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Representation theory is very useful in understanding problems in real complex
analysis, number theory and automorphic forms. A representation (π, V ) of a group
G is a group homomorphism

π : G → Aut(V )

where V is a complex vector space. For analysis applications, G is a locally compact
topological group, V is a locally convex space, and the corresponding map G×V →
V is assumed to be continuous. The representation is called irreducible if V has no
proper nontrivial G-invariant closed subspace. We will assume that the underlying
space V is a Hilbert space. The representation is called unitary if in addition π(g)
is unitary for all g ∈ G.

The situation that arises quite often is the following. Let H be a closed sub-
group of G. Then complex valued functions on G/H form a representation via
π(g)f(x) := f(g−1x). If G/H admits a G-invariant measure, then L2(G/H) is a
unitary representation. The problem is to decompose this representation under the
action of G. For example if H = SO(n − 1) and G = SO(n), then G/H can be
identified with the unit sphere Sn−1. The decomposition of L2(Sn−1) is related to
spherical harmonics. There are many such relations between representation theory
and special functions. A comprehensive reference is [KV].

The representation on L2(G/H) generalizes as follows. Let ρ be a representation
of H . We can form the induced representation (ιρ, IndG

H(ρ)) where

IndG
H(ρ) = {f : G → Vρ : f(gh) = ρ(h)−1f(g)}, ιρ(g)f(x) = f(g−1x).

One of the basic questions of representation theory is to classify the irreducible
representations of a group G. For finite groups, the well known character theory
implies that there are as many inequivalent irreducible representations as there are
orbits under the adjoint action Ad(g) · x := gxg−1. It is tempting to try to imple-
ment an explicit parametrization. It is not clear how to do this in such generality.
One possible simplification could be provided by using induced representations. For
each group we choose a special set of representations which we call cuspidal. Then
for an arbitrary group, every representation should be obtained by induction from
cuspidal representations of certain subgroups. The first problem with this is that
induced representations are rarely irreducible. This might be remedied by trying
to single out a canonical subquotient. But more serious is that one has to find the
right kind of subgroup and definition of cuspidal.

These notions have their origin in the work of Harish-Chandra and Langlands.
They proved very useful for groups which are rational points of connected reductive
linear algebraic groups. A connected linear algebraic group G defined over some
field k is called reductive if its unipotent radical (the maximal connected unipotent
subgroup) is trivial. In this case we only use certain subgroups called parabolic
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subgroups. If G = GL(n), a parabolic subgroup is one that is conjugate to a block
upper triangular group. Parabolic subgroups have a decomposition as P = MN
where N is the unipotent radical and M is again a reductive group. This is called
a Levi decomposition and M a Levi factor. Then any representation ρ of M can be
inflated to a representation ρ̃ of P by making it trivial on N . The induced module
IndG

P (ρ̃) is called the Harish-Chandra induced module. A representation of G is
called cuspidal if it does not occur as a composition factor in any module which is
Harish-Chandra induced from a representation on a proper Levi component. For
the finite groups of Lie type or Chevalley groups (e.g. GL(n) over a finite field),

HomG[Vπ : IndG
P (ρ̃)] ∼= HomM [V N

π : ρ], V N := {v ∈ V : π(n)v = v ∀n ∈ N}.
So V is cuspidal if and only if V N = {0} for any unipotent radical of a proper par-
abolic subgroup. The classification problem reduces to the (nontrivial) problems
of describing the cuspidal representations and of decomposing Harish-Chandra in-
duced modules from cuspidal representations.

