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This book is more a research monograph than a graduate text and provides a
mine of information that is not to be found in the usual books on probability theory
or stochastic processes. Most of the material has appeared in the recent papers of
the authors themselves and of other workers in the field.

As the title suggests, there is an attempt to treat a part of the theory of stochastic
processes (stochastic integrals) by basing it on what Paul Lévy called “probabilités
dénombrables”. The approach itself is by no means new, since, in fact, most modern
treatments of Brownian Motion introduce it as the limit of a uniformly convergent
(almost sure) random series. This might be the place to point out that the proof
of the above fact given in Chapter 2 rests on a “functional-analytic” argument and
not on the easiest and most natural method (due, I believe, to Ciesielski) which
uses the Haar basis. The latter method has the further advantage that it extends
immediately to the definition of the Brownian sheet and indeed of the Wiener
process in several parameters. On the other hand, as shown in a remark in the
book, the fractional differentiation operator technique can be extended to yield the
~v-Hélder continuity (v < 4) of the Brownian motion sample paths.

For the convenience of the nonspecialist mathematician, it might be desirable to
sketch here a very brief background of probability theory and stochastic processes,
relevant to the subject matter of the book. When the calculus of random variables
began to be developed in the '30s and '40s (a random variable (r.v.) is, for now,
a real-valued measurable function on a measure space endowed with a probability
measure), the two most important limit theorems studied were the following:

1. Convergence in distribution (or in law). Consider the sequence of normed
sums of independent, identically distributed (i.i.d.) rv.’s Xqi,Xo,...,X,,
(X1+---+ X, —bn/ay)(a, > 0 and b, real constants). What are the limit laws or
distribution functions F' such that

Q) Prob{xl+-~-+xn—b

429
for every continuity point x of F', as n — co?

The problem has not been stated in the utmost generality but is general enough
for present purposes. If the common variance is finite, then a result which prac-
tically goes back to Laplace and in special cases to de Moivre (a contemporary of
Newton) says that (1) holds with b, = nE(X1), a, = y/n variance(X;) and

1 x 1,2
F(z) = \/_2_7r/ e 2" du.

The complete answer to problem (1), given in the ’20s and ’30s of this century,
says that the only possible limit laws F' are stable laws. If Y is a symmetric ran-
dom variable and has a stable distribution, then its characteristic function (Fourier

i §:r} — F(x)
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transform) is given by Fe??Y = e=cllI” where 0 < a < 2 and ¢ is a positive constant.
The normal or Gaussian distribution corresponds to a = 2.

2. The second problem is concerned with the convergence of infinite series of
independent random variables—convergence in probability, almost sure (i.e., a.e.
with respect to the probability measure P), or LP-convergence. The early work
of Kolmogorov and Khinchine was extended much later to series of Banach-space
valued r.v.’s by It6 and Nisio.

The theory of stochastic integrals is a relatively new part of the theory of stochas-
tic processes, the study of families of random variables indexed by a continuous pa-
rameter or, one might say, of random variables taking values in infinite-dimensional
spaces. One such random variable which made its entry rather early in the history
of the subject is the Brownian motion (also called the Wiener process after Wiener’s
work). After several of its properties had been heuristically but brilliantly derived
and applied to financial problems by Bachelier (1900) and to statistical physics by
Einstein (1905), it was Wiener in 1923 who defined the probability measure (de-
noted here by ) on the space C of continuous functions on R, which determines
the distribution of the Wiener process given on the probability space (C, B, t.,),
(B(C) being the Borel sets in C).

Stochastic integrals of different kinds have been defined (and not only with re-
spect to the Wiener process) to deal with practical problems, notably continuous-
time linear prediction and filtering. These integrals are the continuous analogs of
linear functions or forms of random variables. In order to solve more general non-
linear estimation and prediction problems as well as being motivated by the desire
to construct a satisfactory mathematical theory of functionals of Brownian motion,
Wiener introduced the multiple stochastic integral in his famous 1938 paper on
homogeneous chaos. His work was modified and completed by It6, who supplied
the essential step in the development of an orthogonal chaos expansion for every
square integrable “Wiener” functional in terms of multiple Wiener-Ito integrals.
1t6 also showed the equivalence of his “stochastic” approach with the purely an-
alytical expansion in terms of Fourier-Hermite functionals obtained independently
by Cameron and Martin. (As far as I understand it, the word “chaos” was used by
Wiener to indicate the chaotic influence of Brownian motion on physical phenom-
ena.) Hence this entire corpus of work may justly be regarded as the foundation of
nonlinear stochastic analysis.

The study of polynomial or multilinear forms of random variables undertaken
in this book is a natural and logical precursor to the attempt in the second half of
this book to generalize the Wiener-It6-Cameron-Martin theory to processes other
than the Brownian motion. The topics in the book are organized as follows.

