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ASPECTS OF GLOBAL RIEMANNIAN GEOMETRY

PETER PETERSEN

ABSTRACT. In this article we survey some of the developments in Riemann-
ian geometry. We place special emphasis on explaining the relationship be-
tween curvature and topology for Riemannian manifolds with lower curvature
bounds.

1. INTRODUCTION

We shall in this survey explain the development of the branch of Riemannian
geometry called global Riemannian geometry. The main goal of this particular type
of geometry is to classify topologically, or even metrically, manifolds with certain
given geometric conditions on, say, curvature, volume and diameter. The earliest
such theorem is the Gauss-Bonnet theorem, which gives the Euler characteristic
in terms of the integral of the Gaussian curvature. Since then the subject has
developed tremendously, and there is no way we can explain most of the impor-
tant results. Some exclusions have therefore been necessary. Thus there will be no
discussion of submanifold geometry including minimal surfaces. Only a few theo-
rems on manifolds with nonpositive curvature are mentioned, very little on what is
called geometric analysis is presented, and we have not discussed Kahler geometry
at all. We have thus tried to emphasize results where the main assumption will be
a lower curvature bound of some sort and the main technique something related to
either the Bochner technique or the Rauch estimates. Even then, it has been hard
to include many interesting results. For instance, while many of these ideas have
naturally led to very interesting investigations into spaces which are more singular
than Riemannian manifolds, and this in turn has given us a better understanding of
Riemannian manifolds themselves, we have decided not to talk about these issues.
Another related branch we have ignored is that of examples. Some of the references
given in the bibliography might help the interested reader to learn more about some
of the aspects of geometry not surveyed here.

We have placed particular emphasis on some of the early developments in both
global and local Riemannian geometry in the hope that this will make it easier for
students and nonexperts to understand some of the later developments. Thus the
basic prerequisite for this article is some familiarity with manifold theory including
a little knowledge of vector fields and forms. We have also tried to present results in
historical rather than logical order, although within each of the artificial periods we
have set up, it has been necessary to explain things in parallel rather than linear
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order. I have placed particular importance on getting the credits sorted out for
many of the classical results. To this end, several discussions with M. Berger have
been profoundly helpful.

I would like to thank C. Sprouse and the referee for carefully reading the man-
uscript and providing me with much constructive criticism.

2. EARLY GLOBAL RESULTS

The first global geometric results, in the spirit that we wish to consider, go
back to Descartes. He considered polyhedral surfaces (usually convex, but here we
consider the general case) in R3. We know that closed surfaces have a topological
invariant x associated to them, called the Euler characteristic. This invariant sat-
isfies the formula x = 2 — 2¢g, where g is the genus of the surface. Here g = 0 for
the sphere, g = 1 for the torus, g = 2 for the double torus, etc. What Descartes
observed is that there is a way of calculating this Euler characteristic by calculating
all of the angles of the polygonal faces on the surface. The polyhedral surface con-
sists of a collection of polygons which are glued together along edges in such a way
that each edge is met by exactly two polygons. A vertex on the surface can be met
by any number of polygons. For each vertex v we add up the angles corresponding
to the polygons meeting the vertex. This total angle is denoted T,,. In case T}, = 27
the vertex is flat, if T, < 27 it looks like the apex of a pyramid or mountain top,
while if T,, > 27 it looks like a saddle point (this situation does not occur if the
surface is convex). Thus we can construct the angle defect C,, = 2 — T;,. This is a
discrete measure of the curvature at the point v. All other points are flat since they
have neighborhoods isometric to balls in the Euclidean plane (yes, even points on
edges). The nice discovery is that

Z C, = 27y.

If we use Euler’s theorem,
X = # polygons — # edges + # vertices,

together with the classical result that for each polygon with k sides we have that
the sum of the interior angles is (k — 2)w, then we can easily obtain the above
formula.

Moreover, we can refine this result to be more local. Namely, consider a simply
connected polyhedral surface with boundary. The boundary is the collection of
edges which are only met by one polygon. Now for the vertices on the boundary
we need to adjust our angular defect to be 0C, = m — T,,. We then obtain

> G+ >, 9C,=2m

v in interior v on boundary

For the simple case of a polygon there are no interior vertices and the angular defect
0C,, is the exterior angle, so we obtain the classical theorem mentioned above for
the angle sum of a planar polygon.

What is interesting about these formulae is that they can be used to measure
the curvature of the earth through surveying. It might have been Gauss who first
discovered this, or in any case he was the first to observe this in action. He went out
and triangulated Liineburg Heide, thus generating a simply connected polyhedral
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approximation to the heath. If indeed the heath is planar, the angular defects for
the interior vertices should cancel out, but they don’t!

Gauss actually generalized the above formula to hold for geodesic polygons on
smooth surfaces in Euclidean space. The setup is that we have a smooth surface
S C R3? and a simply connected region F' C S whose boundary consists of a union
of geodesic arcs (i.e., curves of shortest length). Where two geodesics meet on the
boundary we have as above an exterior angle 0C,,. Now the interior of this polygon
is smooth, so the sum over interior vertices has to be replaced with something else.
Gauss discovered that the total curvature |, K, where K : S — R is the Gaussian
curvature, does the job. Thus he showed

/K+ Z oC, = 2.
F

v on boundary

For a geodesic triangle this takes the simple form

/K=(a+ﬁ+w)—m
F

where «, 3,7 are the interior angles of the triangle and (a + 8 + ) — 7 the angular
defect.

It remains to explain what the Gaussian curvature is. At a point p on the surface
it measures the defect from the surface being flat at this point, one has that if [ (r)
is the length of the boundary of a small ball of radius r around p, then

1(r) =2nr — 2FWK(p)r3 +0(r").

Here 271 is exactly what one would expect if the surface were flat at p.

From Gauss’s formula for the angle defect of a geodesic triangle one can eas-
ily arrive at a global result for closed surfaces. Namely, for a closed surface .S,
triangulate it by geodesic triangles, and add up the contributions to get

/K = 27x.
s

It is not clear who first observed this. Even for spheres Gauss doesn’t seem to have
been aware of the global formula.

In 1848 a variant of Gauss’s formula for geodesic polygons was obtained by Bon-
net. He considered smooth simply connected surfaces S with smooth boundary 05S.
Now that the boundary is smooth we have instead an infinitesimal angular defect,
called the geodesic curvature. If we consider the boundary as a curve parametrized
by arclength, the geodesic curvature & is simply the length of the acceleration vector
of the curve in the surface. (The acceleration of a curve on a surface in R? is simply
the acceleration in R? projected down onto the surface.) Bonnet then showed

/K+/ K = 2.
s a8

This formula can of course also be used to prove the global result, but Bonnet
doesn’t seem to have observed this either. Surprisingly, this proof seems to first
appear in the literature in 1921 with Blaschke’s book [18]. In fact, as far as we can
discover, the first proof of the global Gauss-Bonnet theorem for embedded surfaces
came about in a completely different way. In 1869 Kronecker (see [81]) introduced
the degree of a map between surfaces and showed that it could be computed by
integrating the Jacobian determinant. He then observed that one can apply this to
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the Gauss map of a surface. Recall that the Gauss map of an oriented surface in
R3 is the map that takes a point on the surface to the positive normal at the point.
Thus the Gauss map is a map

G:M?— §2.

Since this map measures how the surface changes from point to point, it is not hard
to believe that

det DG = K.

Actually, this was Gauss’s definition of K. Kronecker now used his formula for the
degree to obtain

1

This immediately leads to the formula

/M K = 4rdeg (G).

In 1888 Dyck then showed that the degree of the Gauss map is related to the Euler
characteristic in the following way

2deg (G) = x,

thus establishing the global Gauss-Bonnet formula.

Gauss’s work is translated in [39] together with explanations and complete ref-
erences to most of the concepts and results that were developed for surfaces in the
nineteenth century.

There are two more important global results for surfaces that we shall have re-
course to discuss later. The first is by Bonnet from 1855 (see [20]). He shows that
any convex surface with Gauss curvature > k? > 0 has diameter < 7 /k (this is the
diameter of a sphere of radius 1/k, and such a sphere has Gauss curvature equal
to k2). The other result is by von Mangoldt and was proved in 1881 (see [89]). He
shows that any complete surface of nonpositive curvature has the Euclidean plane
as its covering space. This theorem is often incorrectly attributed to Hadamard,
yet Hadamard was certainly aware that von Mangoldt first proved it. The mis-
take seems to occur first in [22], where Cartan proves the same result for abstract
Riemannian manifolds.

In the next section we shall explain some of the standard language of Riemannian
geometry. After this is done we shall explain why the two results of Bonnet and
von Mangoldt are true.

