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1. Introduction

Suppose that (W,A, P ) is a Gaussian measure space (defined below), F : W →
Rn is a measurable function, λn is Lebesgue measure on Rn, and PF := P ◦ F−1

is the image of P under F. We will refer to F : W → Rn as a Wiener functional
and call PF the law of F. The central theme in Malliavin’s book is the following
question.

Central Question: When is PF absolutely continuous relative to λn with a
density ρF := dPF /dλ which is smooth?

Before continuing, it is necessary to make precise the notion of a Gaussian mea-
sure space. We will then be in a position to motivate the central theme by giving
some examples of interesting Wiener functionals.

2. Gaussian measures and Wiener functionals

For simplicity and clarity we will describe Gaussian measures only in the context
of Gross’ abstract Wiener space setting; see [12], [15]. Let W be a real separable
Banach space equipped with its Borel σ –algebra, A.
Definition 2.1. A measure P on (W,A) is said to be Gaussian (with mean zero)
provided that there exists an inner product1 q : W∗ × W∗ → R such that for all
` ∈ W∗, ∫

W
ei`(x)dP (x) = exp(−1

2
q(`, `)).

(The inner product q may be shown to be continuous on W∗.)

Gaussian measures play a central role in probability theory owing to the central
limit theorem. They also have been important in physics and mathematical physics,
since Gaussian measure spaces are intimately related to so-called free quantum
field theories. See, for example, Segal [24], [25] and Glimm and Jaffe [11] and the
references therein.

Given a Gaussian measure space (W,A, P ), for ` ∈ W∗ let h` ∈ W be given by
the Bochner integral, h` :=

∫
W `(ω)ωdP (ω). The mapping ` ∈ W∗ → h` ∈ W is

linear, injective, has dense range in W, and satisfies ‖h`‖W ≤ (const.)
√
q(`, `). for

all ` ∈ W∗. The reproducing kernel Hilbert space H ⊂ W associated to (W,A, P )
is defined as

H := {h = lim
n→∞h`n ∈ W where {`n}∞n=1 ⊂ W∗ is a q-Cauchy sequence}.

The inner product on H is defined by (h, k) = limn→∞ q(`n, αn), where {`n}∞n=1 and
{αn}∞n=1 are q-Cauchy sequences such that h = limn→∞ h`n and k = limn→∞ hαn
respectively.
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Fact 2.2. Although H is always dense in W, H is equal to W iff dim W <∞.

Let us give two important examples of Gaussian measures.

Example 2.3. Suppose that W is finite dimensional and P is Gaussian with as-
sociated inner product q on W∗. In this case H = W and (·, ·)H is the dual inner
product to q on H = W. The measure P is given by the explicit formula:

dP (ω) = (2π)− dim(W)/2 exp(−1

2
(ω, ω)H) dω,

where dω denotes Lebesgue measure on W normalized to be one on unit cubes in
W = H .

Example 2.4 (Wiener Measure). Let W denote the space of continuous functions
ω : [0, T ] → Rd such that ω(0) = 0. We make W into a Banach space by equipping
it with the supremum norm. It is a celebrated theorem of N. Wiener [31] that there
exists a unique Gaussian measure P on (W,A) such that∫

exp

(
i

∫ T

0

ω(t) · dµ(t)

)
dP (ω) = exp

(
−1

2

∫
[0,T ]2

min(s, t)dµ(s) · dµ(t)

)
for all µ ∈ W∗ — where by the Riesz theorem W∗ is being identified with Rd – valued
measure on [0, T ]. In this case H is called the Cameron-Martin space and consists of
those h ∈ W which are absolutely continuous with the first derivative being square

integrable. The inner product on H is given by (h, k) =
∫ T
0
h′(t) · k′(t) dt.

Some key properties of Wiener measure are:

1. Wiener measure P represents a mathematical idealization of the probability
distribution for the paths of particles diffusing in a homogeneous and isotropic
environment. The next item makes this more precise by relating P to the heat
equation on Rd.

2. Given a continuous and bounded function f : Rd → R, one finds that the
function u(t, x) =

∫
W f(x+ω(t))dP (ω) solves the heat equation ∂u(t, x)/∂t =

1
2∆u(t, x) with u(0, x) = f(x).

3. The set of paths in W which have a derivative at any one time t ∈ [0, T ] has
P–measure zero and in particular P (H) = 0.

