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The subject of arithmetic Galois module structure is concerned with the study
of the structure of various naturally occurring objects as modules over group rings
of Galois groups. The simplest example of this is the normal basis theorem, which
is usually encountered in a first course on Galois theory. Suppose that L/K is a
finite Galois extension with Galois group G. The normal basis theorem asserts that
L is a free KG-module of rank one. In particular, this implies that L is a free
QG-module.

Now let OL denote the ring of integers of L. It is natural to try and generalise
the example afforded by the normal basis theorem by asking what one can say
about the structure of OL as a ZG-module. This turns out to be a much deeper
question. The basic starting point of this aspect of the theory is a theorem of
E. Nöether ([N]) which asserts that OL is a locally free ZG-module if and only
if the extension L/K is tamely ramified. Hence OL determines a class (OL) in
the locally free classgroup Cl(ZG) of ZG, and one is interested in understanding
this class in terms of the arithmetic of the extension L/K. During the 1970’s, A.
Fröhlich, Ph. Cassou-Noguès, J. Martinet, M. J. Taylor and others developed a very
complete theory of the structure of OL as a ZG-module in the tame case. The main
result of this theory is quite striking. For any character χ of G, there is an extended
Artin L-function Λ(s, χ) attached to the extension L/K. This L-function satisfies
a functional equation of the form Λ(1− s, χ) = W (χ)Λ(s, χ∗). Here χ∗ denotes the
contragradient character of χ, and W (χ) is a constant called the Artin root number
attached to χ. If χ is a symplectic character of G, then it is not hard to show that
W (χ) = ±1. By using the theory of locally free classgroups developed by Fröhlich,
one may define a class WL/K ∈ Cl(ZG) (the so–called analytic root number class)
in terms of the Artin root numbers attached to symplectic characters of G. It
was conjectured by Froḧlich that (OL) = WL/K in Cl(ZG) when the extension
L/K is tame. This remarkable conjecture therefore implies that the Galois module
structure of OL is determined by the symplectic Artin root numbers attached to
the extension L/K. Fröhlich’s conjecture was proved by M. Taylor in 1981 (see
[T]). For a complete account of the tame theory up until 1983, we refer the reader
to [F1] and [F2]. Further developments up until about 1990 are also reported on in
[BB].

If we now assume that the extension L/K is wildly ramified, then we are faced
with a very different situation. Here the ring of integers OL is not locally free (by
the result of Noether mentioned above), and so it does not determine an element
in Cl(ZG) in the obvious way. There are a number of approaches towards cir-
cumventing this difficulty. One such approach was developed by T. Chinburg in
the mid 1980’s (see [C1], [C2]). For any Galois extension L/K of number fields,
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he showed how to use the canonical classes arising from the Artin-Tate cohomo-
logical approach to class field theory to define elements Ω(L/K, 3) (i = 1, 2, 3) in
Cl(ZG). The precise description of these elements is too complicated to be given
here and so we will content ourselves with a few brief remarks. The description
of Ω(L/K, 2) involves both the Galois structure of OL (i.e. additive Galois mod-
ule structure) as well as the Galois structure of certain groups of local units (i.e.
multiplicative Galois module structure). Chinburg showed that if L/K is tame,
then Ω(L/K, 2) = (OL) in Cl(ZG). Hence, Taylor’s proof of Fröhlich’s conjecture
implies that Ω(L/K, 2) = WL/K . Chinburg conjectured that this equality in fact
holds for all Galois extensions L/K. This is therefore a generalisation of Fröhlich’s
conjecture to the case of wild extensions (and in fact Snaith refers to it as the
Fröhlich-Chinburg conjecture, although it is more commonly known as Chinburg’s
second conjecture). The invariant Ω(L/K, 3) measures the ZG-module structure
of the group of S-units of L for any suitably chosen set of places S of L. It is
closely connected with conjectures of Stark concerning the leading term of the Tay-
lor expansion of the Artin L-function of L/K at s = 0. Chinburg’s third conjecture
asserts that Ω(L/K, 3) = WL/K . Finally, the invariant Ω(L/K, 1) is the difference
between Ω(L/K, 2) and Ω(L/K, 3), and Chinburg’s first conjecture asserts that this
invariant is always trivial.

The book under review originated as a graduate course given at The Fields Insti-
tute in 1993. It is aimed at advanced graduate students and other mathematicians
who already have a thorough knowledge of basic algebraic number theory and who
wish to become familiar with some of the techniques used in Galois module theory.
The book is mainly concerned with additive Galois module theory and the sec-
ond Chinburg conjecture (although the final chapter discusses the Galois structure
of certain algebraic K-groups, and here the third Chinburg conjecture comes into
play).