3. LOCAL THEORY

We shall in this section explain some of the foundational concepts developed by
Gauss, Riemann, Levi-Civita, Cartan and others during the period from 1825 to
1925. As promised, we shall also explain how Bonnet’s diameter estimate and von
Mangoldt’s theorem were proved. To save a little space we have decided to develop
the abstract theory from the beginning, rather than first considering the surface
case as was done historically. While Gauss pretty much developed the theory of
surfaces, Riemann was the first to consider higher dimensional manifolds, which
moreover don’t necessarily lie as submanifolds in Euclidean space. The theory is
not much harder for abstract manifolds than for surfaces, but there were some
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crucial global considerations about completeness of metrics and extendability of
geodesics that weren’t developed until the late 1920s. Thus many results were on
hold, so to speak, until then. In the last subsection on curvature we shall see why
it was so hard to generalize even the local links between curvature and the metric
itself to higher dimensions. It wasn’t until the beginning of the twentieth century
that people began to understand some of these relationships.

3.1. First-order concepts. We now need to clarify what type of objects we wish
to work with. The basic objects are manifolds without boundary. We call them
closed if they are compact; otherwise they are said to be open. A Riemannian
metric on a manifold is a positive definite symmetric (0, 2)-tensor g. In other words,
each tangent space is endowed with a Euclidean metric that varies smoothly from
tangent space to tangent space. Riemannian manifolds are denoted (M, g) if we
wish to specify both the manifold M and the metric g.

The most natural type of Riemannian manifold, aside from Euclidean space itself,
is a surface in R?. The Riemannian metric is simply the Euclidean metric restricted
to the surface. It is now possible to define all of the natural concepts that we use in
Euclidean spaces for surfaces. Namely, compute them in R3 and project them down
to the surface. For instance, if we have a curve on the surface, then its tangent
vector field is clearly tangent to the surface, but its acceleration may not be. The
acceleration on the surface is then the ambient acceleration projected down to the
surface. Thus a curve has zero acceleration on the surface if the acceleration vector
is perpendicular to the surface. Such curves are called geodesics. In an abstract
Riemannian manifold this construction immediately runs into trouble, as we don’t
have an ambient space where we know how to compute the acceleration. Riemann,
who was the first to work with abstract Riemannian manifolds in 1854, solved this
problem in a very ingenious manner (see [121]). He observed that around each

point p € M one can pick a special coordinate system z!,... 2" such that
o 0
9ij () = 9(9;,0;) =g (%7 %) = dij,
Okgij (p)) = 0.

Thus the metric, at the specified point, in these coordinates looks like the Euclidean
metric on R™ up to first-order. Sometimes such coordinates are said to be normal at
p. However, we reserve that term for coordinates that have some further properties
(see Section 3.3). Again, it is important to realize that these conditions only hold
at p. When passing to different points it is necessary to pick different coordinates.
If a curve v passes through p, say, v (0) = p, then the acceleration at 0 is simply
defined by first writing the curve out in our special coordinates

V(t): (71 (t)v"' 77n(t))7

and first observing that the tangent field is

We then define
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The real idea behind all this is that we have a connection. This concept wasn’t
developed until much later and probably wasn’t completely understood until Levi-
Civita’s work on parallel transport from the beginning of the twentieth century (see
[85]). In essence, it is a way of taking derivatives of vector fields. For a function f
on a manifold and a vector v we always have the directional derivative

Dyf =Vof =df (v).

But there is no natural definition for V,X, where X is a vector field, unless one
also has a Riemannian metric. Note that this is really what one wants. Given the
tangent field 4 = Y 1" | 4% (t) - 9;, the acceleration can then be computed by using a
Leibniz rule on the right-hand side, if we can make sense of the derivative of 9; in
the direction of 4. This is exactly what the covariant derivative V, X does for us.
If v € T, M lies in the tangent space to a point where we have chosen the special
coordinates discussed above, then we can simply write X = Y a’0; and declare

VoX =) (Dya') 0.

Since there are several ways of choosing these coordinates, one must of course
check that the definition doesn’t depend on the choice, but this is very simple to
do. Note that for two vector fields we define (Vy X) (p) = Vy,»X. In the end we
get a connection V which satisfies:

(1) Y — VyX is tensorial, i.e. linear and Vv X = fVy X for all functions
f.

(2) X — V,X is linear.

(3) Vu(fX)=(Vuf) X (p)+f(p) Vo X.
(4) VxY —VyX =[X,Y].

(5) Dug(X,Y)=g(VoX,Y)+g(X,V,Y).

So, no matter which coordinates we use we can now define the acceleration of a
curve in the following way:

Tt = (@), " 1),
F(t) = D A (0)a,
F(6) = DA )0+ (D) Vi

We call v a geodesic if 4 = 0. This is a second order nonlinear ODE in a fixed
coordinate system. Thus we see that given any tangent vector v € T, M, there is a
unique geodesic v, () with 4, (0) = v. If the manifold is closed, the geodesic must
exist for all time, but in case the manifold is open this might not be so. To see this,
simply take as M any open subset of Euclidean space with the induced metric.
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Given an arbitrary vector field E (t) along v, i.e., E(t) € Ty yM for all t, we
can also define the derivative F = %E of E in the direction of 4 by writing

E(t) = > a'()o;,
E(t) = > &' ()0 +a' (t) Vi

Note that the derivative of the tangent field + is simply the acceleration 7. The field
E is said to be parallel provided E =0. The equation for a field to be parallel is a
first order linear ODE, so we see that for any v € T’,(;,) M there is a unique parallel
field E (¢) defined on the entire domain of v with the property that E (tg) = v.
Given two such parallel fields E and F, we have that

d

z 3(E,F> +9(B.F)

Thus F and F are both of constant length and form constant angles along ~.
Hence, “parallel translation” along a curve defines an orthogonal transformation
between the tangent spaces to the manifold along the curve. However, in contrast
to Euclidean space, this parallel translation will depend on the choice of curve. On
the two dimensional unit sphere in R? one can, for instance, consider a triangle
consisting of going from the North Pole along a longitude down to the Equator,
then going along the Equator for a while, and finally going back up to the North
Pole along another longitude. In this case all three curves are geodesics and their
tangent fields are therefore parallel. If we start at the North Pole and parallel
translate the tangent field to the first longitude down to the Equator, then we
end up with a vector perpendicular to the Equator. And if we parallel translate
this along the Equator, the vector must stay perpendicular. Thus when we reach
the second longitude, the vector will be tangent to this longitude and therefore be
parallel translated back up to the North Pole tangent to it. In this way we can, by
choosing the longitudes suitably, parallel translate any vector at the North Pole to
any other vector at the North Pole.

The connection also enables us to define many other classical concepts from
calculus in the setting of Riemannian manifolds. Suppose we have a function f :
M — R. If the manifold is not equipped with a Riemannian metric, then we have
the differential of f defined by df (v) = D, f. This is a 1-form. The dual concept,
the gradient of f, is supposed to be a vector field. But we need a metric to define
it. Namely, V f is defined by the relationship

g (Vf,v) =df (v).

Having defined the gradient of a function on a Riemannian manifold, we can then
use the connection to define the Hessian as the linear map

sz : TM —TM,
V3f(v) = V,VFf.

The corresponding bilinear map is then defined as

V2f(v,w)=g(v2f(v),w).
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One easily checks that this is a symmetric bilinear form. The Laplacian of f,
Af, is now defined as the trace of the Hessian (as a linear map). This is also
called the Laplace-Beltrami operator, since Beltrami first considered this operator
on Riemannian manifolds. Note that geometers also use the negative of the trace of
the Hessian as a definition for the Laplacian. The “minus” convention has the nice
property of making the eigenvalues of the Laplace operator nonnegative. However,
as we shall not be discussing eigenvalues, we stick to the above definition.

3.2. Distances and geodesics. We are now ready to define the distance between
two points on a Riemannian manifold and discuss which curves realize the distance.

For a piecewise smooth (or merely absolutely continuous) curve v : I — M, we
define its length on I as

Lmnzﬁmw:AVMmWﬁ

First, one should note that this length is independent of our parametrization of
the curve. Thus the curve can be reparametrized, if we like, in such a way that it
has unit velocity. Such curves are said to parametrized by arclength. The distance
between two points p and ¢, d(p,q), can now be defined as the infimum of the
lengths of all curves from p to ¢q. This means that the distance measures the shortest
way one can travel from p to ¢. It is easy to check that this indeed defines a metric
in the usual sense and that the topology it generates is equivalent to the manifold
topology.

If we take a variation V (s,t) : (—e,e) x [0,£] — M of a smooth curve ¢ (t) =
V (0,t) parametrized by arclength and of length ¢, then the first derivative of the

arclength function
¢
L= [
0
dL

£
T O =0~ [ g@x)d

0
gV’dt

is

where X (t) = 2X(0,¢) is the so-called variational vector field. This formula is
called the first variation formula. Given any vector field X along ¢, one can easily
produce a variation whose variational field is X. If the variation fixes the endpoints,
X (a) = X (b) = 0, then the second term in the formula drops out, and we note
that the length of ¢ can always be decreased as long as the acceleration of ¢ is not
everywhere zero. Thus the Euler-Lagrange equation for the arclength functional is
simply the equation for a curve to be a geodesic.

