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1.

The use of asymptotic expansions is an old and well established tool of mathe-
matical analysis which, nevertheless, is still vigorously developing, with many new
applications. It is actually not correct to talk about a “tool”, in fact, each individ-
ual asymptotic expansion may require a separate derivation even though there are
quite a few general techniques. Thus, the label “Asymptotic Analysis” refers to a
large toolbox in which the tools were forged to deal with special and rather diverse
analytic questions and, consequently, are quite different, in spite of their common
purpose.

Probably the oldest among all these individual expansions which was known
to diverge in general is the so-called Euler-Maclaurin sum formula, discovered by
Euler in 1732 and, independently, by Maclaurin around the same time. If f is in
C2k+1[N, M ] for N, M ∈ N, then this formula reads

M∑
i=N

f(i) =

M∫
N

f(x) dx +
1
2
(f(N) + f(M))

+
2k∑

j=1

B2j

(2j)!
(f (2j−1)(M)− f (2j−1)(N))

+
1

(2k + 1)!

∫ M

N

B2k+1(x− [x]) f (2k+1)(x) dx,(1)

where Bj(x) and Bj = Bj(0) = (−1)jBj(1) denote the Bernoulli polynomial and
the Bernoulli number of index j, respectively. Regarding the last term of the
right hand side as a “remainder”, we can view (1) as a discrete approximation of∫ M

N f(x) dx or its comparison with a special Riemann sum. If we use in (1) e.g.
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f(x) = log x and N = 1, then we obtain with an easy remainder estimate

log M ! = (M + 1/2) logM −M + C0(k) +
k∑

j=1

B2j

2j(2j − 1)
M1−2j

+Ok(M−2k).(2)

This is now an asymptotic expansion of the left hand side in terms of the system
of functions (x1−i logj x) i≥0

0≤j≤1
as x → ∞ (through integers) in the sense that we

have found a family of numbers, (aij) i≥0
0≤j≤1

, such that

log M ! =
∑

0≤i≤k
0≤j≤1

aij M1−i logj M + Rk(M),(3a)

and the remainder is smaller than the smallest term in the sum:

|Rk(M)| ≤ CkM−k, M ≥ 1, k ≥ 0.(3b)

It should be remarked that the precise meaning of “asymptotic” as expressed in
(3a, 3b) was established by Poincaré only in 1886, the official birth date of Asymp-
totic Analysis.

The most important conclusion we can draw from these facts is that the numbers
aij are uniquely determined by the conditions (3). Hence the constant C0(k) in (4)
must be independent of k; a little trick using Wallis’ formula reveals that

C0 = C0(k) =
1
2

log 2π.

This argument establishes Stirling’s formula and, in fact, is easily expanded to give
the asymptotic expansion of the Γ-function.

Of course, the expansion (3a) or its obvious counterpart for x →∞ (or x → 0+)
through real values may actually converge as it happens for the familiar Taylor and
Laurent expansions in the analytic case. But the interesting fact is that even a
divergent series representation may carry valuable numerical information. Thus, a
second aspect of interest consists in the computational accuracy we may be able
to obtain in spite of the possible divergence of the series (3a). For example, the
function

fα(x) =

∞∫
0

e−u

x + αu
du , α, x > 0,

exhibits, upon integration by parts, the representation

fα(x) =
n∑

j=1

(−1)j−1 (j − 1)!
xj

+ (−1)nn!
∫ ∞

0

e−u

(x + αu)n+1
du,(4)

and, as x → ∞, we obtain readily the remainder estimate analogous to (3b). In
this situation, we write

fα(x) ∼
x→∞

∑
j≥1

(−1)j−1 (j − 1)!
xj

.(5)

The series (5) is divergent for every positive x, hence does not allow us to compute
fα(x) with arbitrary exactness; but in view of the remainder estimate in (5) we
can e.g. compute f1(1000) with an error less than 10−10 from only three terms in
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the series. This is, obviously, of great practical value, so asymptotic expansions
have been widely used to establish numerical tables of the special functions. We
note in passing that the series (5) is independent of α; thus, whereas the expansion
coefficients are uniquely determined by the function, the function is not at all
determined by the coefficients.

In many cases of great analytic interest a full asymptotic expansion does not exist
or cannot be established with existing techniques. Then information of importance
is simply the order of magnitude of the first few coefficients. Consider, for example,
a bounded domain Ω ⊂ Rm with nice boundary ∂Ω, and introduce the function

LΩ(t) := #(tΩ ∩ Zm), t ≥ 1,

the number of lattice points in Ω after stretching with the factor t. An easy appli-
cation of the Poisson summation formula shows that

LΩ(t) ∼
t→∞

tm volΩ,(6)

in the sense that the quotient of both sides converges to 1 as t →∞, a geometrically
plausible result. Then we may ask whether we can actually obtain a full asymptotic
expansion for LΩ in powers of t and log t - but it turns out to be already extremely
difficult just to determine the correct order of the next term (cf. e.g. [Wal])!

