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The study of automorphic forms involves a remarkable interplay between number
theory, algebraic geometry, analysis and representation theory. Because of its multi-
faceted nature, it is not surprising that each of the three introductory books under
review approaches the subject from a different point of view.

Before turning to the books themselves, let us give a short overview of the sub-
ject. Recall that a lattice Γ ⊂ SL2(R) is a discrete subgroup such that Γ\SL2(R)
has finite invariant volume, and a classical modular form of weight k with respect
to Γ is a holomorphic function f(z) on the Poincaré upper half-plane H such that

f(γ(z)) = (cz + d)kf(z) for all γ =
(

a b
c d

)
∈ Γ.(1)

Of course, γ(z) denotes the linear-fractional action of SL2(R) on H. The function
f(z) must also satisfy a certain growth condition at the cusps of Γ which we omit.

If
(

1 1
0 1

)
∈ Γ, as in the case Γ = SL2(Z), then f(z) is invariant under z → z+1

and f(z) can be expanded as a Fourier series:

f(z) =
∑
n≥0

ane2πinz.

The growth condition insures that an = 0 for n < 0. If a0 = 0, f is called a cusp
form.

The rich interaction of themes is already apparent in the simplest modular forms,
the Eisenstein series on congruence subgroups Γ of SL2(Z). For Γ = SL2(Z), the
Eisenstein series of weight 2k for k > 1 is defined by the well-known formula

G2k(z) =
∑

(c,d)∈Z2

(c,d) 6=(0,0)

(cz + d)−2k.

It is immediate that the series converges to a holomorphic function and satisfies the
transformation law (1) for weight 2k. The Fourier expansion of G2k(z) suggests a
connection with number theory:

G2k(z) = 2ζ(2k) + c2k

∑
n≥1

σ2k−1(n) e2πinz .
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Here c` = 2(2πi)`/`!, σ`(n) =
∑

d|n d`, and ζ(s) is the Riemann zeta-function
([Ser]). In fact, the connection is deeper than appears at first sight. According
to the Siegel-Weil formula, the Fourier coefficients of Eisenstein series are closely
connected to the number of ways of representing an integer n by quadratic forms.
For example, Jacobi’s formula for the number r4(n) of ways of writing n as a sum
of four squares:

r4(n) = 8(2 + (−1)n)
∑
d|n

d odd

d

is equivalent to the assertion that r4(n) is equal to the nth -Fourier coefficient
of a certain Eisenstein series of weight 2 on a congruence subgroup of SL2(Z).
The constant term in the Fourier expansion of an Eisenstein series is arithmetically
significant in a different way. It is a special value of the Riemann zeta-function (or a
Dirichlet L-function in the case of congruence subgroups), and in the work of Ribet
[Ri] and of Mazur and Wiles this fact is the basis of an important link between
the p-adic properties of these special values and the theory of cyclotomic fields.
The values of Eisenstein series at points z0 ∈ H such that Q(z0) is a quadratic
imaginary field give a third link to number theory. They are essentially the special
values of Hecke L-functions for the quadratic field ([W2]). This is an example of
the many relations, both known and conjectural, that exist between automorphic
forms and special values of L-functions ([Ra]).

There is a more general definition of Eisenstein series on SL2(R) that includes
the classical Eisenstein series G2k(z) as a special case ([Bo], §10.8). This general
definition also includes the spectral Eisenstein series of weight zero and parameter
λ ∈ C :

E(z, λ) = Im(z)
λ+1
2

∑
(c,d)∈Z2

(c,d) 6=(0,0)

|cz + d|−λ−1
.

This series converges absolutely if Re(λ) > 1. The function E(z, λ) is not a classical
modular form since it is not holomorphic, but it is a real analytic eigenfunction of
the Laplacian ∆ on Γ\H with eigenvalue 1

4 (1 − λ2). As such, it is an example of a
Maass form. These Eisenstein series and their variants for congruence subgroups
are the basic eigenfunctions in the continuous part of the spectral decomposition
of the Laplacian ∆ on H. Thus they are upper half-plane analogues of the expo-
nential functions eλt. However, just as standard Fourier analysis is based on the
exponentials eλt for λ ∈ iR, the spectral analysis of the self-adjoint operator ∆
needs to be carried out using the Eisenstein series E(z, λ) with λ ∈ iR, where the
series no longer converges. One of the basic results due to Selberg asserts that
E(z, λ) has a meromorphic continuation in λ to the entire complex plane with no
poles on the imaginary axis. This is the starting point of the spectral theory of
automorphic forms. On the other hand, the spectral Eisenstein series also appear
as kernel functions in the so-called Rankin-Selberg convolution of two cusp forms
f(z) and g(z) of weight k ([Bu], §1.6; [I1], §13):

L(s, f, g) =
∫

Γ\H
f(z) g(z) Im(z)k−2E(z, s) dz.