The first part, on random series, consists of the following chapters:

1. Basic inequalities for random linear forms in independent random variables

2. Convergence of series of independent random variables

3. Domination principles and comparison of sums of independent random vari-
ables

4. Martingales

Domination principles for martingales

6. Random multilinear forms in independent random variables and polynomial
chaos
Stochastic integrals are treated in the following chapters of the second part:

ot
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7. Integration with respect to general stochastic measures
8. Deterministic integrands

9. Predictable integrands

10. Multiple stochastic integrals

A preliminary chapter introduces, besides standard topological and measure-
theoretic notions, an extension of Orlicz spaces called Musielak-Orlicz spaces (which
play a key role in characterizing a.s. convergence of sequences of independent
random variables) and also the specially important random variables—Bernoulli,
Gaussian and a-stable sequences. There are two appendices—one on vector
measures—which should be particularly convenient and useful to graduate stu-
dents. The other appendix has the title “Unconditional and bounded multiplier
convergence of random series”.

The most valuable portions of the book, in my view, are (i) the inequalities
which form a prominent part of the first six chapters, (ii) the careful and detailed
discussion of stochastic measures leading to stochastic integrals with respect to
semimartingales, and (iii) the results on stable processes. I believe that most if
not all the material in these three topics appears for the first time in a book, so
that these topics are no longer in the frontiers of research but are brought into the
mainstream of probability theory and stochastic processes. In achieving this the
authors have made an important contribution to the dissemination of some of the
modern developments of the subject.

In (i) one should especially mention the tail inequalities, hypercontractive and
decoupling inequalities. These are proved not only for linear forms of random
variables but also for multilinear forms. The idea of decoupling is particularly
useful in simplifying proofs. It is simply explained in the book for quadratic forms
as follows: Let

n

j—1
Q(Xy,...,X,) = Z a;; X; X; = Z <Z aini> X;
j=1 \i=1

1<i<j<n

be a homogeneous random quadratic form with a;; constants belonging to a Hilbert
space. If (X7,...,X]) is an independent copy of the symmetric random vector
(X1,...,Xp), then

n j—1
Q’(Xl,...,Xn,Xg,...,X;):Z( ainz-) X/
j 1

j=1

=
is the sum of a “decoupled” sequence (Zz;ll aini)Xjf. j = 1,...,n which is
“tangent” to the sequence (Zf;ll a;; X;)X; relative to the sigma fields F; =
o(X1,..., X, Xq,...,X}). The simplification consists in reducing the proof of the
desired inequality for a given multilinear form to a corresponding problem for a
lower-degree polynomial.

Chapter 6 also contains the inequalities for random multilinear forms (or poly-
nomial chaos) where most of the above techniques are brought into play.

Exponential moment bounds for Banach space-valued Gaussian random variables
are obtained in several different ways in Chapters 2 and 3. Fernique’s bound is
first given along with his proof. Using the hypercontraction principle, a strong
exponential moment bound is given for a Banach space-valued Gaussian series S =
ZTO a; X;, a;’s chosen from a Banach space, and X; canonical Gaussian variables. A
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more precise estimate for E exp «||S||? is given later in the chapter with an improved
range for a.

The almost-sure convergence of the series S = Y .° a;X; (defined as above) is
a necessary result before one can discuss the bounds for its moments. This conver-
gence result proved in Chapter 2 is referred to as a “Karhunen-Loeve” representa-
tion of a Gaussian measure. The same label is attached to a similar almost-sure
result for the Wiener chaos in Chapter 6. The names should mystify the modern
graduate student and indeed any research worker who has not had the standard
graduate course on advanced probability that the authors (and the reviewer) had in
their student days. The reference is to the series representation (perhaps the first
of its kind) of a continuous Gaussian process in terms of the spectral expansion
of its covariance function. Incidentally, as long as we are mentioning authors, the
original K-L theorem should be properly called the Karhunen-Kosambi-Loéve the-
orem. The result was independently discovered during World War II by the Indian
mathematician and Marxist historian D. D. Kosambi.

The part devoted to stochastic integrals gives a detailed treatment of stochastic
measures (supplemented by a helpful appendix on vector measures) and stochastic
integrals with respect to semimartingales. Decoupling inequalities developed earlier
are used to give a simpler construction of stochastic integrals for the special case
when the integrator is a process of independent increments.

Although the main thrust of the second part is the definition and properties of
multiple stochastic integrals with respect to processes of independent increments
(or independently scattered measures), it has to be recognized, as the authors do,
that no workable definition of multiple stochastic integrals of order d(d > 2) has so
far been possible (with the partial exception of a-stable processes) at this level of
generality.