A curve between two points is called a segment if it has length equal to the
distance between the points and is parametrized by arclength. Note that a segment
when restricted to a subinterval is again a segment. By the first variation formula
we therefore see that on each of the intervals where the curve is smooth it must be
a geodesic. To see that the curve is smooth everywhere, we can just assume that it
is not smooth at just one point. We then pick a variation that forms angles that are
strictly less than /2 to the two velocity vectors for the segment at this point. We
can then add up the two contributions of the first variation formula coming from
the variations of each of the two smooth parts and observe that the derivative is
negative due to the angle condition.
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We now come to the reverse question of when a geodesic is a segment. In
Euclidean space this is always the case, but on a unit sphere only geodesics of
length < 7 can be segments. To get the full answer it is convenient to introduce
exponential coordinates on a Riemannian manifold. This is done as follows: We
first define the exponential map

exp, : O, CT,M — M,
exp, (v) = ().

Thus the line ¢t — tv in T, M is mapped to the geodesic whose velocity at p is v.
In case (M, g) is not geodesically complete this map might only be defined on an
open neighborhood O,, of the origin in 7, M. Since the exponential map takes lines
through the origin to geodesics through p and preserves their velocity at p, we see
that the differential at the origin is the identity map. Thus the exponential map is
a diffeomorphism near the origin and therefore introduces what we call exponential
coordinates near p € M. It is a remarkable fact, first observed by Gauss, that for
points x which lie in this coordinate chart near p we have

d (p,x) = |exp, " (z)].

This is proved using the Gauss lemma, which says that the gradient of the function
T — |exp; 1 (x)| is simply the unit radial vector field. In other words, in exponential
coordinates the gradient of distance from p on T,M is the same whether we use
the Euclidean metric on T, M or the pullback of the metric g on M. From this it
evidently follows that the distance function © — d (p, z) is smooth near p, that the
integral curves for the gradient are exactly the geodesics emanating from p, and
that these curves are segments. The Gauss lemma for surfaces is an immediate
consequence of the following four facts. We assume that polar coordinates are cho-
sen on the tangent space and then transported to the manifold via the exponential
map.

1. The integral curves for J, are geodesics, i.e., Vj,0, =0,

2. [0r,09] = V5,090 — V5,0, =0,

3. 20,9 (0r,00) = 29 (0r,Vo,.00) = 29 (0r,Vo,0r) = Dgg (0r,0r) = 0, and

4. |g(Or,09)| <109l = — 0asr — 0.

Note that 3 and 4 show that the coordinate vector fields are perpendicular.

The segment domain seg(p) C Oy is the star-shaped set with the property that
v € seg(p) if the geodesic t — exp,, (tv) is a segment from p to exp,, (v) . The interior
of this set is nonempty and contains a neighborhood of the origin. The boundary of
the segment domain is also known as the cut locus. The exponential map is actually
an embedding on the interior of seg(p). The alternative would be that either the
map is not one-to-one or has singular differential somewhere. In the first situation
we would then have a segment ¢ : [0,1+¢] — M with the property that there
is another segment joining ¢ (0) and ¢(1). But then we could find a nonsmooth
segment from ¢ (0) to ¢(1+ ¢), which we know to be impossible. In the second
situation we have a segment c(t) = exp,, (tv) : [0,1+¢] — M such that Dexp, is
singular at v. We can then find w € T;, M such that the curve s — exp,, ((v + sw))
has zero velocity at s = 0. Then consider the variation V' (s,t) = exp,, (t (v + sw)) .
The curves t — exp,, (t (v + sw)) are segments for small s. These curves may not
reach ¢ (1) = exp,, (v) as in the above situation, but they will reach ¢ (1) up to first
order. Now suppose ¢ is so small that ¢ (1) lies in a neighborhood around ¢ (1 + ¢€)
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on which we have exponential coordinates. Then one can check that the curve
which starts out being ¢ — exp,, (¢ (v + sw)) on [0,1 — ¢] and then ends up being a
little segment ending up at ¢ (1 + ¢€) is indeed shorter than ¢ from ¢ (0) to ¢(1+¢)
for small €. Thus we have again arrived at a contradiction.

At this point it is traditional to introduce some more notation. Consider a
geodesic ¢ (t) = exp,, (tv) : [0,b] — M. We say that c has a conjugate point at to €
(0,0] if D exp,, is singular at tgv. In the next subsection we shall see how conjugate
points are controlled by the geometry. In analogy with the segment domain we can
define the interior of the conjugate locus as the largest star-shaped set conj, C O,
such that v lies in the interior of conj, if exp, has nonsingular differential at all the
points tv, t € [0,1]. Clearly the exponential map is an immersion on the interior
of conj,, and we can therefore pull back the Riemannian metric on M to this open
set. In this way we can create a multivalued exponential coordinate system.

Note that the segment domain and the interior of the conjugate locus are not
generally the same set. On a flat torus there are no conjugate points as we shall
see, but the segment domain has to be bounded.

3.3. Second order concepts. We shall now see how curvature enters the picture.
The curvature tensor is a rather ominous tensor of type (1,3); i.e., it has three
vector variables and its value is a vector as well. However, we shall soon enough see
how it appears rather naturally in geometry when we take two derivatives rather
than just one.

First recall that the Lie bracket of two vector fields X and Y can be defined
implicitly as the vector field [X, Y] which satisfies

Dixy)f =[Dx,Dy] f = (DxDy — DyDx) f

for all functions f. In other words Dx y] — [Dx, Dy]| = 0 on functions. If we com-
pute the same thing on vector fields, however, then we get the following quantity:

R(X.Y)Z = (Vixy—[Vx.Vy])Z
= VixyZ-VxVyZ+VyVxZ.

This turns out to be a vector valued (1,3)-tensor in the three variables X,Y, Z. We
can then create a (0,4)-tensor with scalar values as follows

R(X,)Y, Z, W) =g (V[)@y]Z - VxVyZ+VyVxZ, W) .

One can easily see that this tensor is skew-symmetric in X and Y, and also in Z
and W. This was already known to Riemann, but there are some further, more
subtle properties that were discovered a little later by Bianchi. They play a very
important role in geometry, but will not be discussed here, except that they yield
the important symmetry condition

R(X,)Y,ZW)=R(Z,W,X,Y).
Thus the curvature tensor can be thought of as a symmetric operator
R A*TM — A*TM

also known as the curvature operator.
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The Ricci tensor is the (1,1)- or (0,2)-tensor defined by

Ric (X) = iR(EiaX)Eia
i=1
Ric(X,Y) = ig(R(Ei,X)Ei,Y)
i=1

for any orthonormal basis F;. In other words, the Ricci curvature is simply a trace
of the curvature tensor. Similarly one can define the scalar curvature as the trace

scal (p) = tr(Ric)

n
= ) Ric(E;, E;).
i=1
When the Riemannian manifold has dimension 2, all of these curvatures are
essentially the same. Since dim A2T'M = 1 and is spanned by X AY where X and
Y form an orthonormal basis for T}, M, we see that the curvature tensor depends
only on the value

K((p)=R(X,Y,X,)Y),

which also turns out to be the Gauss curvature. The Ricci tensor is a homothety
Ric(X) = K(p)X,
Ric(Y) = K(p)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there are also
some redundancies as dimTM = dim A>T M = 3. In particular, the Ricci tensor
and the curvature tensor contain the same amount of information.

The sectional curvature is a kind of generalization of the Gauss curvature whose
importance Riemann was already aware of. Given a 2-plane m C 1, M spanned by
an orthonormal basis X,Y it is defined as

sec(m) = R(X,Y,X,Y).