When G is a (real) Lie group, it is important that the representation be differen-
tiable so that we can get a representation of the Lie algebra g. Such representations
are called smooth. A basic theorem of Lie theory states that finite dimensional rep-
resentations are always smooth. For compact Lie groups irreducible representations
are finite dimensional, therefore smooth. But compact groups do not have any in-
teresting parabolic subgroups, just the identity group and the group itself. Still,
irreducible representations can be classified in the spirit outlined earlier. The rele-
vant result is called the theorem of the highest weight. As we shall see below, it can
be thought of as a variant of induction. Assume that G is connected, and let T ⊂ G
be a maximal torus. Since G is compact, let Tc ⊂ Gc be the complexifications of
the two groups. Then X := G/T has a G-invariant complex structure, in fact
several. These correspond to Borel subgroups Bc ⊂ Gc which contain Tc. A Borel
subgroup is (by definition) a maximal solvable closed subgroup, and it has a Levi
decomposition Bc = TcNc. In the case G = U(n), we can use the diagonal group for
a maximal torus. The complexification of U(n) is GL(n, C), and a Borel subgroup
is the upper triangular group. The complex structure comes from the fact that
G/T embeds in Gc/Bc; in fact G/T = Gc/Bc. Thus an analytic character ξ of T
gives rise to an equivariant complex line bundle Lξ which corresponds to a complex
character of Bc trivial on Nc. We can consider Dolbeault cohomology H0,q(X,Lξ).
The action of G on X gives rise to representations on these cohomology groups that
are computed by the Bott-Borel-Weil theorem. They are nonzero in at most one
degree, and if so, the corresponding representation of G is irreducible. Conversely
every irreducible representation can be realized this way, and one can say precisely
for what (ξ, q). In particular it is possible to realize each representation using a ξ
so that Lξ has nontrivial holomorphic sections. Then the corresponding represen-
tation Vξ is realized as holomorphic sections and ξ represents the highest weight of
Vξ.

The relation to induction from parabolic subgroups is as follows. The space of
the induced module from ξ on G ∩ Bc = T to G consists of functions f : G → C
such that f(gt) = ξ−1(t)f(g). It is enough to restrict attention to C∞ functions.
This representation is too large, mainly because Nc ∩G is trivial. To cut the space
down, we observe that the action of g as left invariant operators on functions on G
complexifies to an action of gc. So we require that the sections be annihilated by nc.
This condition is equivalent to requiring that the sections be holomorphic, same as
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that they be in the kernel of ∂̄ for the complex structure coming from viewing G/T
as Gc/Bc. When there are no holomorphic sections, we have to consider higher
cohomology groups which are derived functors of global holomorphic sections.

In the case of a noncompact reductive group, it is not enough to consider finite
dimensional representations. The systematic study of infinite dimensional represen-
tations of noncompact real reductive Lie groups was initiated by Harish-Chandra
in the 1950’s. His main goal was to prove a Plancherel formula. In this case, dis-
crete series play the role of cuspidal representations. These are unitary irreducible
representations that are characterized by the property that for any v, w ∈ V , the
matrix entry fv,w(x) = 〈π(x)v, w〉 is L2. They exist only when G has a compact
Cartan subgroup.

Harish-Chandra described the discrete series in terms of their distribution char-
acters. Langlands conjectured that a similar result to the Borel-Bott-Weil theorem
should hold, i.e. discrete series should be realized in Dolbeault cohomology, but one
needs to impose extra square integrability conditions on the cycles and cocycles.
This was achieved in [S]. The results extend to the case when T is replaced by a
compact subgroup L which is the set of real points of a rational Levi component.
They also suggest that one should attempt it for cases when L is no longer com-
pact. This is not so easy. As before, there is a parabolic subalgebra Qc that has
a rational Levi component Lc and L = Qc ∩ G. If ρ is a representation of L, we
can form a G-equivariant bundle Vρ. It will not have holomorphic sections unless
L is compact. But ρ gives rise to a sheaf of germs of holomorphic sections Sρ on
X , and one can try to compute H0,q(X,Sρ). One complication is that G/L is only
an open subset of Gc/Qc. But much more serious is the problem that ∂̄ might not
have closed range, so it is not even clear how to define the cohomology.

One of the techniques that Harish-Chandra introduced was to reduce analytic
problems about a representation of a Lie group to algebraic problems about rep-
resentations of the Lie algebra. Let K be a maximal compact subgroup of G. If
(π, V ) is an (infinite dimensional) representation of a reductive Lie group, then the
map G× V → V is in general not smooth, so it is not possible to define an action
of the Lie algebra. Harish-Chandra considered VK , the set of vectors v such that
g 7→ π(g)v is C∞ and {π(K)v} spans a finite dimensional subspace. Then VK is a
dense subspace on which gc and K act. If π is irreducible, then HomK(W, VK) is
finite dimensional for any irreducible representation W of K. The VK serve as the
model for the definition of admissible (gc, K)-modules ([W] or Knapp-Vogan, chap-
ter I). Langlands classified irreducible (gc, K)-modules in the spirit outlined earlier:
every irreducible (gc, K)-module is realized as a quotient of a Harish-Chandra in-
duced module from a discrete series.