4. Let {Vi}di=0 be a collection of smooth vector fields on Rn which are bounded
along with all of their derivatives. (Here n is another integer.) Despite the
previous item, it is possible using Itô’s theory of stochastic calculus to give
a meaning to the “solution” γ : [0, T ] × Rn × W → Rn to the “differential”
equation

dγ(t, x, ω)/dt = V0(γ(t, x, ω)) +

d∑
i=1

Vi(γ(t, x, ω))ω̇i(t)(2.1)

γ(0, x, ω) = x.(2.2)

Such solutions produce quite complicated and interesting functions on W. In
particular, if f : Rd → R is a continuous and bounded function as above, then

u(t, x) =

∫
W
f(γ(t, x, ω))dP (ω)(2.3)
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is a solution to the generalized heat equation,

∂u(t, x)/∂t = Lu(t, x) with u(0, x) = f(x),(2.4)

where L is the second order differential operator L = 1
2

∑d
i=1 V

2
i + V0.

As a motivation to the central question stated above, consider the Wiener func-
tional Ft,x(ω) := γ(t, x, ω), where γ “solves” Eqs. (2.1) and (2.2) above. Supposing
that PFt,x has a smooth density ρt,x relative to Lebesgue measure, one may write

Eq. (2.3) as u(t, x) =
∫

Rn f(y)ρt,x(y)dy. Malliavin in his 1976 pioneering paper [19]
gave a probabilistic proof of Hörmander’s theorem in part by showing that PFt,x
has a smooth density. Recall that Hörmander’s theorem asserts that any solution f
to the equation Lf = g is smooth when g is smooth provided the Hörmander con-
dition is satisfied; i.e. the Lie algebra generated by the vector fields {Vi}di=1 spans
Rn for each point in Rn. Malliavin’s original paper was followed by an avalanche of
papers carrying out and extending Malliavin’s program, including the fundamental
works of Stroock [28], [29], Kusuoka and Stroock [16], [17], and Bismut [1]. See also
[2], [3], [4], [14], [22], [23], [26], [27], [30], the book under review, and the references
therein.

3. Malliavin’s ideas in finite dimensions

To understand Malliavin’s strategy for showing that a Wiener functional F has
a smooth density, it is best to first consider the case where dim W = N <∞.

Theorem 3.1. Assume that (W,A, P ) is a finite dimensional Gaussian measure
space in which case H = W. Let F : W → Rn be a function and assume:

1. F is smooth and F and all of its partial derivatives are in L∞− :=
∩1≤p<∞Lp(W, P ).

2. F is a submersion or equivalently assume the “Malliavin” matrix M(ω) :=
F ′(ω)F ′(ω)∗ is invertible for all ω ∈ W.

3. Assume further that ∆(ω) := det(F ′(ω)F ′(ω)∗)−1 ∈ L∞−.
Then the law (PF ) of F is absolutely continuous relative to Lebesgue measure

and the density ρ := dPF /dλd is smooth.

Proof. For each v ∈ Rn, define Ṽ (ω) = F ′(ω)∗M(ω)−1v—a smooth vector field

on W such that F ′(ω)Ṽ (ω) = v. Explicit computations using the chain rule and

Cramer’s rule for computing M(ω)−1 show that DkṼ may be expressed as a poly-

nomial in ∆ and D`F for ` = 0, 1, 2 . . . , k. In particular DkṼ is in L∞−. Sup-
pose f, g : W → R are C1 functions such that f, g and their first order deriva-
tives are in L∞−. Then by a standard truncation argument and integration by
parts, one shows that

∫
W(Ṽ f)g dP =

∫
W f(Ṽ ∗g) dP, where Ṽ ∗ = −Ṽ + δ(Ṽ ) and

δ(Ṽ )(ω) := −div(Ṽ )(ω) + Ṽ (ω) · ω.
Suppose that φ ∈ C∞c (Rn) and vi ∈ Rn; then∫

Rn

(∂v1∂v2 · · ·∂vkφ)dPF =

∫
W

(∂v1∂v2 · · · ∂vkφ)(F (ω)) dP (ω)

=

∫
W

(Ṽ1Ṽ2 · · · Ṽk(φ ◦ F ))(ω) dP (ω)

=

∫
W
φ(F (ω)) · (Ṽ ∗k Ṽ ∗k−1 · · · Ṽ ∗1 1)(ω) dP (ω),
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where ∂vF denotes the partial derivative of F along v. By the remarks in the
above paragraph, (Ṽ ∗k Ṽ

∗
k−1 · · · Ṽ ∗1 1) ∈ L∞−. Hence, we find there is a constant C

independent of φ such that∣∣∣∣∫
Rn

(∂v1∂v2 · · ·∂vkφ)dPF

∣∣∣∣ ≤ C sup |φ|.

It now follows from Sobolev imbedding theorems or simple Fourier analysis that
PF � λn and that ρ := dPF /dλn is a smooth function.