Up to a simple factor involving the gamma function, L(s, f, g) is equal to the
Dirichlet series

∑
anbnn−s where an and bn are the Fourier coefficients of f and g.
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It plays an important role in a wide range of problems, some of which are mentioned
below. In any case, the Eisenstein series provide a first illustration of the rich set
of links between automorphic forms, number theory and analysis.

To make the connection with representation theory, it is necessary to define
automorphic forms as functions ϕ on Γ\SL2(R) rather than on the symmetric
space H. More generally, one defines automorphic forms on Γ\G(R) where G(R) is
the group of real points of a reductive algebraic group G over Q and Γ ⊂ G(R) is
a lattice. The group G(R) acts by right translation (denoted ρ) on various spaces
of functions on Γ\G(R). For example, we obtain a unitary representation of G(R)
on L2(Γ\G(R)). A smooth function ϕ on Γ\G(R) is called an automorphic form
if it satisfies a growth condition and two finiteness conditions. The first finiteness
condition requires that ϕ transform by a finite-dimensional representation under
a fixed maximal compact subgroup of G(R). The second requires that the space
{ρ(z)ϕ} be finite-dimensional, where z ranges over the center of the enveloping
algebra of G(R) and ρ(z) is the derived action. These conditions imply that ϕ is
real-analytic. In the case G(R) = SL2(R), to go from a classical modular form
f(z) of weight k to an automorphic form ϕf on Γ\SL2(R), one defines ϕf (g) =
(ci + d)−kf(g(i)) where (c, d) is the bottom row of g ([Bo], §5.13, [Bu], §3.2, or
[G1]). If f is cuspidal, then ϕf is square-integrable and generates an irreducible
subrepresentation Vf of L2(Γ\SL2(R)) which is isomorphic to the discrete series
representation Dk−1. This leads to an isomorphism ([GGPS], [De])

Sk(Γ) ∼→ HomSL2(R)(Dk−1, L
2(Γ\SL2(R))),(2)

where Sk(Γ) is the space of all cusp forms of weight k with respect to Γ. A similar
isomorphism holds if we replace Sk(Γ) by the space of square-integrable Maass
forms of fixed eigenvalue 1

4 (1− λ2) and Dk−1 by the corresponding principal series
representation πλ.

The theory of automorphic forms has developed in many directions through-
out this century as new themes and generalizations have progressively been added.
Siegel developed the theory of modular forms on the symplectic group and applied
it to prove the so-called Siegel-Weil formula mentioned above. This is a vast gen-
eralization of Jacobi’s result to the problem of counting integral solutions X to the
equation tXQX = R where Q and R are integral symmetric matrices (quadratic
forms) of size m and n and X is an m×n integral matrix. Although Siegel’s papers
have a strongly analytic appearance, Weil [W1] showed in the 1960’s that Siegel’s
results could be reformulated as a uniqueness assertion for a certain distribution
on the space of the so-called oscillator representation of the two-fold cover of the
symplectic group. This gave a representation-theoretic framework for the study
of theta-series and was the starting point of Roger Howe’s theory of dual reduc-
tive pairs in the 1970’s, which has since become a basic component of the theory
of automorphic forms ([Ho], [Pr], [Wa]). The Siegel-Weil formula itself has been
significantly extended in the work of Kudla and Rallis.

In a different direction, Hecke initiated the study of L-series attached to modular
forms. The Hecke L-series attached to a classical cusp form f(z) =

∑
n≥1 ane2πinz

on SL2(Z) is the Dirichlet series L(s, f) =
∑

n≥1 ann−s. Hecke proved that L(s, f)
has an analytic continuation and satisfies a functional equation. Building on
Mordell’s study of the Ramanujan ∆-function, Hecke defined a commutative ring
of operators on the space of modular forms, the ring of Hecke operators. The basic
fact is that if f is an eigenfunction of the Hecke operators, then a1 6= 0 and with
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the normalization a1 = 1, the L-series has an Euler product of the form

L(s, f) =
∏
p

(1 − app
−s + pk−1−2s)

([Bu], §1.4; [I1], §6-7). Of course, all of this extends to congruence subgroups of
SL2(Z) and also to GL(n) and other reductive groups ([J2],[GS]).