Here is an example of how infinite dimensional representations arise naturally.
Consider the problem of computing the cohomology groups H∗(Γ, V ), where V is
a representation of the group Γ ([M], chapter IV). These cohomology groups are
the derived functors of the functor of Γ-invariants in the category of Γ-modules.
Suppose we are in the special case when Γ is a discrete torsion free subgroup of a
connected semisimple group G. Recall that K is a maximal compact subgroup of
G. The space X = G/K is called a symmetric space, and Γ acts on the left. For
example when G = SL(2, R) and K = SO(2), this is the upper half plane. Since
X is contractible, in fact isomorphic to Rn, the de Rham complex A∗(X) is exact
and therefore a free resolution. The group Γ acts on this complex because it acts
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on X on the left. So

H∗(Γ, C) = H∗(A(X)Γ).

This formula can be rewritten further as follows. Since the tangent space of G has
a basis of left invariant vector fields, the de Rham complex for the group G can be
written as

Cq(G; C∞(G)) := Hom(
∧q

g, C∞(G)).

Because Γ acts torsion free, Cq(G; C∞(G))Γ = Hom(
∧q

g, C∞(Γ\G)). This has
a subcomplex Cq(g, K; C∞(Γ\G)) of forms which are annihilated by contraction
with elements in the Lie algebra of K. Then the projection map π : G → X gives
an isomorphism between this subcomplex and Aq(X)Γ.

The above complex Cq(g, K, C∞(Γ\G)) can be constructed for any (g, K)-module
(V, π), not just C∞(Γ\G). Its cohomology groups are denoted by H∗(g, K; V ), and
they are called (g, K) cohomology. So we write

H∗(Γ) = H∗(g, K; C∞(Γ\G)).

Assume that Γ\G is also compact. Then a well known result of Gelfand-Piatetskii-
Shapiro says that L2(Γ\G) decomposes discretely,

L2(Γ\G) =
⊕

m(π, Γ)Vπ .

We can substitute L2(Γ\G)∞ for C∞(Γ\G) and take advantage of this decomposi-
tion. The end result is known as Matsushima’s formula,

H∗(Γ) =
∑

m(π, Γ)H∗(g, K, Vπ),

and I refer to [BW] for details. If G has no compact factors, the only finite dimen-
sional (π, Vπ) that can occur is the trivial representation. So to get information
about H∗(Γ), one needs to know how to compute H∗(g, K, Vπ) for infinite dimen-
sional unitary representations.

Cohomological induction can be thought of as an algebraic version of Dolbeault
cohomology for (gc, K)-modules. It was first introduced by Zuckerman in lectures
at IAS in 1978 and independently by Parthasarathy in some special cases around the
same time. It was motivated by the problem of constructing the (gc, K)-modules
corresponding to discrete series, and for computing (g, K) cohomology. Philosophi-
cally, the idea is to replace holomorphic sections of Sρ by their germs at the identity
in G/L, and to say that such a section is global if its K-translates generate a finite
dimensional space. This can be phrased in a completely algebraic way in terms
of K and the universal enveloping algebra U(gc) of gc. Not only does this avoid
the analytic difficulties, but properties of this construction follow from standard
homological algebra.

Some of the problems of giving an analytical definition of Dolbeault cohomology
were resolved only recently [Wo]. Even so, the fiber of the bundle Vρ has to be
finite dimensional, which is not sufficient for many applications. On the other
hand, the algebraic construction has been used since 1978, and there are a number
of important applications:

It is well suited for computing the (g, K) cohomology groups that appear in
Matsushima’s formula, [VZ] and [Ku].

It is possible to say a great deal about the K-structure of a cohomologically
induced module. Standard cohomological algebra gives a formula for the restriction
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of a cohomologically induced module to the maximal compact subgroup K. In the
case of discrete series this is called Blattner’s formula.

It plays a central role in the classification of (gc, K)-modules using lowest K-
types due to Vogan, [V1]. In this classification each irreducible (gc, K)-module is
exhibited as a subquotient of a cohomologically induced module from a parabolic
subgroup Qc. The role of the discrete series is replaced by certain irreducible
representations admitting fine K-types.