4. The infinite dimensional case

In order to carry out the above procedure when dim W = ∞, it is necessary to
understand how to correctly formulate the hypothesis of Theorem 3.1. The first
question one is faced with is, what is the notion of a smooth Wiener functional?
Since W is a Banach space, one might assume that a function F : W → R should be
called smooth if it is differentiable to all orders relative to the norm topology on W.
However this notion of smoothness is too restrictive. Indeed most interesting Wiener
functionals including “solutions” to equations like (2.1) are not even continuous on
W, let alone smooth. Hence it is crucial to relax the notion of smoothness. The
appropriate calculus on Wiener space was initiated by Cameron and Martin [6], [7],
[8] and Cameron [5]. They proved the following two results; see Theorem 2, p. 387
of [6], and Theorem II, p. 919 of [5] respectively.

Theorem 4.1 (Cameron & Martin 1944). Let (W,A, P ) be classical Wiener space
as in Example 2.4, and for h ∈ W, set Th(ω) = ω + h. Suppose that h is also C1;
then PT−1

h is absolutely continuous relative to P.

This theorem was then extended by Maruyama [21] and Girsanov [10] to allow
the same conclusion for h ∈ H. (It is now known, on general Gaussian probability
spaces (W,A, P ), that PT−1

h � P iff h ∈ H.) From the Cameron and Martin
theorem one may prove Cameron’ s integration by parts theorem.

Theorem 4.2 (Cameron 1951). Let (W,A, P ) be classical Wiener space and H ⊂
W be the Cameron–Martin space as in Example 2.4. Let h ∈ H and f, g ∈ L∞−(P )
such that ∂hf := d

dεf ◦ Tεh|ε=0 and ∂hg := d
dεg ◦ Tεh|ε=0 where the derivatives are

supposed to exist2 in Lp(P ) for all 1 ≤ p <∞. Then∫
W
∂hfg dP =

∫
W
f∂∗hg dP,

where ∂∗hg = −∂hg+zhg and zh := L2(P )− limn→∞ `n where h = limn→∞ h`n ∈ W
as in the definition of H.

Armed with Cameron’s integration by parts theorem and its extensions (see
Gross [12], [13]), one may reasonably define a function F : W → R to be H–smooth
provided all orders of the H–differentials of F exist and belong to L∞−(P ). This
definition is sufficiently weak so as to include a large class of interesting Wiener
functionals, including solutions to stochastic differential equations related to Eq.
(2.1). Once the notion of a smooth Wiener functional is understood, Theorem
3.1 may be formulated when dim W = ∞. Proving the theorem and verifying the

2The notion of derivative stated here is weaker than the notion given in [5]. Nevertheless
Cameron’s proof covers this case without any essential change.
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hypothesis in examples when dim W = ∞ requires a substantial amount of work to
which a sizable portion of the book is devoted.

It would be highly misleading to say that the book is solely devoted to the proof
of Theorem 3.1 and its applications when dim W = ∞. The ideas introduced by
Malliavin and others to understand the smoothness properties of Wiener function-
als have led to a very deep understanding of the analytic properties of Gaussian
probability spaces. These topics are covered in Stochastic analysis as well. For
example in Chapter 4, Malliavin develops the notions of capacities on Wiener space
and explores the fine structure of Wiener functionals. In Chapter 5, these notions
are used to define finite codimensional “submanifolds” of Wiener space. The dif-
ferential and geometric properties of these infinite dimensional manifolds are then
studied. And in Chapter 11, Malliavin introduces the reader to various recent re-
sults pertaining to the differential geometric analysis of “Wiener” measure on the
path spaces of Riemannian manifolds.

The reviewer highly recommends this book to probabilists and non-probabilists
alike. Malliavin masterfully guides his reader through a fascinating area of proba-
bility and analysis which has been active for 50 plus years. Moreover, by the end
of the book a reader so inclined would be well equipped to study and work on
problems of current interest in the field.

References

[1] Jean-Michel Bismut, “Large Deviations and the Malliavin Calculus,” Birkhauser,
Boston/Basel/Stuttgart, 1984. MR 86f:58150

[2] Denis R. Bell, “The Malliavin Calculus,” (Pitman monographs and surveys in pure and
applied mathematics; 34), Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc.,
New York, 1987. MR 88m:60155

[3] , “Degenerate Stochastic Differential Equations and Hypoellipticity,” (Pitman mono-
graphs and surveys in pure and applied mathematics; 79), Longman, Essex, England, 1995.
CMP 98:01

[4] Nicolas Bouleau and Francis Hirsch, “Dirichlet Forms and Analysis on Wiener Space”, (Stud-
ies in Mathematics 14), de Gruyter, Berlin-New York, 1991. MR 93e:60107

[5] R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. A.M.S., Vol 2.
(1951), 914 - 924. MR 13:659b

[6] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations,
Annals of Math., 45, No. 2 (1944), 386 -396. MR 6:5f