The remarkable observation by Riemann was that the curvature operator is a ho-
mothety, i.e., looks like R = kI on A?T, M iff all sectional curvatures of planes in
T,M are equal to k. This result is not completely trivial, as the sectional curvature
is not the entire quadratic form associated to the symmetric operator fR. In fact, it
is not true that sec > 0 implies that the curvature operator is nonnegative in the
sense that all its eigenvalues are nonnegative. What Riemann did was to show that
our special coordinates at p can be chosen to be normal at p, i.e., satisfy the much
stronger condition

n
; .
T = E gijx’
Jj=1

on a neighborhood of p. One can easily show that such coordinates are actually
exponential coordinates together with a choice of an orthonormal basis for T}, M so
as to identify T,,M with R". In these coordinates one can then expand the metric
as follows:

1 n
Gij = 51'3‘ — g Z Rikjl$k$l + O (’/’3) .
k=1
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Now the equations Z;;l gi;r? = z evidently give conditions on the curvatures
Rijri at p. In fact, one can get all of the relevant symmetry conditions needed
to prove the constant curvature result just mentioned (including the first Bianchi
identity). In dimension two this expansion reduces to a formula known to Gauss:

9oz Goy \ _ (1 O 1 2 -y 3
(gwy Iuy )_<0 1 )_gK(p)( —ry Y’ >+O(T)'

These Taylor formulae for the metric, while telling us something about the in-
finitesimal geometry and curvature, are not strong enough to give us more global
information. Instead we must try to understand how the metric varies over a larger
region depending on the behavior of the curvature. We shall, as was done his-
torically, begin by considering 2-dimensional Riemannian manifolds. The higher
dimensional case is much more subtle and took a long time to be understood com-
pletely.

On (M 2, g) we fix a point p and with the help of the exponential map exp, :
int(seg,) — M introduce polar coordinates. The polar coordinates (r,8) are con-
structed on T}, M in the usual fashion and then used on the image of int(seg,) via
the exponential map. The Gauss lemma from above asserts that the coordinate
vector fields 0, and Jy are perpendicular on (M, g) as well as in the Euclidean
metric on T}, M; moreover, 0, has length 1 on both M and T},M. The Riemannian
metric g can now be written as

g =dr?* + ¢* (r,0) do?

on exp, (int (segy,)). The meaning of this is simply that if we expand v,w € T, M
in the given coordinate vector fields

v o= 00, + %9,
w = wd +wdy,
then
g (v, w) =v"w" + ®? (r,0) v?w?, for p = (r,0).

Notice that even though polar coordinates are defined only away from a half-line,
the coordinate vector fields are defined everywhere away from the origin. Thus 0,
and ¢~ 0y always form an orthonormal basis. Let us now compute the curvature
R(0r,00)0r = Vi5,,050r — V,V,0r + Vo,Vp,0r
= —Vy,Vp,0r.

Evidently we must figure out what V_.0g = Vp,0, is. This is done as follows:
0 = arg (Braae) :g(aravaTaG)a

1
$0r¢ = 3 19 (0g,09) = g (09, Va,0s);

hence

or¢

Vo,0r = Vo,0p = p 0p-
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Using this in the above expression we obtain

R(0r,80)0, = —V5,Vg,0r

v ()

_ar (ar¢) 80 _ 8T¢VBT80

¢ ¢
(00N, (00
N ar(¢)ag <¢>89

926

——L" 0.

¢0

After taking inner products with 9y, we obtain the Jacobi equation
02¢ + sec (T,M) ¢ = 0.

This equation was first discovered by Gauss in the same way we just derived it.
Later Jacobi extended it to a type of equation that holds for so-called Jacobi fields
along geodesics of any length on a surface. We won’t need Jacobi’s extension or
Jacobi fields here, so we shall leave the equation as it is (for a complete discussion see
[84]). The important point is that it gives a direct relationship between curvature
and the metric in the form of ¢.

One can even extend the Jacobi equation slightly. Namely, we can via

exp,, : int (conj,) — M

pullback the metric g on the image of int(conj,) to int(conj,) itself. Thus on
int(conj,) we can, as above, decompose the metric g in polar coordinates and derive
the above Jacobi equation on a domain that might be larger than the manifold itself.

Using this, we can now explain how Bonnet and von Mangoldt proved their
results. The important thing to keep in mind is that at the time they were not
aware of any precise conditions that ensured the existence of a segment between
any two points on abstract Riemannian manifolds. This is a problem that was
settled much later and which we shall explain in the next section. For surfaces
in R3, however, they did know that provided the surface was a closed subset of
Euclidean space, one would get that any two points could be joined by a segment.
The importance of this property lies in the fact that it implies that exp,, : seg;, — M
is onto and that the image of int(seg,) is dense in M. To show Bonnet’s diameter
bound in case the sectional curvature satisfies sec > k2 > 0 for all tangent planes,
it therefore suffices to show that conj, C B (0,7/k) C T,M. (Recall that a geodesic
emanating from p cannot minimize after a conjugate point.) Thus we must find a
way of detecting conjugate points. If we pull back the metric on M to int(conj,)
and write it as g = dr? + ¢ (r,0) df?, then we observe that for fixed 6 we get to
a conjugate point along the geodesic r — (r,0) when ¢ (r,0) — 0 as r approaches
the boundary of int(conj,). In other words, the differential of the exponential map
becomes singular on the boundary of int(conj,) precisely because the pullback of g
to T, M becomes a degenerate inner product. Now we have that

D2p4sec-¢ = 0,

¢(0,0) 0,
sec > k2>0.
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Therefore Sturm-Liouville comparison theory tells us that » — ¢ (r, §) must become
zero before any nontrivial solution to

y'+ky = 0,
y(0) = 0.

Since all nontrivial solutions to this equation look like y (1) = csin (k - r), we see
that ¢ must become zero before r gets to the value 7/k. From all this we can
conclude that any segment in (M, g) has length < w/k and therefore that the
diameter of (M, g) must be < 7/k.

In order to prove von Mangoldt’s theorem, it is necessary to show that there are
no conjugate points. In this situation we have on int(conj,) that ¢ satisfies

D2p4sec-¢ = 0,
¢(0,0) = 0,
sec < 0.

This time Sturm-Liouville theory then tells us that ¢ cannot become zero before
the nontrivial solution to

/!

y = 0,
y(0) =

But here the solutions are y (r) = cr, so they are never zero. Hence ¢ will never
become zero either. Thus int(conj,) = T, M, provided we know that geodesics exist
for all time. One can then show, and this requires a little argument as well, that
the exponential map is a covering map.

Note that in addition to the condition that ¢ (r,6) — 0 as r — 0, we also know
that 0,¢ (r,0) — 1 as r — 0. To see this just observe that the polar coordinate
representation of the Euclidean metric has ¢ = r and that near the origin g;; and
the Euclidean metric agree up to first order in exponential coordinates as discussed
above. In other words, exponential coordinates are normal in the sense discussed
above. Refined Sturm-Liouville theory can therefore be used to show that in the
case sec > k? we have ¢ < sin (kr), while if sec < 0 we have ¢ > r. The latter
condition in particular shows that not only is the exponential map nonsingular, but
its differential actually increases the length of vectors.

These observations can also be used to demonstrate that spaces of constant
sectional curvature k are locally isometric. Namely, ¢ must satisfy

Rop+k-¢ = 0,

¢(0,0) 0,
0r¢(0,0) 1.

Thus it must be given by the single formula

@ (r,0) = sng (r),

where sng, is the unique solution to

y' +ky = 0,
y(0) = 0,
y(0) =1
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This also tells us that we can construct abstract geometries of any constant cur-
vature. Riemann in 1854 extended this to higher dimensions and showed that for
each k € R and integer n > 2 there is a simply connected space S}’ of dimension n
and constant curvature k. This space is Euclidean space when k = 0, the Euclidean
sphere of radius 1/ vk when k > 0, and hyperbolic space for k < 0.

The problem with generalizing the above relationship between curvature and
metric to higher dimensions is that we don’t have a suitable choice of polar coordi-
nates. This was solved in two different ways. In 1917 Levi-Civita (see [85]) proposed
that one should simply fix a geodesic and then select polar coordinates such that
the angular coordinates were orthonormal along the geodesic. It is not hard to see
that this is possible using the parallel translation developed by Levi-Civita himself.
Around the same time, Cartan (see [22]) came up with a more elegant solution.
Instead of using angular coordinates, he observed that it suffices to have suitable
angular vector fields E, which are independent of r, perpendicular to the radial
coordinate, and orthonormal on the unit sphere in the tangent space. Of course,
these fields are only globally defined if the unit sphere is parallelizable, but they
always exist locally. This is in contrast to the coordinates by Levi-Civita which
change from point to point on the sphere. If we denote the 1-forms dual to E, by
0<, we see that the Euclidean metric can be written as

dr? + r? (i (9a)2> .