Given the relation to discrete series and the fact that the representations oc-
curring in Matsushima’s formula must all be unitary, it was conjectured from the
onset that cohomological induction should preserve unitarity. The first general re-
sults of this nature were proved in [V2]. It is widely believed that the unitary dual
is built up out of representations called unipotent via cohomological induction and
complementary series. Such results are known for complex classical groups [Ba].
In this case cohomological induction coincides with Harish-Chandra induction, so
this is not the main difficulty. The unitary groups form another special case; here
the unipotent representations are themselves cohomologically induced from unitary
characters. So there is a precise conjecture stating that an appropriate portion of
the unitary dual of a unitary group is obtained by cohomological induction of uni-
tary characters. In this case, the problem is mainly about cohomologically induced
modules.

The original version of Zuckerman was never published. For a long time, the
only account in textbook form was [V1]. The book by Knapp-Vogan is a complete
treatment of the algebraic aspects of cohomological induction for real reductive
groups, and it is readable by a student who has mastered a standard beginning
level course in Lie groups, say the material in [H]. However, it is very technical
and I believe intended more for a student who is already planning to do research in
this area, so already familiar with the basics of the theory of infinite dimensional
representations.

There is an extensive bibliography, historical notes and background material.
The exposition is very clear and detailed, and there are appendices dealing with
background material. For example I found the appendix on spectral sequences very
useful for teaching this topic in a graduate course.

For the expert, this is a very comprehensive reference, and great care is taken to
present the most general possible results. The only (very minor) objection might
be that the exposition is too long at times. In particular, standard homological
algebra arguments are often spelled out in too much detail.

Here are some of the topics and features that make this such a good reference:
The results are presented for more general cases than real points of linear con-

nected reductive groups.
The equivalence of the Langlands and Vogan classifications of irreducible (gc, K)-

modules is treated in great detail.
There is an extensive treatment of the results on irreducibility and non-vanishing

of cohomologically induced modules.
Yet another important feature is the departure from the original construction de-

scribed in [V1]. Knapp-Vogan use a different definition of cohomological induction
which is inspired by a functor introduced by Bernstein in the context of D-modules
called fiber integration. Recall Qc = LcNc, where Lc is rational. The problem
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is to construct a (gc, K)-module V from an (lc, L ∩ K)-module W . First one in-
flates W to W̃ , a representation of the Lie algebra qc of Qc. Then one induces
it up to gc by taking U(gc) ⊗U(qc) W̃ . The result is a (gc, L ∩ K)-module. Let
R(gc, K) be the algebra of left and right K-finite distributions on G supported on
K, similarly R(gc, L∩K). Then to construct a (gc, K)-module from a (gc, L∩K)-
module X , one takes R(gc, K) ⊗R(gc,L∩K) X . The composition of these functors
is the version of cohomological induction used by Knapp-Vogan, and here is one
advantage. For unitarity questions one needs to know what the hermitian dual
of a cohomologically induced module is. This problem is awkward using the orig-
inal definition, but was eventually settled in [EW]. Using the newer definition,
one finds that there is another natural “dual” functor, namely the composition
of HomR(gc,L∩K)[R(gc, K), X ] with HomU(qc)[U(gc), W̃ ]. The fact that these two
functors are in duality comes down to a formal check that a diagram commutes.
As a consequence one gets a formula for the hermitian dual of a cohomologically
induced module in terms of these two constructions.

The material in Knapp-Vogan has a substantial overlap with [W]. Wallach’s
book seems more focused on the applications and also treats topics from harmonic
analysis on reductive groups.

Even though this book presents such a complete view of the algebraic theory, the
topic of cohomological induction is not exhausted; it is important and appealing
from many different points of view. For the analytic version of this construction,
in addition to [Wo], various problems are treated in work of Barchini, Knapp and
Zierau ([BZ] and references therein). The geometric version of cohomological in-
duction in the setting of D-modules is in some sense more natural. But the results
rely on much more sophisticated homological algebra. For example, the fiber inte-
gration functor mentioned earlier is not adequate. One needs to consider its derived
functors, and it is not clear what the right category should be. I refer the interested
reader to [BL], [HMSW] and [MP] for these developments.
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