The first chapter of the book collects a certain amount of basic information that
is needed for subsequent chapters. This includes material on Galois cohomology,
local class field theory, the representation theory of finite groups, Artin and p-
adic L-functions, and local Galois Gauss sums. The Explicit Brauer Induction
homomorphism is described. This is a very useful technique that gives an explicit
canonical formula for Brauer’s induction theorem, and it leads to a number of new
techniques which are described in the book (see also [Sn]).

Chapter 2 of the book is mainly concerned with the locally free classgroup
Cl(ZG). Fröhlich’s Hom-description of classgroups is explained, and the class WL/K

is described. Chinburg’s invariant Ω(L/K, 2) is introduced, and Chinburg’s second
conjecture is proved for certain totally real abelian extensions of Q by using the
theory of p-adic L-functions.

In Chapter 3, an account of the group-ring logarithm of M. Taylor and R. Oliver,
together with some applications, is given. The description given here is different
from most other accounts in that it is based upon the method of Explicit Brauer
Induction. These methods also allow Snaith to improve upon certain previously
known technical results concerning determinantal congruences. In the next chapter,
the techniques developed in Chapter 3 are applied to give a proof of Fröhlich’s
conjecture for extensions L/K of p-power degree for any odd prime p.

The next two chapters of the book are concerned with Chinburg’s second con-
jecture. Let Λ denote any maximal order in QG that contains ZG. Then there is
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a natural surjection Cl(ZG) → Cl(Λ). The kernel subgroup D(ZG) of Cl(ZG) is
defined to be the kernel of this surjection. It is independent of the choice of Λ, and
it is usually non-trivial. Chapter 5 gives an account of a special case of a result
of D. Holland ([H]). Holland’s theorem says that Chinburg’s second conjecture is
true modulo D(ZG) for all extensions L/K with Galois group G. Snaith gives a
different proof of this result (making use of Explicit Brauer Induction) assuming
that all the wild decomposition groups of L/K are cyclic. I think that it would
have been helpful to the reader if a proof of Theorem 5.3.1 had been included in
this account. Chapter 6 is devoted to a very long calculation intended to verify
Chinburg’s second conjecture for abelian extensions N/Q whose Galois group is
isomorphic to the quaternion group of order eight and which are not totally rami-
fied above 2. This is a result of S. Kim ([Ki1], [Ki2]), but, as the author remarks,
the approach taken here is somewhat different.

The final chapter is in some ways the most interesting, even though it is one of the
shortest in the book. Here the author is concerned with the Galois structure of alge-
braic K-groups. By using work of B. Kahn ([K]) and by considering the relationship
between K2(L) and K3(L), the author defines an invariant Ω1(L/K, 3) ∈ Cl(ZG).
This is a higher analogue of Chinburg’s third invariant Ω(L/K, 3), and the author
conjectures that it should be related to the value of the Artin L-function at s = −1
in the same way that Ω(L/K, 3) is related to the leading coefficient of the Taylor
expansion of the Artin L-function at s = 0. (The definition of this K-theoretic
invariant was also obtained independently by G. Pappas.) He also explains how
the Birch-Tate conjecture may be used to evaluate this new invariant in the class-
group of the maximal order in a number of cases. He speculates that by considering
the relationship between the K-groups K2n(L) and K2n+1(L) for n > 2, it ought
to be possible to define higher invariants Ωn(L/K, 3), and these invariants should
be related to the conjectures of Lichtenbaum concerning the value of the Artin L-
function at s = −n. The theory was just being worked out at the time the book
was being written, and so only a somewhat tentative picture of the situation was
available at that time. Our understanding has since improved; in particular for
example, one now knows how to define Chinburg invariants attached to higher K-
groups and, more generally, to certain motives. This circle of ideas is very much
the subject of current investigations. We refer the reader to [BF1], [BF2], [CKPS1],
and [CKPS2] for further details.

This book should be useful to mathematicians who are interested in learning
about certain aspects of the theory of arithmetic Galois module structure, as well
as to specialists in the area.

References

[BB] D. Burns, N. Byott, L-functions and Galois modules, in: L-functions and arithmetic (J.
Coates, M. J. Taylor, eds.), Cambridge University Press, 1991, pp. 75-139. MR 92d:11124

[BF1] D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305
(1996), 65-102. CMP 96:11

[BF2] D. Burns, M. Flach, On Galois structure invariants associated to Tate motives (to appear).
[C1] T. Chinburg, On the Galois structure of algebraic integers and S-units, Invent. Math. 74

(1983), 321-349. MR 86c:11096
[C2] T. Chinburg, Exact sequences and Galois module structure, Ann. Math. vol 121 (1985),

351-376. MR 86j:11115
[CKPS1] T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings

of integers, C. R. Acad. Sci. Paris 320 (1995), 1435-1440. MR 96d:19010



252 BOOK REVIEWS

[CKPS2] T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings
on integers (to appear).
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