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A C∞ manifold M may be endowed with several additional structures. One of
the most natural is a Riemannian metric, leading to Riemannian geometry. Another
is a complex structure, so that a manifold M of real dimension 2m becomes a
complex manifold which may be studied using complex geometry: the charts in an
atlas are identified with open subsets of Cm, and the composition of chart maps is
assumed to be a holomorphic map between domains in Cm. A third very natural
structure is a symplectic structure, which is a nondegenerate closed 2-form ω on M .
These three types of geometrical structures intersect in Kähler geometry: any two of
the three geometrical structures which are compatible in the natural way determine
the third, and the three compatible structures constitute a Kähler structure on the
manifold.

The roots of symplectic geometry are as old as the other two branches of geom-
etry mentioned above, since it originated as the natural mathematical framework
for classical mechanics; however, until recently symplectic geometry had a some-
what lower profile in the mathematical landscape than Riemannian or complex
geometry. This situation is rapidly changing, and symplectic geometry is a swiftly
expanding field attracting increasing attention from researchers and students alike;
for some time there has been an urgent need for a comprehensive and authoritative
textbook, such as has existed for decades in Riemannian geometry, that could be
used as a point of departure for graduate courses. McDuff and Salamon’s book
admirably fills this need: two years beyond its publication it has already become
one of the definitive references in the field. It belongs on the bookshelf of students
and researchers whose work involves any branch of geometry and in the library of
any research university.

Although a symplectic form is a geometrical structure, many problems that
arise when one posits the existence of a symplectic structure reduce to problems in
topology; hence the book’s title is appropriate, since on the whole its emphasis is
on the topological aspects of the subject. Nonetheless the book provides a broad
and comprehensive introduction to all aspects of the subject, including the ba-
sics: it assumes no prior familiarity with symplectic structures. The book provides
ample cross-referencing: though it is quite self-contained, it nonetheless provides
extensive references to the surrounding literature. One topic that is not treated
is pseudoholomorphic curves in symplectic manifolds; for this material the authors
refer readers to their own monograph [13] or to the earlier collection of articles [3].

The origins of symplectic geometry are in classical mechanics. The most natural
example of a symplectic manifold is R2m, the phase space (in other words the space
parametrizing the position and momentum of a system with m degrees of freedom):
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the symplectic form is simply

ω0 =
m∑
i=1

dpi ∧ dqi,(1)

where the position variables of the system are qi and the corresponding momenta
are pi. One of the fundamental results of the subject is the Darboux theorem, which
tells us that locally one can find coordinates in which any symplectic form is given
in this way. Weinstein’s proof [19] of the Darboux theorem is presented in Chapter
3: this proof makes use of an argument due to Moser (often referred to as “Moser’s
method”), which allows one (given a family {ωt, t ∈ [0, 1]} of 2-forms satisfying
appropriate hypotheses which interpolates between a given symplectic form ω1 and
the standard Darboux symplectic form ω0 given by (1)) to construct a family of
diffeomorphisms φt (for t ∈ [0, 1]) for which φ∗tωt = ω0, and which thereby exhibits
a diffeomorphism under which the form ω1 pulls back to the standard form ω0.

For any C∞ function H : M → R on a symplectic manifold (M,ω), the equation

dH(·) = ω(XH , ·)
defines a vector field XH (the Hamiltonian vector field) associated to H . A vector
field is thus associated to any smooth function on a symplectic manifold. The flow
associated to this vector field,

dx

dt
= XH(x(t)),(2)

is called the Hamiltonian flow. One may generalize this by considering the flow

dx

dt
= XHt(x(t))(3)

given by the family of vector fields XHt associated to a family of functions Ht for t ∈
[0, 1] (time-dependent Hamiltonian flow). The prototypical example of Hamiltonian
flow comes from the usual Hamiltonian H (the sum of the kinetic energy and the
potential energy) on the phase space R2m: for instance, for a harmonic oscillator
potential (governing the motion of a mass on a spring) we have

H =
1

2

∑
i

(p2
i + q2i ).