a=2

More generally, if we pull back the Riemannian metric on M via the exponential
map and write it out in this way, we get a formula which looks like

g = dr*+ ) gap0®0”,

a,B=2
Gap = g (Eou Eﬁ) )
2 0 0
0 :
Jap = _ +0 (r?).
: 0
0 0 2

The problem now lies in finding a Jacobi-type equation. This time the function
¢? is replaced by the matrix (gas). Since the Jacobi equation is really for ¢, one
would expect that the square root of (gqs) is the important quantity. However,
the fact that all of these matrices don’t commute for different values of r makes it
very hard to work with derivatives of this square root. Several different approaches
have therefore been developed. One uses Jacobi fields (these are variational fields of
geodesic variations). Another is a very natural direct approach which Cartan used.
He developed a much more general theory of how to set up information about
the connection and curvature using frames, which are in fact more general than
coordinates. When specializing this theory to frames that are naturally associated
with polar coordinates and only considering radial derivatives, one obtains the
following information: Consider the Hessian S = V?r of the distance function
r(z) = d(x,p) . In invariant notation we then have the two fundamental equations,
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known respectively as the first and second fundamental equations,
(Lo,g) (X,Y) = 2¢(5(X).Y),
(Lo, S) (X)+5*(X) = —R(d,,X)0,

where Ly, is the Lie derivative and X,Y any vector fields. In the adapted frames
we can reduce these equations as follows: First note that S (9,) = 0, so we need
only look at the matrix for .S in terms of the frame F,. Thus we consider the matrix
S§ defined by

n

S(Es) = _ S§Ea.
a=2
Then the fundamental equations become
O (9a8) = 2(52) (9+8)
o (s5) +(59) (s3) = —(R).

where the matrix (Rg) is the curvature defined by R (0,, Eg) 0, = 3~ RjE,. (Note

to the expert: These are merely the first and second structural equations of Cartan
restricted to radial derivatives.) Thus the metric is related through a linear first
order equation to S, and S in turn is related to the curvature through a nonlinear
first order equation that is of Riccati type. Through these equations it is now
possible, with some extra work, to go from curvature to information about S and
finally to information about the metric.

The first test case is that one can use these equations to prove Riemann’s theorem
from 1854 on the local characterization of manifolds with constant curvature k.
Namely, that for fixed k& they must all be locally isometric to each other. One can
also generalize the Bonnet and von Mangoldt theorems. This will be discussed in
the next section.

4. FROM LOCAL TO GLOBAL GEOMETRY

The dominant new development from the period 1925-1950 seems now to have
been the resolution to the problem of representing the Euler characteristic as an
integral of curvature. But there were two other important discoveries. One was
the introduction of the second variation formula for the arclength functional. The
other was the introduction of a new method of proving many results, now known
as the Bochner technique. The techniques and types of theorems developed in this
period still form the foundation for many developments today.

4.1. The second variation formula. The modern history of global Riemann-
ian geometry starts with Hopf’s classification of space forms in [72] and Cartan’s
generalization of von Mangoldt’s theorem to higher dimensions, together with some
other observations about manifolds with nonpositive curvature. At the time some of
the foundations of Riemannian geometry were still not completely settled. Bianchi,
Levi-Civita, and Ricci had completely developed tensor calculus (what Cartan refers
to as the debauch of indices) and had a complete understanding of the relationships
between the concepts of connection, parallel translation, and curvature. However,
there were still several competing notions of what a suitable global Riemannian
manifold should be. Clearly one cannot hope to establish global theorems without
also assuming something further about the manifold. For instance, all open subsets
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of Euclidean space are flat, but their topology can be very complicated. So even for
flat manifolds one can’t say anything intelligent. Given a Riemannian n-manifold
(M™,g), there were three natural assumptions one could make:

1. that there exists a fixed r > 0 such that exp, : B(0,7) — B(p,r) is a
diffeomorphism for all p € M,

2. that every bounded infinite set in (M, d) has an accumulation point,

3. that every geodesic exists for all time.

Note that for a closed manifold all three conditions are easily seen to hold, and
this was certainly well-known at the time. Thus it is only for open manifolds that
one has to worry about these issues. Also one readily sees that (1) = (2) =
(3). The first condition was used by Killing in his definition of an appropriate
class of constant curvature spaces. Given this condition Killing showed in the
late nineteenth century that if (M™, g) has constant curvature k, then the universal
covering is isometric to Sj. In today’s language condition (1) says that the manifold
has a positive lower bound for its injectivity radius. Hopf in [72] observed that if
an open manifold has finite volume, then it will never satisfy (1), but it might
satisfy (3). Thus he settled on this condition as being the correct class to work
with. Condition (3) is now referred to as geodesic completeness. His result then
states that any geodesically complete Riemannian manifold of constant curvature
k is covered by S7.

Condition (2) was used by Cartan in [22]. He called such Riemannian mani-
folds mormal. Now they are called complete or metrically complete. He classified
complete constant curvature spaces at the same time that Hopf published his clas-
sification assuming “only” geodesic completeness.

In [22] Cartan also proved that complete manifolds with nonpositive curvature
have the property that any two points can be joined by a segment. His argument
uses that in exponential coordinates the metric is larger that the corresponding
Euclidean metric. This is also the fact that implies that the exponential map must
have full rank everywhere. He then argued that if one pulls back the metric on M to
T,M via the exponential map, then one gets a new complete metric of nonpositive
curvature which is locally isometric to M. In this way we have found the universal
covering of M to be Euclidean space. Note that it is important to have that any
two points are joined by a geodesic, for otherwise this map can’t be a covering map.
The proof of all this was explained in detail in section 3.3 for the case of surfaces,
and we have also indicated the necessary changes that Cartan made in order to
generalize this to higher dimensions. In later editions of Cartan’s book, he also
includes a proof that in fact on any complete Riemannian manifold, any two points
can be joined by a segment. After having generalized van Mangoldt’s theorem,
Cartan also establishes another important property of manifolds with nonpositive
curvature. First he observes that all spaces of constant zero curvature have torsion-
free fundamental groups. This is because any isometry of finite order on Euclidean
space must have a fixed point (the center of mass of any orbit is necessarily a fixed
point). Then he notices that one can geometrically describe the L>° center of mass
of finitely many points {p1,...,pr} in Euclidean space as the unique minimum for
the strictly convex function

o o, L)
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In other words, the center of mass is the center of the ball of smallest radius contain-
ing {p1,...,pr}. Now Cartan’s observation from above was that the exponential
map is expanding and globally distance nondecreasing as a map:

(T, M, Euclidean metric) — (T, M, with pullback metric) .

Thus distance functions are convex in nonpositive curvature as well as in Euclidean
space. Hence the above argument can in fact be used to conclude that any Rie-
mannian manifold of nonpositive curvature must also have torsion free fundamental
group.

The next important development, which occurred almost simultaneously but was
virtually ignored at the time, was Synge’s paper [130]. In this paper he develops
the first and second variation formulae for arclength. Various versions of these
formulae were already known, but Synge gave the version of the second variation
formula that we now know and use (there are several, and not all of them are equally
transparent). Moreover, he for the first time finds estimates for conjugate points
on abstract Riemannian manifolds, thus generalizing Bonnet’s work on surfaces.
However, he seems not to have pointed out that for complete manifolds this gives
diameter bounds. Later in [131], after Myers in [98] published his generalization of
Bonnet’s diameter bound, Synge then points out that this is indeed a trivial con-
clusion and also berates Schoenberg for his paper [125], where Schoenberg obtains
conjugate point estimates similar to those in Synge’s 1925 paper. What is even
more interesting is that Synge correctly points out that it is in fact like shooting
flies with cannon balls to get these diameter bounds from conjugate point estimates,
for one can simply show directly from the second variation formula that geodesics
that are too long can’t minimize length.

In order to get a better picture of what is happening here, let us set up the
second variation formula and explain how it is used. We have already seen the
first variation formula and how it can be used to characterize geodesics. Now
suppose that we have a unit speed geodesic ¢ (t) parametrized on [0, ¢] and consider
a variation V (s, t), where V (0,t) = ¢ (t) . Synge then shows that

d2L ¢ .o . 2 ¢
wo-=/ {g (X.%) = (9(%.¢)) —g(R(X,0) X, é)} dt+ g Al

0
where X (t) = 86—‘8/ (0,t) is the variational vector field, X = V.X, and A(t) =
V%_vX. In the special case where the variation fixes the endpoints, i.e., s — V (s, a)
and s — V (s,b) are constant, the term with A in it falls out. We can also assume
that the variation is perpendicular to the geodesic and then drop the term g (X , c') .

Thus, we arrive at the following simple form:

Lo - /Oe{g(x,x)_g(R(X,@X,é)}dt

/Of {‘X‘Q —sec (¢, X) |X|2}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe that
any geodesic locally minimizes length (that is, among close-by curves), even if it
doesn’t minimize globally (for instance ¢ could be a closed geodesic). On the other
hand, in positive curvature we can see that if a geodesic is too long, then it cannot
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minimize even locally. The motivation for this result comes from the unit sphere,
where we can consider geodesics of length > 7. Globally, we of course know that it
would be shorter to go in the opposite direction. However, if we consider a variation
of ¢ where the variational field looks like X = sin (t . %) E and FE is a unit length
parallel field along ¢ which is also perpendicular to ¢, then we get

‘%’(0) - /Oe{‘X’2—sec(é,X)|X|2}dt
/;{(%)2-6052(#%)—sec(é,X)sinQ(t-%)}dt
¢

/O((%)2~c082(t-%)—sin2(t~%))dt

1
— _ﬁ (€2 _ 772) ’
which of course is negative if the length £ of the geodesic is greater than 7. Therefore,
the variation gives a family of curves that are both close to and shorter than c. In
the general case, we can then observe that if sec > 1, then for the same type of

variation we obtain

d’L 1,5 9
Thus we can conclude that, if the space is complete, then the diameter must be
< 7w because in this case any two points are joined by a segment, which can’t
minimize if it has length > 7. With some minor modifications one can now conclude
that any complete Riemannian manifold (M, g) with sec > k? > 0 must satisfy
diam(M,g) < m - k=1 In particular, M must be compact. Since the universal
covering of M satisfies the same curvature hypothesis, the conclusion must also
hold for this space; hence M must have compact universal covering space and finite
fundamental group.