Several new lines of investigation were developed in the 1950’s: the spectral
theory of automorphic forms due to Maass-Roelcke-Selberg, the representation-
theoretic approach of Gelfand and Harish-Chandra, and the arithmetic theory of
Eichler and Shimura relating the zeta-functions of modular curves and modular
forms. Eichler-Shimura theory ([Sh]) gave rise in the 1960’s to the study of `-adic
representations of Gal(Q/Q) attached to modular forms pioneered by Serre. Closely
related to this was the development of the theory of p-adic modular forms and even-
tually, Hida’s p-adic deformation theory of modular forms [Hi]. All of these are key
ingredients in Wiles’ proof of Fermat’s Last Theorem. At the same time, Shimura
developed his general theory of canonical models for Shimura varieties which, among
other things, opened up the possibility of generalizing Eichler-Shimura theory to
higher rank groups (see [BR] for a survey, [LR] for a detailed realization of this
program for the group U(3), and [La] for the case of GL(n) over a function field
which includes a lot of foundational material).

The development which most unified the subject, clarifying and to a large degree
redefining its goals, was the formulation by Langlands in the 1960’s of the principle
of functoriality [L1]. It implies the existence of an intricate web of relations which
are known in important special cases but otherwise remain conjectural. One of the
most dramatic aspects of these conjectures from the historical point of view is that
they include a non-abelian generalization of the Artin reciprocity law. Artin’s law
is a vast generalization of the law of quadratic reciprocity, and it is the founda-
tional result of abelian class field theory, so-called because it describes the abelian
extensions of a number field in terms of generalized ideal classes. An extension of
the reciprocity law to include non-abelian extensions had been sought by number
theorists, but it could not have been found without Langlands’ insight that such
a law must be formulated as a statement about automorphic forms, phrased in
the language of infinite-dimensional representation theory ([Ro], [G2]). In other
words, the non-abelian generalization of a Dirichlet character turned out to be an
automorphic form, and with this realization, the elaborate machinery of harmonic
analysis on reductive groups as pioneered by Harish-Chandra was incorporated into
number theory.

The principle of functoriality also placed non-abelian reciprocity in the much
larger context of “functorial relations” between automorphic representations on
different groups. The L-group construction is needed to describe these relations, so
we refer to [G2], [K1], or [Bu],§3.9 for a general overview. However, a typical exam-
ple is the base change lifting, which gives a correspondence between automorphic
forms on GL(2) over a field F and automorphic forms on GL(2) over an extension
E of F. This lifting is a non-abelian generalization of the norm map from E to F .
Its existence for GL(2) and, more generally, for GL(n) is known for extensions E/F
with solvable Galois group ([AC],[L3]). The power of functoriality was illustrated
in [L3], where base change for GL(2) was used to prove Artin’s conjecture for most
complex two-dimensional Galois representations with solvable image. The quali-
fier “most” was later removed by Tunnell, and the resulting theorem was another
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key ingredient in Wiles’ work (see [Ro] for an exposition). The main tool in this
work is the trace formula, although the Rankin-Selberg integral ([JS]) also plays a
critical role. The broad point is that functoriality shifts the focus away from the
classical activity of studying individual automorphic forms and directs it instead at
the problem of proving functorial relations between spaces of automorphic forms
on different groups. In the other direction, functoriality has had a major impact on
representation theory itself. Basic problems such as the local Langlands conjecture
([BuK],[Ku], [Mo]), the fundamental lemma ([Ko], [LS]), and Arthur’s conjectures
[A2] have provided the impetus for a great deal of research in representation theory
over the past two decades. Anyone interested in pursuing these topics will find the
four volumes of Proceedings [BM], [BC], [CM], and [BK] indispensable. See [L3]
and [L4] for some interesting historical reflections and speculations.

