules or, more generally, of in-
decomposable modules which do not belong to what are called short cycles. A
short cycle is a pair of indecomposable modules M7, My such that there are maps
My — My and My — My which are non-zero and non-invertible. Let M be inde-
composable, and assume that it does not belong to a short cycle. (1) If M is not
faithful, then M is annihilated by some non-zero idempotent (thus not all simple
A-modules occur as composition factors of M). (2) If N is indecomposable and
dim M = dim N, then M and N are isomorphic. (3) If N is indecomposable and
M and N have isomorphic top and isomorphic socle, then M and N are isomorphic.

Chapter X is devoted to stable equivalence: two artin algebras A and A’ are
said to be stably equivalent provided the module categories become equivalent
after factoring out all the maps which factor through projective modules. Stable
equivalence plays an important role in the modular representation theory of finite
groups: the blocks of finite representation type are known to be stably equivalent
to serial algebras (in the book, serial algebras are called Nakayama algebras), and
the book shows that any symmetric artin algebra which is stably equivalent to a
serial algebra is given by a Brauer tree (X.3.14). But the basic example of stably
equivalent artin algebras seems to be the following: Let A be an artin algebra with
radical square zero. Then there exists a hereditary artin algebra A’ which is stably
equivalent to A (X.2.4). In particular, one may decide the representation type of
A by considering its “separated quiver” (X.2.6). It is a pity that the authors did
not include the local version of this separation procedure, the process of removing
“nodes” as considered by Martinez.

The last chapter, XI, deals with morphisms which are determined by modules.
This general theory introduced by Auslander in his Philadelphia notes was one of
his main concerns. He always stressed the importance of this theory, which unifies
many different considerations. So it seems natural that it has been chosen as the
final topic of the book.

As prerequisites, the authors require only some basic notions in ring and module
theory as well as some homological algebra. The requirements from ring theory
include the structure of semisimple artin rings; from module theory one should be
familiar with the definitions of projective, injective and semisimple modules. The
authors recall most of the basic facts; they even provide proofs of the theorems
of Jordan-Holder and of Krull-Remak-Schmidt. (Actually, it seems strange that
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the last result is presented only in the narrow setting of finitely generated modules
over artin algebras.) From homological algebra, the definition of Ext! and Ext?
and their properties are used; there is a special section outlining the relationship
between Ext' and equivalence classes of exact sequences. Another introductory
section deals with additive categories, or better, R-categories; it contains the proof
that a functor is an equivalence if and only if it is full, faithful and dense. But it
should be noted that the authors are quite reluctant to use functorial considerations;
in particular they avoid the use of functor categories.

One observes that the theory presented in the book dates back to the seventies.
There are very few results in the book which were not known by 1978, but such a
polished way of presentation as is given in the book may not have been possible at
that time. It is very important that these topics, which are at the basis of all the
further developments, are now available in a form which is readable and accessible
also for students. It seems to the reviewer that the book may have gained if the
general construction of preprojective components, as well as the structure of the
module category of a tame hereditary algebra, would have been included. These
are essential working tools which would fit well into the concept of the book (and
were known by 1978). In addition, we feel that tilting theory and covering theory
belong to the basic methods in representation theory. But these are just minor
complaints. I should add that there are plenty of exercises which will be helpful
for any reader: they serve as an illustration of the theory and present additional
material. Of particular interest is the list of eleven open problems. The book can
be recommended without reservation! It surely will serve as a standard reference.
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