In the above form, these observations were first made explicitly by Hopf and
Rinow in [74], but only for abstract surfaces. In this foundational paper the authors
demonstrate the Hopf-Rinow theorem, which says that the conditions of metric and
geodesic completeness from above are equivalent. Thus Cartan’s normal spaces are
no more restrictive that Hopf’s geodesically complete spaces.

The next result, which even by today’s jaded standards seems truly amazing, is
another one of Synge’s from 1936 (see [132]). It simply states that any orientable,
closed, even dimensional Riemannian manifold of positive sectional curvature must
be simply connected. The motivation here again comes from constant curvature.
Namely, we know from Hopf’s classification that any space of constant positive
curvature is the quotient of a sphere. Moreover, the deck transformations are
isometries on this sphere and therefore simply orthogonal transformations. Now
on an even dimensional sphere (i.e., in an odd dimensional Euclidean space) any
orientation preserving orthogonal transformation must have a fixed point and can
therefore not belong to the deck group. Thus the only possible element in the deck
group is the antipodal map. With this we conclude that in even dimensions only
the sphere and the real projective spaces have constant positive curvature, and the
latter is not orientable. Note that the same arguments show that in odd dimensions
all spaces of constant positive curvature must be orientable, as orientation reversing
orthogonal transformation on odd dimensional spheres have fixed points. This can
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now be generalized to manifolds of varying positive curvature. Synge did it in
the following way: Suppose M is not simply connected (or not orientable), and
use this to find a shortest closed geodesic in a free homotopy class of curves (that
reverses orientation). Now consider parallel translation around this geodesic. As the
tangent field to the geodesic is itself a parallel field, we see that parallel translation
preserves the orthogonal complement to the geodesic. This complement is now odd
dimensional (even dimensional), and by assumption parallel translation preserves
(reverses) the orientation; thus it must have a fixed point. In other words, there
must exist a closed parallel field X perpendicular to the closed geodesic ¢. We can
now use the above second variation formula
2 Clro2
%’ (0) = /O {‘X) — X sec (c',X)} dt + g (¢, A)l}

‘
= —/ |X|2sec(é,X)dt.
0
Here the boundary term drops out because the variation closes up at the endpoints,
and X = 0 since we used a parallel field. In case the sectional curvature is always
positive we then see that the above quantity is negative. But this means that
the closed geodesic has nearby closed curves which are shorter. This is, however, in
contradiction with the fact that the geodesic was constructed as a length minimizing
curve in a free homotopy class.

Meanwhile, for surfaces another interesting result was discovered by Cohn-Vossen
in the mid 1930’s (see [35]). Using some detailed analyses of the Gauss-Bonnet the-
orem for polygonal regions, he shows that any complete open surface of nonnegative
curvature must either be isometric to a cylinder or diffeomorphic to Euclidean space.
In particular, any complete open surface of positive curvature must be diffeomor-
phic to Euclidean space. We shall see how this was generalized to higher dimensions
in the next section.

In 1941 Myers (see [99]) generalized the diameter bound to the situation where
one only has a lower bound for the Ricci curvature. The idea is simply that
Ric(é, ¢) = Z?:_ll sec (E;, ¢) for any set of vector fields F; along ¢ such that ¢, By, . . .,
E,,_1 forms an orthonormal frame. Now assume that the fields are parallel and con-
sider the n — 1 variations coming from the variational vector fields sin (t- %) E;.
Adding up the contributions from the variational formula applied to these fields
then yields

S S () 0 3) e (D

[0 () o (1 7) - et psin? (1:7) bar

Therefore, if Ric(¢,¢) > (n—1)k? (this is the Ricci curvature of Sy), then we
obtain

n=1 o C(rmy2 9 m 2 .2 m
‘ ddSI;(O) < (n—l)/0 {(Z) - cos (t-z)—k sin (t-z)}dt

(€2k2 — 7T2) ,

= —(n—l)%
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which is negative when ¢ > 7 - k=1 (the diameter of S7'). Thus at least one of the
contributions d;SLJ (0) must be negative as well, implying that the geodesic can’t
be a segment in this situation.

The era of the second variation formula was ended with Preissmann’s paper [118].
In this paper he gave rigorous proofs for all of the above results and added a very
nice result of his own. Preissmann’s observation was that the convexity of distance
functions in nonpositive curvature shows that geodesic triangles have angle sum
< 7. (For surfaces this is of course a consequence of the Gauss-Bonnet theorem.)
Geodesic quadrilaterals must therefore have angle sum < 27. If we now assume that
the sectional curvature is negative, then these inequalities become strict. Using this
very geometric description of curvature, he then shows that all Abelian subgroups
of the fundamental group of a closed Riemannian manifold with negative curvature
must be cyclic. The idea is simply that two commuting isometries can be used
to create a quadrilateral whose angles add up to 27. In particular, we see that no
closed product manifold M x N admits a metric with negative sectional curvature.
The same question for positive curvature was asked by Hopf and is still completely
open even for the simple manifold S? x S2.

4.2. Morse theory. At the same time the variational formulae were discovered, a
related technique, called Morse theory, was introduced into Riemannian geometry.
This theory was developed by Morse, first for functions on manifolds in 1925 (see
[96]), and then in 1934 (see [97]) for the loop space. The latter theory, as we shall
see, sets up a very nice connection between the first and second variation formulae
from the previous section and the topology of M. It is this relationship that we
shall explore at a general level here. In section 5 we shall then see how this theory
was applied in various specific settings.

If we have a proper function f : M — R, then its Hessian (as a quadratic
form) is in fact well defined at its critical points without specifying an underlying
Riemannian metric. The nullity of f at a critical point is defined as the dimension
of the kernel of V2 £, while the index is the number of negative eigenvalues counted
with multiplicity. A function is said to be a Morse function if the nullity at any
of its critical points is zero. Note that this guarantees in particular that all critical
points are isolated. The first fundamental theorem of Morse theory is that one can
determine the topological structure of a manifold from a Morse function. More
specifically, if one can order the critical points z1,...,2x so that f(z1) < --- <
f (zx) and the index of z; is denoted A;, then M has the structure of a CW complex
with a cell of dimension \; for each 7. Note that in case M is closed then x1 must
be a minimum and so A\; = 0, while z; is a maximum and A\ = n. The classical
example of this theorem in action is a torus in 3-space and f the height function
(see [92]).

We are now left with the problem of trying to find appropriate Morse functions.
While there are always plenty of such functions, there doesn’t seem to be a natural
way of finding one. However, there are natural choices for Morse functions on the
loop space to a Riemannian manifold. This is, somewhat inconveniently, infinite
dimensional. Still, one can develop Morse theory as above for suitable functions,
and moreover the loop space of a manifold determines the topology of the underlying
manifold.

If p,q € M, then we denote by €, the space of all smooth, piecewise smooth,
or absolutely continuous paths from p to g. The first observation about this space
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is that
Tiy1 (M) = m; (qu) .

To see this, just fix a path from p to ¢ and then join this path to every curve in

Qpq. In this way £, is identified with ,, the space of loops fixed at p. For this

space the above relationship between the homotopy groups is almost self-evident.
On the space 2,; we have two naturally defined functions, the arclength and

energy functionals:
[,

B0 = 5 [hl

While the energy functional is easier to work with, it is of course the arclength
functional that we are really interested in. In order to make things work out nicely
for the arclength functional, it is convenient to parametrize all curves on [0, 1]
and proportionally to arclength. We shall think of €2,, as an infinite dimensional
manifold. For each curve 7y in €, the natural choice for the tangent space consists
of the vector fields along v which vanish at the endpoints of «. This is because these
vector fields are exactly the variational fields for curves through ~y in €24, i.e. fixed
endpoint variations of . An inner product on the tangent space is then naturally
defined by

h
2
I

(X,Y) = /0 g (X,Y)dt.