We now turn to the books under review. Automorphic forms on SL2(R) by
Armand Borel has the sharpest focus of the three. The author’s goal is to provide
a complete and accessible exposition of Selberg’s spectral theory of automorphic
forms on SL2(R). He adopted the setting of representation theory rather than that
of analysis on the symmetric space as in Selberg’s papers, and therefore the main
object of study is the right regular representation ρ of SL2(R) on L2(Γ\SL2(R))
for an arbitrary lattice Γ. One begins by singling out the invariant subspace of cusp
forms. To define it, let N be an arbitrary conjugate of the subgroup of unipotent
matrices of the form (

1 b
0 1

)
,

and let us say that N is cuspidal if (N ∩ Γ)\N has finite invariant volume. The
constant term of an automorphic form ϕ along N is the function

ϕN (g) =
∫

(N∩Γ)\N
ϕ(ng) dn

on N\SL2(R). We say that ϕ is cuspidal if ϕN = 0 for all cuspidal N . If N
is cuspidal, then (N ∩ Γ)\N ≈ Z\R, and if ϕ = ϕf as above, then ϕN may be
identified with the constant term in a Fourier expansion of the associated classical
modular form f . The subspace L2

0 of all cusp forms is invariant under ρ, and we
have a decomposition

L2(Γ\SL2(R)) =L2
0

⊕
L2

e

where L2
e is the orthogonal complement of L2

0.
The book provides an explicit description of L2

e in terms of Eisenstein series. We
may decompose L2

e as L2
e=L2

d

⊕
L2

c where L2
d is the sum of all irreducible invariant

subspaces of L2
e and L2

c is its orthogonal complement. Thus L2
d is the part of L2

e

that decomposes discretely as a direct sum of irreducible representations. The two
main results are

(1) L2
d is generated by the residues of Eisenstein series for parameters λ in (0, 1]

at which a pole occurs (Theorem 16.6), and
(2) L2

c is isomorphic to a sum of continuous direct integrals of principal series
representations of SL2(R) (Theorem 17.7).

The space L2
d always contains the space of constant functions corresponding to a

residue at λ = 1. If Γ is a congruence subgroup, there are no other residues and
in this case L2

d is one-dimensional. The isomorphism in (2) is given explicitly in
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terms of the spectral type of Eisenstein series E(z, λ) defined above with unitary
parameter, i.e., λ ∈ iR.

As noted above, to speak of E(z, λ) for unitary λ it is necessary to meromorphi-
cally continue the Eisenstein series. At the same time, one also proves a functional
equation relating E(z, λ) and E(z,−λ). There are many ways of doing this for
SL(2) or GL(2). Bump ([Bu], §3.7) and Iwaniec ([I1], §13.3) exhibit the mero-
morphic continuation for Eisenstein series on congruence subgroups of SL2(R) by
computing their Fourier expansions and observing that the coefficients can be con-
tinued. Borel presents a beautiful proof, attributed to J. Bernstein and Selberg
independently, which deduces the meromorphic continuation in a very direct way
from the corresponding property of the resolvent of a compact operator. This proof
works for all lattices Γ in SL2(R) and is a simplification of Selberg’s original proof.
A similar proof for GL(2) over the adeles is given in [J1]. The general theory of
Eisenstein series on reductive groups due to Langlands has been given an excellent
exposition in [MW].

In essence, the above results say that L2
e has a relatively simple structure. How-

ever, the truth is that we are ultimately much more interested in L2
0, which is the

mysterious and arithmetically significant part of L2(Γ\SL2(R)). The importance
of understanding L2

e is that it is a prerequisite to the study L2
0. Indeed, the isomor-

phism of (2) is one of the main ingredients in the derivation of the Selberg trace
formula, which gives an expression for the trace of certain integral operators acting
on L2

0. The trace formula is a powerful tool in the study of automorphic forms on
congruence subgroups of SL2(R) as well as groups of higher rank. By contrast,
very little is known about L2

0 for general non-arithmetic subgroups, although there
are some interesting conjectures ([S2]).

The main results just described are contained in the second half of the book. The
first half develops all of the necessary background starting nearly from scratch. The
exposition is enhanced by helpful comments, explanations, and references. Above
all, the author has followed an approach that will facilitate the reader’s access to the
general theory as covered in the basic reference [MW]. As Borel himself observes in
the chapter entitled “Concluding Remarks”, the endpoint of his book is really the
starting point of the theory. The natural next step would be to develop the trace
formula and its applications. However, an excursion into the trace formula would
have altered the length and balance of the book, and fortunately there are several
good expositions of it for GL(2) available ([A4], [DL], [G1], [G3], [He], [I2], [K2]).
As it is, this is a beautiful and masterfully written volume. It will be of great value
to anyone seeking a pathway into the spectral side of automorphic forms.