Problems of this type are quite frequent in number theory. To take an example
from Mathematical Physics, we consider Ω as above and the self-adjoint operator
∆D, determined in L2(Ω) by the Dirichlet problem for the Laplacian on functions
in Ω. The spectrum of this operator consists entirely of eigenvalues with finite
multiplicity, accumulating only at ∞. Counting them with multiplicity, we can
introduce the spectral counting function

ND(Ω; λ) = #{µ ∈ spec∆D |µ ≤ λ},(7)

and we may again ask for its asymptotic behavior. A celebrated result of Hermann
Weyl [W] asserts that

ND(Ω; λ) ∼
λ→∞

volΩ
(4π)m/2Γ(m/2 + 1)

λm/2.(8)

In this case it is actually known that, in general, no asymptotic expansion can
exist with more than two terms due to the heavy oscillations of the remainder
term in general. Weyl proved his result in 1911 using the variational properties
of the eigenvalues, thus establishing a conjecture of the physicist H. A. Lorentz.
But it took more than 40 years until, in 1952, Avakumović [A] and Levitan [L]
independently came up with the first sharp remainder estimate. Their result implied
that on a closed Riemannian manifold M of dimension m, for the Laplacian on
functions ∆M , we have∣∣∣∣NM (λ) − volM

(4π)m/2Γ(m/2 + 1)
λm/2

∣∣∣∣ ≤ Cλ(m−1)/2(9)

(here we can drop the index “D”, since on a closed manifold we do not encounter
boundary conditions). The question remained whether the analogue of (9) holds
for ND, too. This was answered in the affirmative another 25 years later by Seeley
[S] and Pham The Lai [Ph]. Since Avakumović had already pointed out that the
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remainder estimate cannot be replaced, in general, by a two-term asymptotic of the
form ∣∣∣ND(Ω; λ)− Cm(Ω)λm/2 − Cm−1,D (Ω)λ(m−1)/2

∣∣∣ = o(λ(m−1)/2),(10)

the asymptotic analysis seemed complete. But in 1980, building on important work
by Hörmander [H] and Duistermaat and Guillemin [DG], Ivrii [I] proved that (10)
can, nevertheless, be established if we require a certain regularity property for Ω,
expressed in terms of its “billiard map”, i.e. the flow along straight lines reflected
in the boundary. This fairly difficult problem in Asymptotic Analysis illustrates
another very important fact, namely that the existence of a full asymptotic expan-
sion for a given function requires and reflects a certain smoothness. To take another
example, “smoothing out” NM using the Laplace transform, we obtain

θM (t) :=

∞∫
0

e−tλdNM (λ),(11)

and we can, in fact, obtain a full asymptotic expansion for this function of the form

θM (t) ∼
t→0+

∑
j≥0

ajt
j−m/2.(12)

It is easy to see that

a0 = (4π)−m/2 volM.(13)

This together with a well known Tauberian theorem gives the analogue of (8) in
this case (but no useful remainder estimates). The proof of (12) is based on the
trace relation

θM (t) = trL2(M) e−t∆M

and a fundamental idea of Hadamard [Ha] to solve the heat equation associated
with the semigroup e−t∆M .

This brings us to the fourth aspect of asymptotic expansions we want to men-
tion: the coefficients of the expansions can be viewed as “generalized coordinates”
for the situation at hand. Whereas this statement has little content e.g. for the
expansion (4), it becomes powerful in the situation (12). Namely, a careful execu-
tion of Hadamard’s analysis on compact Riemannian manifolds (as carried out in a
fundamental paper by Minakshisundaram and Pleijel [MPl]) shows that the aj are
integrals of certain functions uj :

aj =
∫
M

uj(p)d volM (p).(14)

In a normal coordinate system centered at p ∈ M, uj(p) is given by an O(m) -
invariant polynomial in the components of the curvature tensor and its covariant
derivatives at p [McKS], which fostered the hope that knowing the spectrum of ∆M

- and hence the aj - would imply more or less knowledge of the isometry class of M .
This is, unfortunately, not true; i.e. “isospectrality does not imply isometry”(cf. for
this the exhaustive surveys in [BeGaMa], [Ber]). It is, however, not yet clear how
exceptional these nonisometric isospectral metrics are; one feels that, generically,
the (nontrivial) isospectral set ought to be empty (for some positive results in small
dimensions cf. [OPS]).
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The situation becomes different if we ask different and less detailed questions.
For example, if we allow certain singularities for Riemannian metrics on a smooth
compact manifold such that the spectral analysis still makes sense, then we may
ask whether the singular nature of any given metric is detectable from its spectrum.
In the case of algebraic curves embedded in some complex projective space - which
can be viewed as closed Riemann surfaces with singular metrics via normalization
- this is in fact so, cf. [BL], and one wonders to what extent this statement carries
over to algebraic varieties.