Now the first variation formula for arclength tells us that the gradient for L at ~ is
—V475. Actually this can’t be quite right, as —V 4% doesn’t vanish at the endpoints.
The real gradient is gotten in the same way we find the gradient for a function on
a surface in space, namely, by projecting it down into the correct tangent space.
In any case we note that the critical points for L are exactly the geodesics from p
to ¢q. The second variation formula tells us that the Hessian of L at these critical
points is given by

V2L (X) =X+ R(X,%)7,

at least for vector fields X which are perpendicular to v. Again we ignore the fact
that we have the same trouble with endpoint conditions as above. We now need to
impose the Morse condition that this Hessian isn’t allowed to have any kernel. The
vector fields J for which J + R (J,%)4 = 0 are called Jacobi fields. Thus we have
to figure out whether there are any Jacobi fields which vanish at the endpoints
of . The first observation is that Jacobi fields must always come from geodesic
variations. The Jacobi fields which vanish at p can therefore be found using the
exponential map exp,, . If the Jacobi field also has to vanish at g, then ¢ must be
a critical value for exp, . Now Sard’s theorem asserts that the set of critical values
has measure zero. For given p € M it will therefore be true that the arclength
functional on €, is a Morse function for almost all ¢ € M. Note that it may not
be possible to choose ¢ = p, the simplest example being the standard sphere. We
are now left with trying to decide what the index should be. This is of course the
dimension of the largest subspace on which the Hessian is negative definite. It turns
out that this index can also be computed using Jacobi fields and is in fact always
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finite. Thus one can compute the topology of €,,, and hence M, by finding all the
geodesics from p to ¢ and then computing their index.

In geometric situations it is often unrealistic to suppose that one can compute
the index precisely, but as we shall see it is often possible to given lower bounds
for the index. As an example, note that if M is not simply connected, then 2,4 is
not connected. Each curve of minimal length in the path components is a geodesic
from p to ¢ which is a local minimum for the arclength functional. Such geodesics
evidently have index zero. In particular, if one can show that all geodesics, except
for the minimal ones from p to ¢, have index > 0, then the manifold must be simply
connected.

4.3. Gauss-Bonnet revisited. In 1926 Hopf proved (see [73]) that in fact there
is a Gauss-Bonnet formula for all even dimensional hypersurfaces H?" c R2"*1,
The idea is simply that the determinant of the differential of the Gauss map G :
H?" — §27 i5 the Gaussian curvature of the hypersurface. Moreover, this is an
intrinsically computable quantity. If we integrate this over the hypersurface, we
obtain, as Kronecker did for surfaces,

1

where deg (@) is the Brouwer degree of the Gauss map. Note that this can also be
done for odd dimensional surfaces, in particular curves, but in this case the degree
of the Gauss map will depend on the embedding or immersion of the hypersurface.
Instead one gets the so-called winding number. Hopf then showed, as Dyck had
earlier done for surfaces, that deg (G) is always half the Euler characteristic of H,
thus yielding

2

Since the left-hand side of this formula is in fact intrinsic, it is natural to con-
jecture that such a formula should hold for all manifolds. The problem was to
find the correct type of curvature to integrate. Namely, just because det (DG)
is an intrinsic quantity doesn’t mean that it has an expression that makes sense
on manifolds which are not hypersurfaces. The simplest manifold for which the
above formula doesn’t necessarily make sense is complex projective space. Given
the work of Kronecker and Dyck the above formula seems less than surprising, but
the other important new discovery in Hopf’s paper was the new formula for the
Euler characteristic in terms of the indices of a vector field.

In the 1930s Allendoerfer and Fenchel independently of each other established
a Gauss-Bonnet formula for all closed submanifolds of Euclidean space, thus gen-
eralizing Hopf’s result to arbitrary codimension. In 1943 Allendoerfer and Weil
in [2] then established a completely general Gauss-Bonnet formula for all closed
Riemannian manifolds. Their proof used a local polyhedral version of the Gauss-
Bonnet formula and also a result of Janet-Burstin-Cartan that real analytic metrics
can locally be isometrically imbedded in Euclidean space. Thus from Whitney’s
result that any manifold admits an analytic structure and the fact that any Rie-
mannian metric locally can be approximated by an analytic metric, one can get the
whole result. Almost simultaneously, Chern in a very important paper in 1944 gave
an intrinsic proof of the Gauss-Bonnet theorem, and therefore completely bypassed
the idea that one needs to (locally) embed the space into Euclidean space. Chern’s
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proof is also important in many other respects, for it gave him the idea to com-
pute characteristic classes using curvature, something that eventually became very
important in connection with the index theory developed by Atiyah and Singer.

4.4. The Bochner technique. In the 1946 paper [19], Bochner develops an en-
tirely new way of working with curvature and analysis on manifolds. The idea goes
back at least to Bernstein around 1900. He used that if u : @ C R — R is a
harmonic function, then

A% Vul? = |V2u| > 0.

Thus the energy %|Vu|2 of u is always a subharmonic function. Bochner real-
ized that this game could also be played on Riemannian manifolds and moreover
with several different kinds of quantities. However, an interesting thing happens.
Namely, various curvature quantities also enter into these formulae. Let X be a
vector field on a closed Riemannian manifold (M, g). We think of VX as a (1,1)-
tensor v — V, X. When this tensor is skew-symmetric, the vector field is called
a Killing field. This condition is equivalent to assuming that the flow of X acts
by isometries. When VX is symmetric, X is locally the gradient for a function,
or in other words the 1-form w (v) = g (v, X) is closed. To this we wish to add
the condition that divX = 0, or in other words that X is locally the gradient of a
harmonic function. Such vector fields are called harmonic. In these cases of Killing
and harmonic vector fields, Bochner established the formulae

A% |X|* = |[VX]* + Ric(X,X),

where the — occurs when X is a Killing field. Integrating over M and using Stokes’
theorem then imply

L2
0 = A-|X
S IX]

M
= /|VX|2j: /Ric(X,X).
M M

Therefore, if Ric < 0 and X is a Killing field, we see that VX = 0; i.e., X is
a parallel field. Moreover, we must have that Ric(X, X) = 0. Thus X = 0 in case
the Ricci curvature is negative. By a result of Myers and Steenrod (see [100]) from
1939, it was known at the time that the isometry group of a Riemannian manifold
is a Lie group whose Lie algebra is the set of Killing fields. Hence closed manifolds
of negative Ricci curvature must have finite isometry groups.

In the other case, where Ric > 0 and X is harmonic, we see again that VX =0
and that Ric(X, X) = 0. Thus we again conclude that X = 0 when Ric > 0. This
time the importance of the result lies in the fact that the space of harmonic vector
fields is the same as the first cohomology with real coefficients. More generally it was
established by Hodge in 1936 (see [71]) that the space of harmonic p-forms is exactly
the pth cohomology group. Thus we get the conclusion that a closed Riemannian
manifold with positive Ricci curvature has vanishing first Betti number. This is
much weaker than Myers’ result which says that the fundamental group must be
finite. The added benefit is that we can also show that if the Ricci curvature
is merely nonnegative, then the first Betti number is less than or equal to the
dimension. Moreover, equality occurs only for flat tori. In particular, any metric
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on the torus with nonnegative Ricci curvature must be flat. We shall see in the next
sections how this type of result has been generalized in many different directions.
Some people also refer to the formulae

1
Ag X[ = |[VX]> £ Ric(X,X)

as Weitzenbock formulae. In 1923 in his book on invariant theory (see [139)]),
Weitzenbock actually did establish a similar formula for p-forms. More precisely, he
considered the exterior derivative d and its dual ¢, which is defined on a Riemannian
manifold (this operator is up to sign the divergence of the form). He then computed
dd + dd and showed that it could be decomposed as follows:

s +6d = V*V + C (R).

Here V* is the dual to the connection considered as a map V : I'(TM) —
End (TM,TM) (i.e., V takes vector fields X to the (1,1)-tensor VX), and C (R)
a contraction of the curvature tensor on forms. We should warn the reader here
that both dd + dd and V*V have positive eigenvalues and therefore look like the
negative of a trace.

From this formula one can get the above Bochner identity at least for 1-forms af-
ter working out that in this case C (R) is the dual of the Ricci tensor. Weitzenbdck,
however, did not go that far. More generally one often has a natural type of Laplace
operator A on sections of a bundle £ — M, where E has an inner product structure
and M is a Riemannian manifold. Given a natural type of connection on E, i.e., a
map V :T'(E) — End (TM, E) one can then usually find formulae of Weitzenbock
type

A=V*V+C(R),

where C (R) is a contraction in the curvature of the connection V. A particularly
interesting case, as we shall see in the next sections, is when FE is a spinor bundle
and A the square of the Dirac operator. But there are many other examples as
well.