To introduce Automorphic forms and representations by Daniel Bump, recall
that the principle of functoriality highlights the connection between class field the-
ory and automorphic forms. Just as class field theory is divided into a local and
global part, the theory of automorphic forms, when formulated in terms of adelic
reductive groups over global fields, has as its local counterpart harmonic analysis on
reductive groups over local fields. This local/global framework for GL(2) over an
arbitrary global field was developed in volume 114 of the Springer Lecture Notes
known simply as “Jacquet-Langlands” [JL]. In Jacquet-Langlands, the starting
point is the notion of an automorphic form on the quotient GL2(F )\GL2(AF ),
where F is an arbitrary global field and AF is its adele ring. Recall that AF is
the subring of sequences (av) in the direct product

∏
v Fv, where v ranges over all

places of F (including the infinite ones if F is a number field), such that av is a
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v-adic integer for almost all v. There is an adele topology which makes AF into a
topological ring and hence GL2(AF ) into a topological group. Under this topology,
GL2(F ) is a discrete subgroup of GL2(AF ). Considering adelic automorphic forms
is essentially equivalent to considering automorphic forms with respect to all con-
gruence subgroups Γ without having to specify Γ in advance. In the case GL2(Q),
it is equivalent to considering automorphic forms on all quotients Γ\SL2(R) for
Γ a congruence subgroup. Although the adele setting applies only to congruence
subgroups, it has two great advantages over the classical setting: it makes manifest
an underlying product structure over the places of F , and it allows us to treat all
global fields F in a uniform way. For example, the theory makes no distinction
between classical modular forms and Hilbert modular forms.

In the adelic approach, the map (2) is refined to a map f → π(f) associat-
ing an infinite-dimensional irreducible unitary representation π(f) of GL2(AQ)
to each classical cusp form f which is an eigenfunction of the Hecke operators.
The representation π(f) occurs as a constituent of the space L2

0 of cusp forms on
GL2(Q)\GL2(AQ). Each irreducible constitutent π of L2

0 is isomorphic, as an ab-
stract representation, to a “restricted” tensor product ⊗′πv where v ranges over
all places of Q and πv is an irreducible unitary representation of GL2(Qv) ([Bu],
§3.4;[De]). This factorization is the representation-theoretic source of the Euler
product decomposition of the Hecke L-functions attached to f (or to an arbitrary
cuspidal representation). It also enables us to clearly divide the work into two
parts: a local study of the individual “abstract” representations πv, and a study of
the global representation π, regarded as a “physical” subspace of L2

0.
The book by Bump is intended to provide a motivated and friendly access to

Jacquet-Langlands theory for GL(2) and the Rankin-Selberg method. It covers a
broader terrain than [Bo], but is less tightly organized and considerably longer (574
pages). The first chapter treats modular forms and Rankin-Selberg from a classical
(non-adelic) point of view. As an application of the Rankin-Selberg method, the
Doi-Naganuma approach to the base change lifting for quadratic extensions is pre-
sented. This provides a nice example of the way in which L-function techniques are
used to prove results about functoriality. The remaining three chapters treat the
local and global theory for GL(2) (exclusive of the trace formula) together with a
discussion of Rankin-Selberg in the adelic framework. Apart from the meromorphic
continuation and some background technical results, there is not much overlap with
[Bo].

Bump’s book contains a lot of interesting information, motivational explanations,
and good exercises. Since many of the arguments presented are computational, the
author is careful to explain how the particular computations fit into the broader
picture. In some cases, proofs or certain details of a proof are omitted, but the
author provides references, and he encourages the reader to consult them to gain a
fuller understanding. Another feature of the book is its conversational tone. While
the informality is for the most part welcome, I occasionally found it distracting.
For example, in the middle of a technical section (3.5) dealing with Whittaker
models and the Multiplicity One Theorem, there are inserted a couple of pages
of informal comments on a wide range of topics, including Tate’s thesis, Satake
parameters, tempered principal series, good reduction of modular curves, Eichler-
Shimura theory, Maass forms, and best bounds on the Ramanujan conjecture. After
this interlude, the author abruptly resumes his technical discussion, which one
eventually realizes is leading towards a proof of the local and global functional
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equations. The book’s organizational problem is exacerbated by the arrangement
of the chapters, which places Chapter 4, dealing with the local theory of GL(2) over
a p-adic field, after Chapter 3, dealing with global automorphic representations of
GL2(AF ). The author even admits in the introduction that this is not the logical
order of the material. But this leads to numerous forward references to Chapter 4
in Chapter 3.

