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Graph theory is one of mathematics’ precocious teenagers. Its growth is explo-
sive. Its newly discovered connections with mainstream mathematics are breath-
taking. It is difficult to decide what is fundamental, what will endure, and most of
all where it will go next. These books bear witness to all of the above. The past
twenty years have seen theorems that are important, elegant, surprising, powerful,
and of course applicable. These texts begin to tell the story. Let me give three
instances.

First, let � denote an ordering, a reflexive, transitive relation on a set X . Two
classic orderings in graph theory are the topological minor relation—think subgraph
homeomorphism—and the minor relation—think contraction. We say that G has
a subgraph homeomorphic to H if the vertices of H can be identified with distinct
vertices in G and the edges in H can be identified with edge disjoint paths in G.
We say that G has H as a minor if H can be obtained from G by edge contractions
together with vertex and edge deletions. If G has a subgraph homeomorphic to H ,
then G will contract to H by contracting the edge disjoint paths to single edges.
Classically Kuratowski used homeomorphism to characterize planarity: a graph is
planar if and only if it does not contain a subgraph homeomorphic to K5 or K3,3.
Subsequently Wagner established the same characterization using contraction. The
Petersen graph shows that these two orderings are not identical. It has a subgraph
homeomorphic to (and thus it contracts to) K3,3, and it contracts to but does not
have a subgraph homeomorphic to K5.

If in every infinite sequence x1, x2, . . . drawn from X there are indices i < j such
that xi � xj , then � is called a well-quasi-ordering of X . About forty years ago
Kruskal [2] showed that the finite trees are well-quasi-ordered by the topological
minor relation. Robertson and Seymour [3] have extended Kruskal’s result to show
that the finite graphs are well-quasi-ordered by the minor relation. Ancillary results
show that every hereditary graph property can be characterized by finitely many
forbidden minors (this includes a Kuratowski theorem for arbitrary surfaces) and
that testing for minors can be done in polynomial time. Diestel provides an engaging
introduction to this material.

Second, suppose that A denotes the adjacency matrix of a graph; i.e. Ai,j = 1
if vertex i is adjacent to vertex j and 0 otherwise. Let D be the diagonal matrix
whose entries denote the number of edges incident with a given vertex. The matrix
L = D − A is called the Laplacian of the graph. It has been of continuing interest
to relate graphical properties to the spectral properties of A and, following Alon
and Milman [1], L. For instance if λ denotes the second smallest eigenvalue of L,
then the connectivity of G is at least λ provided G is not a clique. This means that
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there are at least λ vertex disjoint paths between every pair of vertices. Even more
impressive is that the edge boundary of a set of vertices U is at least λ|U||V −U|

|V | .
Read Bollobás to begin thinking about algebraic graph theory.

Third, almost eighty years ago Pólya proved that a simple random walk on the
d-dimensional integer lattice is recurrent if d = 1, 2 and transient if d ≥ 3. This
turns out to be a special case of results on random walks on electrical networks.
Bollobás provides an essentially self-contained introduction including material on
hitting times and rapid mixing.

This is intriguing. Diestel talks about tree width and minors, but Bollobás
doesn’t. Bollobás talks about algebraic graph theory and random walks, but Diestel
doesn’t. Are these isolated instances? Not at all. Bollobás develops the Tutte
polynomial, a generalization of the chromatic polynomial of a graph, and relates
it to the much “Vaughnted” Jones polynomial of knot theory. Diestel mentions
the Tutte polynomial in a chapter afternote. Diestel proves that the square of
every 2-connected graph is Hamiltonian, while Bollobás looks at consequences of
the Hamilton closure. To be sure, these books do have considerable overlap. The
chapters on graph coloring show similar taste. Both books introduce Szemeredi’s
regularity lemma, Ramsey theory, and random graphs. Neither book touches the
connections with computational complexity. (This is a serious omission, since the
geography of the NP-complete problems has had a profound impact on the graph
theory esthetic.) Still, the overwhelming sense is that these authors have disparate
views of what needs to be in a first graduate course.

These are graduate texts. As such a review ought to say a bit more than just
what’s in the books. I like them both—a lot. Reading Diestel seems more like
listening to someone explain mathematics. The author is generous with his insights.
One unusual feature is that the book is full of margin notes indicating where in
the text something is. At first this seemed as though it would be a distraction,
but I am a convert. Bollobás is both longer and more dense. Each chapter begins
with a prologue setting out where the chapter is going. Each chapter closes with
an extensive set of engaging problems. So if you’re teaching a graduate course in
graph theory, which do you choose? I would have my students use both.
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