The Wiener chaos decomposition of the L?-space of Wiener functionals is in-
troduced in Chapter 6 in a “denumerable” fashion in keeping with the general
philosophy of the book. The aim is to obtain the closure in L? of K9, the family
of all (real) polynomial chaoses of order d based on a given sequence 71,72, ... of
i.i.d. standard Gaussian random variables. By introducing the problem in this way,
Wiener’s nonlinear analysis of Brownian functionals is made a part of the general
study of polynomial chaoses undertaken in the book. The main result, which uses
Hermite polynomials, is due to Cameron and Martin; there is no mention of this
either in the text or in the notes at the end of the chapter, although their basic
paper is cited in the references. (It should perhaps be pointed out that in deriving
the properties of Hermite polynomials, on pages 176-177, completeness is left out.)
It6’s equivalent decomposition in terms of multiple Wiener-Ito integrals is given
later in Chapter 10, where multiple stochastic integrals are introduced.

The difficulties inherent in the attempt to extend the Wiener-It6 theory of mul-
tiple integrals to integrators X which are arbitrary processes of independent in-
crements can be visualized in the work of Chapter 10. A characterization of a
symmetric function f : 72 — R in order that [ fdX dX be defined is given in
terms of a function ¥ related to the modular ¢ and the control function v of X.
The most interesting consequence is the application to the case when X is a sym-
metric, stationary a-stable process, given merely as an example. For higher-order
(d > 2) multiple integrals, a sufficient condition for f : T¢ — R to be integrable is
given without proof at the end of the chapter.
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On the other hand, for the Brownian integrator the Wiener-It6 theory has been
enriched by the further development of stochastic integration theory. Only a reluc-
tance to accord Brownian motion the importance it deserves can possibly explain
the omission of some of these recent advances. One example of this omission is the
Stratonovich integral, single and multiple. In view of the strong emphasis in the
book on the role of multilinear forms in nonlinear random theory, it may be stated
here that multilinear forms Z1§i1§<<-§id§n @iy iy Xiy - - - X5, where the coefficients
ai,...i, are not put equal to zero if two or more indices are equal are the “building
blocks” of multiple Stratonovich integrals. A brief reference to one of the anticipa-
tive stochastic integrals—for instance, the Skorokhod integral whose definition can
be based on the multiple It6 integral—would have brought this part of the book
more in line with modern developments.

One wishes that greater prominence had been given to the generalizations of
some of the results on stable processes, perhaps by collecting them in a separate
chapter (although I recognize the organizational difficulty in doing so). In the book
they appear as special examples. For instance, necessary and sufficient conditions
for the almost-sure convergence of the series > -~ a;X;, where a; € LP(T, A, p)
and X; are i.i.d. a-stable r.v.’s, 0 < a < 2, are given as a corollary of a more
general “three series” theorem in Chapter 2. Quadratic chaos for the stable case is
similarly relegated to a corollary in Chapter 6. Since non-Gaussian stable processes
form, next to Brownian motion, a distinguished family of stochastic processes,
these results together with their discrete versions appearing earlier in the book
considerably enhance the value of the book.

In a book in which the authors are at pains to work with Banach space-valued
random variables, it is curious that there is no mention of abstract Wiener spaces
and theorems relating to them. Another omission—more understandable because
the subject has grown so vast that no present-day book on stochastic processes can
afford to be self-contained—is the absence of reference to probability measures on
infinite-dimensional spaces, e.g., Banach and Hilbert spaces. Graduate students in
“probability theory, stochastic processes and theoretical statistics” (quoted from
the introduction) for whom this book is also intended could find the lack of this
basic information a handicap in mastering the material. How would they know the
distinction between, say, an n-dimensional Gaussian random variable and a Gauss-
ian variable taking values in an infinite-dimensional Hilbert space? The book could
have easily supplied the necessary details by judiciously amplifying the chapter on
preliminaries (Chapter 0). As it is, the bare definition of a Gaussian probability
measure on a separable Banach space F' given in subsection 0.6 does not tell the
whole story. The reader might be left with the impression that any bilinear form
V(z',y') can serve as the covariance of a Gaussian measure. That such is not
the case can be seen by taking F' to be an infinite-dimensional Hilbert space and
V(2',y") to be the inner product of 2’ and y'.

The authors’ claim in the introduction that the book can serve as “a foundation
for the stochastic It6 calculus and the theory of stochastic differential equations” is
hard to justify in a book where there is no mention, even in a disguised form, of the
1t6 formula for semimartingales—a fundamental result without which one cannot
take the first step in stochastic calculus. Indeed, there is no need for the authors
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to make such a claim, for even without it the book is of considerable value to the
aspiring research student, as I have pointed out earlier in this review.

G. KALLIANPUR
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