[7] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class
of linear transformations, Trans. Amer. Math. Soc. 58, (1945) 184 - 219. MR 7:127c

[8] R. H. Cameron and W. T. Martin, The transformation of Wiener integrals by non-linear
transformations, Trans. Amer. Math. Soc. 66 (1949), 253 - 283. MR 11:116b

[9] B. K. Driver, Towards calculus and geometry on path spaces, in “Stochastic Analysis, Sum-
mer Research Institute on Stochastic Analysis,” July 11-30, 1993, Cornell University, (Eds. M.
Cranston and M. Pinsky), Proceedings of Symposia in Pure Mathematics, Vol. 57, American
Mathematical Society, Rhode Island, 1995, p. 405-422. MR 96e:60097

[10] I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely contin-
uous substitution of measures, Theory Probab. Appl. 5 (1960), 285 - 301. MR 24:A2986

[11] James Glimm and Arthur Jaffe, “Quantum physics. A functional integral point of view.”
Second edition. Springer-Verlag, New York-Berlin, 1987. MR 89k:81001

[12] L. Gross, Abstract Wiener Spaces, Proc. 5th. Berkeley Symposium Math. Stat. Prob. 2,
(1965), 31 - 42.

[13] L. Gross, Potential theory on Hilbert space, J. Func. Anal. 1, 123 - 181, (1967). MR 37:3331
[14] N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” 2nd

ed., North-Holland Publishing Co., Amsterdam/Oxford/New York, 1989. MR 90m:60069
[15] H-H. Kuo, “Gaussian measures in Banach spaces,” Lecture notes in Mathematics, 463,

Springer-Verlag, Berlin-New York, 1975. MR 57:1628



104 BOOK REVIEWS

[16] S. Kusuoka and D. Stroock, Applications of the Malliavin Calculus, Part I, Proc. Int. Symp.
S.D.E. Kyoto, (1976) 271 - 306, North-Holland, Amsterdam-New York, 1984. MR 86k:60100a

[17] , Applications of the Malliavin Calculus, Part II, J. Fac. Sci. Univ. Tokyo, Sect IA,
Math, Vol. 32 (1985), 1-76. MR 86k:60100b

[18] P. Malliavin, Geometrie differentielle stochastique, Montreal: Presses de l’ Universite de
Montreal, 1978. MR 81d:60077

[19] , Stochastic calculus of variation and hypoelliptic operators, Proc. Int. Symp. S.D.E.
Kyoto, (1976) 195 - 263, Wiley and Sons, New York 1978. MR 81f:60083

[20] , Ck-hypoellipticity with degeneracy, Stochastic Analysis, ed. by A. Friedman and M.
Pinsky, 199-214, 321-340, Academic Press, New York, 1978. MR 80i:58045a

[21] G. Maruyama, Notes on Wiener integrals, Kodai Math. Seminar Rep. 3 (1950), 41 -44. MR
12:343d

[22] J. R. Norris, Simplified Malliavin calculus, Seminaire de Probabilites XX 1984/85 (ed. par J.
Azema et M. Yor), Lect. Notes in Math., 1204, 101-130, Springer-Verlag, Berlin, 1986. MR

89f:60058
[23] D. Nualart, “The Malliavin calculus and related topics,” in Probability and its Applications.

Springer-Verlag, New York, 1995. MR 96k:60130
[24] I. E. Segal, Tensor algebras over Hilbert spaces, I. Trans. Amer. Math. Soc. 81 (1956),

106-134. MR 17:880d
[25] , Distributions in Hilbert space and canonical systems of operators, Trans. Amer.

Math. Soc. 88 (1958), 12-41. MR 21:1545
[26] , Absolute continuity of probability laws of Wiener functionals, Proc. Japan Acad.,

54-A, 230-233 (1978). MR 81m:60097
[27] , Derivatives of Wiener functionals and absolute continuity of induced measures, J.

Math. Kyoto Univ. 20-2, 263-289 (1980). MR 83g:60051
[28] D. W. Stroock, The Malliavin calculus and its application to second order parabolic differen-

tial operators, I, II, Math. Systems Theory 14, 25-65 and 141-171 (1981). MR 84d:60092a,
MR 84d:60092b

[29] , The Malliavin calculus, a functional analytic approach, J. Funct. Anal., 44, 212-257
(1981). MR 83h:60076

[30] S. Watanabe, “Lectures on Stochastic Differential Equations and Malliavin Calculus, (Tata
Institute of Fundamental Research: Lectures given at Indian Institute of Science, Bangalore),
Springer-Verlag, Berlin-New York, 1984. MR 86b:60113

[31] N. Wiener, Differential space, J. Math. Phys. 2, 131-174 (1923).

Bruce K. Driver

University of California, San Diego

E-mail address: driver@euclid.ucsd.edu