This short tour d’ horizon in Asymptotic Analysis - which could easily be en-
riched with many more examples of current interest from Number Theory, Global
Analysis, or Mathematical Physics - may illustrate the usefulness and ubiquity
of asymptotic expansions in Analysis: such an expansion determines the order of
growth of the function in question through a hierarchy of comparison functions; it
provides a possibly valuable numerical approximation and a set of possibly inter-
esting coefficients. We also want to emphasize the main analytic difficulty involved
in establishing any particular asymptotic expansion: it is always the remainder es-
timate. In the extremely important case of a smooth function f near x0 ∈ R we
have a very explicit and beautiful form of the remainder in Taylor’s formula:

f(x) =
n∑

j=0

f (j)(x0)
j!

(x− x0)j +
(x− x0)n+1

n!

1∫
0

(1− t)nf (n+1)(x0 + t(x− x0))dt.

(15)

In general, as in the derivation of (1), the whole effort has to concentrate on writing
the remainder term in a tractable form.

2.

It is clear from what we have said before that writing a book on Asymptotic
Analysis is not an easy task. It seems hopeless to present systematic derivations
of only the most important asymptotic expansions used in Analysis, Geometry,
and Mathematical Physics; the goal has to be much more modest. A natural aim
for a useful book of reasonable length could be an introduction to the subject at
the level of a graduate course; this has been reached reasonably well in [Je] and
[Mu]. The other possibility is to restrict attention to a special class of applications
like ordinary differential equations [Wa] or special functions [Ol]. Of course, the
selection of the material will always reflect the taste and the research work of the
author(s).

The book under review appears to be a mixture of the two possibilities: it starts
out as a general introduction to the subject and ends up with some rather special
(though interesting) applications. The first chapter gives an introduction to some
“classical” asymptotic expansions like (1) and some of their applications, in the
spirit of [WhWat] but, naturally, much more cursory. Also, the basic calculus of
asymptotic expansions is introduced with a special emphasis on asymptotic power
series. Here one could have mentioned their essential application in the solution
of singular differential equations, certainly helpful and educational in a graduate
course.

The second chapter preludes to the unifying idea of the book: the distributional
interpretation and derivation of asymptotic expansions. The chapter is intended to
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provide a reasonably self-contained introduction to the general theory of distribu-
tions in Rm, together with quite a few (useful) examples. But here is certainly not
the place to meet distributions for the first time, and a solid background in analysis
and functional analysis seems necessary for a fruitful reading. In addition, proofs
are usually sketchy, and likewise the calculations. To some extent, this can be seen
as a good compensation for the lack of exercises, but many facts which are stated
without proof or reference have to be believed or researched in the literature.

Special emphasis is given to regularization techniques. Here, I would have liked
the authors to explain the connection between the various methods, e.g. the an-
alytic continuation and the finite part method which have to be related in many
applications. Another complaint with this approach is the downplay of the im-
portance of remainder estimates: they are hidden in the seminorms defining the
appropriate spaces of distributions (as in Sections 2.9 and 2.10). As a matter of
fact, the Taylor remainder term (15) does not occur explicitly anywhere in this
book.

The heart of the matter is developed in Chapter 3. The prototypical result
for practically all other applications is the so-called moment asymptotic expan-
sion: if f ∈ E ′(R) (the space of distributions with compact support), then we
can expand the dilated distribution fλ (with fλ(x) = f(λx) for functions and
fλ(φ) = λ−1f(φ1/λ)) as

fλ ∼
∞∑

j=0

(−1)j µj(f)
j!

δ
(j)
0 λ−j−1,(16)

where

µj(f) := f(xj)(17)

is the jth moment of f and δ0 the Dirac measure at 0. The precise meaning of (16)
is that for any φ ∈ C∞0 (R) and n ∈ Z+ there is an estimate∣∣∣∣∣∣

fλ −
n∑

j=0

(−1)j µj(f)
j!

δ
(j)
0 λ−j−1

 (φ)

∣∣∣∣∣∣ ≤ Cn,φλ−n−2.(18)

As a typical application, we get an asymptotic expansion for series of the type
∞∑

j=0

αj φ(λ−1j)(19)

in applying (18) to

f =
∑
j≥0

αjδj.(20)

Series of type (19) have been considered by Ramanujan, and their analysis has
important applications to number theory; this is explained in more detail in Chapter
5. The crux of the argument is to extend the fairly obvious expansion (18) to
spaces of distributions other than D′(R) (or equivalently, to establish more general
remainder estimates) in order to include given examples of e.g. the type (20).