The equation for Hamiltonian flow then encodes the equations of motion of the
system (Hamilton’s equations). Readers interested in pursuing the connection of
symplectic geometry with mechanics will find the book of Arnol’d [1] valuable.

One important area in symplectic geometry treats group actions which preserve
the symplectic structure and the appropriate definition of a quotient of a symplectic
manifold by such a group action which is still a symplectic manifold: one must
introduce moment maps (Hamiltonian functions whose Hamiltonian vector fields are
the vector fields generated by the group action), and then the symplectic quotient or
Marsden-Weinstein reduction is defined as the quotient of a level set of the moment
map by the group action. Under appropriate hypotheses the symplectic quotient
inherits a symplectic form from that on the original symplectic manifold M . This
material is treated in Chapter 5; readers interested in pursuing these topics in more
detail will wish to consult the books of Audin [2], Berline, Getzler and Vergne [4],
Guillemin and Sternberg [7], and Guillemin, Lerman and Sternberg [6].
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A variety of other subjects are treated in the course of the book. For example,
in Chapter 6 there is an excellent presentation of symplectic blowups (which are
closely related to blowups in algebraic geometry, though different in some impor-
tant respects). This is followed by a sketch of Gompf’s important construction of
families of symplectic four-manifolds whose fundamental groups include all finitely
presented groups. Chapter 10 treats the structure of the group of diffeomorphisms
preserving the symplectic structure of a manifold: this group is infinite-dimensional,
unlike the group of isometries of a compact Riemannian manifold which is always a
compact Lie group.1 Several important, very recent advances in symplectic geom-
etry are mentioned though not treated in any detail. One is Donaldson’s construc-
tion of a symplectic submanifold representing the Poincaré dual of a multiple of
the symplectic form, which is discussed briefly in Chapter 4. Another is Taubes’s
recent work on symplectic 4-manifolds using Seiberg-Witten invariants, which es-
tablishes in particular that the symplectic structure on complex projective space
CP 2 is unique, and also enlarges the class of four-manifolds which are known to
have no symplectic structure.

The heart of the book is Part IV, which consists of two chapters, each devoted
to one of the central topics in symplectic topology over the last few years. The
first chapter of Part IV treats the Arnol’d conjecture, while the second treats sym-
plectic capacities. The Arnol’d conjecture (which had at the time of publication
of the present volume been established for a large class of symplectic manifolds)2

concerns the problem of determining a lower bound on the number of fixed points
of a symplectic diffeomorphism arising from a time-dependent Hamiltonian flow.
Arnol’d conjectured that such a diffeomorphism must have at least as many fixed
points as the minimal number of critical points of a Morse function on M . This
conjecture was proved by Floer for a fairly large class of symplectic manifolds
(monotone symplectic manifolds); Floer’s proof used the gradient flow of the sym-
plectic action functional. The symplectic action functional is a function on the
(infinite-dimensional) space of C∞ maps from S1 to M which takes values in R/Z:
its value at a loop γ in M may be defined as the symplectic area of a disk whose
boundary is γ. (The symplectic action functional is the natural analogue of the
Chern-Simons functional on connections on a bundle on a three-manifold, which
Floer used to define instanton homology or Floer homology.) McDuff and Salamon
present a proof of the Arnol’d conjecture for the standard torus, in which they
replace the symplectic action functional by a discrete analogue which is defined on
a finite-dimensional space. An earlier survey on this material is [14].

The final chapter of Part IV treats symplectic capacities, which are an essential
tool in symplectic topology. (Readers wishing a less detailed introduction may find
it helpful to look at the beginning sections of the recent survey by Lalonde [10],
and at Viterbo’s Séminaire Bourbaki notes [16].) Symplectic capacities may be
used to address the question of which symplectic manifolds may be symplectically
embedded in other symplectic manifolds of the same dimension.