Despite these shortcomings, I would recommend [Bu] to graduate students or
anyone else who wants to get into the subject. There is a great deal of foundational
material here. Any effort put into reading it and working exercises will be rewarded
with a good understanding of the basics.

To place the third book in context, we remark that over the past three decades,
research in the Langlands program has been pursued along three main lines: via
L-functions ([GS], [JS]), via dual reductive pairs (theta liftings) ([Ho], [Pr], [Wa]),
and via the trace formula ([A1], [A3]). There are numerous points of intersection
between these viewpoints, and they are all aimed at understanding as much as
possible about the functoriality conjecture mentioned above. By contrast, one can
take the point of view that automorphic forms are primarily of interest because
of the concrete analytic information they give us about classical problems. In this
optic, functoriality is a tool rather than an end in itself, and a wide range of other
methods from analytic number theory play an equally important role.

This is the approach of Iwaniec in Topics in classical automorphic forms. Like
the other two books under review, Iwaniec devotes several chapters to standard
background material: the modular group, Eisenstein series, Hecke operators, L-
functions, etc. However, the main focus is on two problems: (1) estimating the
size of the Fourier coefficients of a modular form and (2) representing integers by
quadratic forms.

Iwaniec approaches (1) through Poincaré series and Kloosterman sums in Chap-
ters 4 and 5. The Ramanujan-Petersson (RP) conjecture asserts that the nth Fourier
coefficient an of a classical cusp form f on a congruence subgroup of SL2(Z) satis-
fies |an| = O(n

k−1
2 +ε). As is well-known, Deligne reduced the RP conjecture to the

Riemann hypothesis over finite fields, which he later proved. However, Deligne’s re-
sult is only part of the story. The RP conjecture can also be stated for Maass forms
and for holomorphic forms of half-integral weight. The RP conjecture for classical
forms or Maass forms would follow from a part of the functoriality conjectures,
as observed in [L1]. In fact, the functorial approach applies in principle to cusp-
idal representations GL(n) for all n, although it still seems far from realization.
Alternatively, one can try to prove the RP conjecture using analytic techniques.
This is especially crucial in the half-integral weight case since functoriality does
not apply, even conjecturally. Iwaniec did the pioneering work on the half-integral
weight RP conjecture ([I3]). He presents some of his results in this book. They
are based on delicate manipulations of estimates for Kloosterman sums and lead
to non-trivial estimates of Fourier coefficients in both the integral and half-integral
weight case. See [LRS], [S3] for recent progress on the archimedean analogue of the
RP conjecture.

To treat problem (2), Iwaniec devotes Chapters 9 and 10 to the basic theory of
theta functions on the upper half-plane attached to a positive definite quadratic
form Q . They are of interest for their Fourier coefficients, the nth of which is
equal to the number r(n, Q) of integral solutions to Q(x) = n. In Chapter 11,
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the Hardy-Littlewood circle method is used to obtain an estimate for r(n, Q). The
circle method is an alternate to the representation-theoretic approach to r(n, Q) via
the Siegel-Weil formula. Actually, the Siegel-Weil formula only gives information
about a weighted average of the numbers r(n, Q) for Q in a genus class, so for some
problems the circle method leads to stronger analytic results. As an application of
the circle method and the estimates on Fourier coefficients, Iwaniec proves that the
integral solutions are asymptotically equidistributed over the ellipsoid Q(x) = n
(§11.6). See [Du] for an overview of recent progress and open problems in this area.

Iwaniec treats a number of other topics, though sometimes without detailed
proofs: newforms, Weil’s converse theorem, automorphic forms attached to Hecke
characters and elliptic curves, Eisenstein series, and the Rankin-Selberg method.
Although analytically demanding in parts, the exposition is clear, and helpful ex-
planatory comments are included throughout. If I have one small complaint, it
is that the author did not include an overview section similar to the “Concluding
Remarks” section in [Bo]. Such a section could have described the state of the field
and provided the reader with a useful guide of where to go next. Nevertheless,
this is an excellent place to begin the study of the analytic approach to modular
forms. The book [S1] is a good companion to [I1], dealing with similar topics in
a complementary manner and going into applications to other fields such as graph
theory.

Anyone encountering automorphic forms for the first time should begin by read-
ing the last chapter of Serre’s beautiful book A course in arithmetic [Ser]. Where to
turn next will depend on personal tastes, but fortunately, there now exist several
good choices of books and survey articles. Each of the books under review is a
welcome addition to this growing expository literature.
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