Besides, the third chapter displays other familiar methods as well as particular
examples of Asymptotis Analysis which can be subsumed under the above scheme,
like “Laplace’s method” or the “method of steepest descent”, introducing along
the way many well known and sometimes not so well known asymptotic expansions
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from classical Analysis. The body of material presented in this chapter is certainly
extremely useful, and the distributional point of view developed convinces by its
unifying potential. But it comes as a surprise that the method of stationary phase
- in spite of its kinship with Laplace’s method - is not mentioned, nor its great
importance in Geometry and Global Analysis.

The fourth chapter expands the methods centering around the moment expansion
to the multidimensional case. The procedure is essentially familiar by now, but the
fun comes with more examples. This time, they touch also upon applications to
partial differential equations and problems in Mathematical Physics, unfortunately,
without describing much of the impact of the expansion derived on each particular
problem. Filling in the details also becomes a more challenging but certainly very
fruitful job for the motivated reader.

Chapter 5 deals, as already indicated, with the moment expansion applied to
distributions of the type (20). Here occurs the problem that, in general, we cannot
expect the moments to exist unless the sequence (αj) has rapid decay. For example,
if α0 = 0, αj = 1 for all j ≥ 1, and hence

f =
∑
j≥1

δj,

then we use (1) to write, for φ ∈ D(R) and M = M(φ) large,

f(φ) =
M∑
i=1

φ(i) =

∞∫
0

φ(x)dx − 1
2
φ(o) −

2k∑
j=1

B2j

(2j)!
φ(2j−1)(o)

+
1

(2k + 1)!

M∫
0

B2k+1(x − [x])φ(2k+1)(x)dx.

But this implies that

f =: H + f1

where H is the Heaviside function and f1 can be extended to test functions whose
derivations decay suitably (e.g. elements of K(Rm) as introduced on p. 81). In
particular, we can compute the moments of f1 as

f1(xl) = ζ(−l),

ζ the Riemann Zeta function. But this argument depends on the special structure
of f. In general, the authors call the sequence (αj) distributionally small if f (given
by (20)) possesses a moment asymptotic expansion in the sense of (16). This turns
out to be a fruitful definition because, for such distributions, the “moment function”

µ(α) :=
∑
j≥1

αjj
α(21)

exists in the sense of Cesaro summability and represents an entire function. In fact,
distributional smallness is equivalent to the Cesaro summability of all moments.
Throughout the chapter, the idea is tested on a variety of interesting sequences,
among them many old friends from number theory.
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The last chapter of the book is concerned with series of delta functions, i.e. series
of the type ∑

j≥0

αj δ
(j)
0 ,(22)

which figure asymptotically in the moment expansion. These series cannot con-
verge in D′(R) unless αj = 0 for all but a finite number of j’s, but certain formal
manipulations are possible. The authors select a few topics where such series are
formally useful; the connection is again often through the moment expansion.

In summary, the book under review contains lots of interesting and nontrivial
examples from classical Analysis, so everybody interested in deeper aspects of the
field will benefit from browsing through it. The title is, however, somewhat mis-
leading since one does not find, after all, an introduction to the field of modern
Asymptotic Analysis in any wider sense. Problems and applications in Geometry
or Physics are hardly mentioned even though they are intensely studied today and
sometimes by methods very closely related to the contents of the book. To mention
just one example we go back to the source of the moment expansion, i.e. an integral

∞∫
0

f(λx)φ(x)dx =: F (λ),

where φ ∈ D(R) and f is a function. If f is controlled by suitable asymptotic
expansions as x → 0+ and x →∞, then F has an asymptotic expansion as λ →∞,
too,

F (λ) ∼
λ→∞

∑
<α→−∞
0≤k≤k(α)

Fαk λα logk λ.

This is a special case of the Singular Asymptotics Lemma proved in [BS]. Such
expansions have proved to be very important in the spectral analysis of elliptic
operators on singular spaces.

But the methods chosen, in particular the moment asymptotic expansion, and
the authors’ own work dictate the selection of the material. This is fully justified
for a research monograph, but it surely limits the usefulness of this book for the
reader with general interests. Another considerable obstacle for the user is the huge
number of misprints. Usually, they are not difficult to correct, but the wrong page
numbers in the table of contents (for Chapters 4, 5, and 6) are a nuisance.

Thus, there seems room for improvement, but for what material Estrada and
Kanwal treat, the book is a useful addition to the department library.
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