Obviously the symplectic volume
∫
M ωm/m! provides an obstruction to symplec-

tic embedding: in dimension 2 this is the only obstruction, but in higher dimensions

1This was established more than fifty years ago by Myers and Steenrod.
2Very recently proofs of the Arnol’d conjecture in full generality have been given by several

groups, including Fukaya and Ono, Liu and Tian, and Ruan [5, 12, 15]. An additional proof has
been announced by Hofer and Salamon [8].
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more subtle obstructions exist. Gromov defined the Gromov width wG of a sym-
plectic manifold M , which is the area of a disk whose radius equals that of the
largest ball that can be symplectically embedded in M . He proved the nonsqueez-
ing theorem, which tells us that one cannot symplectically embed the symplectic ball
B2m(r) of dimension 2m and radius r into the symplectic cylinder B2(R)×R2m−2

unless r ≤ R. Gromov’s proof of the nonsqueezing theorem used pseudoholomor-
phic curves, but there are several alternative proofs.3 McDuff and Salamon follow
Hofer and Zehnder in using variational methods to construct a symplectic capacity,
which is a functional c which assigns a nonnegative number to every symplectic
manifold in such a way that certain axioms are satisfied:

a. Monotonicity: If (M1, ω1) and (M2, ω2) are symplectic manifolds of the same
dimension and if there is a symplectic embedding ofM1 intoM2, then c(M1, ω1)
≤ c(M2, ω2).

b. Conformality: If λ is a positive real number, then c(M,λω) = λc(M,ω).
c. (Weak) Nontriviality: The capacity of the symplectic ball B2n(R) is > 0 while

that of the symplectic cylinder B2(R)× R2n−2 is <∞.

McDuff and Salamon construct the capacity cHZ (the Hofer-Zehnder capacity) that
was defined by Hofer and Zehnder using properties of periodic orbits: it has the
property that

cHZ(B2m(r)) = cHZ(B2(r) × R2m−2),

from which the nonsqueezing theorem follows immediately. As another application
of the Hofer-Zehnder capacity, McDuff and Salamon use it to give a proof of a
celebrated conjecture of Weinstein concerning periodic orbits of vector fields on
appropriate classes of hypersurfaces in symplectic manifolds.

Several different types of symplectic capacities have been defined which are not
equivalent to each other: for instance the Gromov width wG described above sat-
isfies the axioms of a symplectic capacity and is always less than or equal to the
Hofer-Zehnder capacity cHZ . Hofer and Zehnder originally constructed the capac-
ity cHZ by applying variational techniques to the symplectic action functional. As
in their treatment of the Arnol’d conjecture, McDuff and Salamon have chosen to
avoid the use of the infinite-dimensional analytical techniques used in the original
proof by constructing a finite-dimensional analogue of the symplectic action func-
tional which can be treated by finite-dimensional variational methods. This makes
the material accessible to readers uncomfortable with analytical techniques using
infinite-dimensional Banach spaces; those readers fluent in the language of infinite-
dimensional analysis will find Hofer and Zehnder’s original argument presented in
Chapter 3 of [9].

This book has already earned its place as a basic reference for workers in the field;
it will also make the task of beginning research substantially simpler for graduate
students starting work in this area. The presence of a text of this type opens a
field up to graduate students, since it makes the prerequisites to research much
more accessible than the original references did. Researchers who learned their
trade before a reference of this type was available have good cause to envy those

3The proof using pseudoholomorphic curves was extended by Lalonde and McDuff to give
results for more general symplectic manifolds: see the survey [10] and the original article [11]. A
third proof differing both from Gromov’s original approach and from the proof presented here by
McDuff and Salamon is the proof given by Viterbo [17] using generating functions; background
on these is provided in Chapter 9 of the present volume.
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beginning work now that an authoritative and comprehensive reference of this type
is available. McDuff and Salamon have done an enormous service to the symplectic
community: their book greatly enhances the accessibility of the subject to students
and researchers alike.
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