5. STRUCTURE RESULTS

In this section, which covers the period 1950-1975, we shall see how the sec-
ond variation and Bochner techniques were substantially improved to the point
where they yielded several deep connections between the topology and geometry
of Riemannian manifolds. We shall see that Morse theory was instrumental in the
developments of many of the new results. Morse theory was explained briefly in
section 4.2. For a more detailed description, the reader is referred to [92] and [80].

5.1. Rauch comparison. First we should point out that the methods of proof we
use here are adopted from the two fundamental equations of Riemannian geometry
from Section 3.3. Originally people used variational methods and Jacobi fields
for this. However, we feel that the approach developed here is quite natural and
perhaps easier for the uninitiated to comprehend.

In his 1926 paper Synge actually proves that if a closed manifold (M, g) satisfies

k < sec < K, then we have that B (O,TF/\/E) C int(conj,) C B (O,ﬂ'/\/E) , where

7/Vk is interpreted as oo in case k < 0. Thus the exponential map is nonsingular
on a given large region. Rauch in 1951 (see [119]) refined this statement to actually
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get bounds for the differential of the exponential map. The method is the same
as that used by Cartan to get that the exponential map is distance nondecreasing
in nonpositive curvature. In the language of polar coordinates on int (conjp) as
explained in 3.3, we obtain that the metric as a bilinear form satisfies

snic (1) (0ap) < (gag (1)) < sni (1) (Bap)

where sny, is the function

sin(\/zr) .
T if k> O,
sng (1) = r if k=0,
VR g <o,

This means that the exponential map is increasing when compared to constant
curvature K, and decreasing when compared to constant curvature k. The above
inequalities are referred to as the Rauch comparison estimates. With these estimates
Rauch started a whole new trend by proving the first sphere theorem. Specifically,
he shows that if the curvatures are pinched so that 0.74- K < sec < K, then the uni-
versal covering is homeomorphic to a sphere. It is very likely that H. Hopf suggested
this type of pinching problem to Rauch. Certainly Hopf thought about trying to
generalize his own result on manifolds with constant curvature to manifolds which
almost have constant curvature.

The proof is quite complicated. The idea is to try to cover M by two metric
balls of radius 7/ VK and then, using the exponential maps centered at these two
points, to glue together the corresponding balls in the tangent spaces in such a way
that one obtains a covering map. When a closed manifold is exhibited as a union
of two discs, it follows from the Schoenflies theorem that it is a twisted sphere and
in particular homeomorphic to a sphere. Work of Milnor, however, shows that it
might not be diffeomorphic to a standard sphere.

In 1958 Klingenberg announced an improvement to Rauch’s result. The full
version appeared in 1959 in [78]. Klingenberg’s idea was that one should be able
to control the injectivity radius. In an ingenious argument that builds on Synge’s
paper of 1936, he shows that in even dimensions the exponential map will in addition
be one-to-one on balls of size 7/v/K. That is, the injectivity radius is > n/VK,
provided that the manifold is simply connected and 0 < sec < K. Therefore, as long
as one can exhibit M as the union of two balls of size 7/v/K, one will immediately
have shown that M is the union of two topological balls and thus that M is a sphere.
Using this, Klingenberg was able to improve the pinching constant of Rauch from
0.74 to 0.55.

Shortly afterwards in 1958, Berger discovered a new method for showing that a
space becomes a homotopy sphere using Morse theory (see [11]). His idea is that
if sec > k > 0, then geodesics of length ¢ > 7/v/k have index > (dim M — 1).
This follows immediately from Synge’s estimates, because for any parallel field £
perpendicular to the geodesic, the variational field sin (¢7r/¢) E has negative second
variation. Thus there is an n — 1 dimensional subspace on which the Hessian
is negative definite. Therefore, if one can find p,q € M such that all but the
shortest geodesics from p to ¢ have length > w/ Vk, then Morse theory would
guarantee that the homotopy groups in dimensions 1,... ,dim M — 1 vanish, and
hence the space must be a homotopy sphere. Berger then proceeded to show that
if the manifold is simply connected and strictly quarter pinched, i.e., for some
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0 > 1/4 we have 0 - K < sec < K, then in fact all geodesic loops must have length
> 7/v5 - K > 7/vVK. Using Sard’s theorem as described above, we can then find
q and p close together so that they are not conjugate to each other and have the
desired index property for the geodesics joining these points.

Using Klingenberg’s injectivity radius estimate, this result was soon improved
by Berger in 1960 (see [13] and [12]). In this work the idea is that if sec > k, then
the manifold can be covered by two balls of radius 7/ 2v/k. In the quarter-pinched
situation this means the space will be covered by two balls of radius > 7/ VK. But
by Klingenberg’s argument such balls are discs, at least in even dimensions; thus
the manifold must be homeomorphic to a sphere. This same argument also seems
to have been noticed by Toponogov around the same time (see [135]). The proof of
why such manifolds are covered by two such discs and also why geodesics between
appropriate points are long will be discussed below. In fact, one can show that if
sec > k and diam > 7T/2\/E, then it is possible to find points such that all but the
shortest geodesics between these points have length > m/ vk and therefore index
> dim M — 1. Thus such manifolds have to be homotopy spheres. While the main
ingredients for this result were available already in Berger’s 1958 paper, this result
doesn’t seem to have attracted much attention at the time. Usually people refer
to [14] for this result. In the literature this result is strangely enough often stated
only for simply connected manifolds and often without attribution to Berger. This
result is known as the diameter sphere theorem and will also be discussed below in
Section 6.1.

In 1961 Klingenberg in [79], using very delicate arguments based on the Morse
theory for the loop space of M, showed that his injectivity radius estimate also
holds in odd dimensions, provided the manifold is simply connected and quarter
pinched. For a completely different proof of this see also [43]. Thus the quarter-
pinched sphere theorem was shown to hold in all dimensions. In even dimensions
this result is optimal, as the Fubini-Study metric on the projective space satisfies
1/4 < sec < 1. In odd dimensions the story is still not completely settled. However,
Berger in 1962 discovered some very important examples (see [14]). By shrinking
the Hopf fibers on S he was able to get a sequence of metrics g. on this space such
that 0 < sec < 1 and with volume going to zero as € — 0. Thus some sort of strong
pinching condition is needed in order to get an injectivity radius estimate in odd
dimensions. As late as 1994, Abresch and Meyer showed that an injectivity radius
estimate can be gotten provided the metric is almost quarter pinched. Abresch and
Meyer have a very nice survey article in [62] that explains in detail all of the above
material on sphere theorems and injectivity radius estimates, together with many
other related results that we are not going to mention here.

In the above-mentioned results related to the sphere theorem a new result by
Toponogov (see [134]) turned out to be very convenient and later became one of the
cornerstones of global Riemannian geometry. It is essentially just a generalization
of the Rauch estimates to all of the segment domain. To explain the idea in full, as
it is understood these days, we shall first mention another important result from
this period that Toponogov was not aware of. The story starts with a paper from
1958 by Calabi (see [21]), where he extends the maximum principle of E. Hopf for
C? functions to functions which are merely continuous and weakly subharmonic. In
this paper Calabi also shows how this can be used in Riemannian geometry to get
global weak estimates for the Laplacian of a distance function. Furthermore, the
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same technique yields weak estimates on the Hessian, but this wasn’t observed until
much later (see Karcher’s article in [33]). Given a distance function f (x) = d (z,p)
on a complete Riemannian manifold, Calabi observed that on the segment domain
the Laplacian A f satisfies the differential equation

0 (Af) + tr (V2f)* = —Ric (9,0,

Note that this comes from taking traces in the second fundamental equation from
section 3.3. The Cauchy-Schwarz inequality then yields
A 2
o, (an + B < Rie(,.0,).
Therefore, if Ric > (n — 1) k, then one observes that the Laplacian is less than what
it is in constant curvature k. Specifically,

snj o f
Af<(n—1)—E—=.
f -1
The important discovery is now that in fact this estimate holds on all of M in the
weak sense. More precisely, we say that (Af) (z) < a in the weak sense if for each
€ > 0 there is a smooth function g. defined in a neighborhood of x such that

f@) = g:(),
f < g
Ag. < a+te.

In case f is smooth at z this evidently says (Af) (z) < a.

To see that the above estimate holds in the weak sense, one simply notes that
at points ¢ where f is not smooth one can choose a unit speed segment ¢ from p
to ¢ and then use that the functions

fe(x)=ec+d(o(e),x)

are smooth. By the triangle inequality these functions are support functions from
above for f at g; that is,

flx) < fo(o),
fl@ = f(q).

Moreover, by the above estimate on the Laplacian we also have

snj_ o f, snj o f
Af. < (n—1)—k 2% —1) &
fs_(n )snkofa ajo(n )snkof’

thus yielding the desired weak Laplacian estimate.
However, our interest is in understanding the Hessian of f. Using the second
fundamental equation

Lo,V f+V?foV?f=—R(d,,")0,
one can as before obtain estimates where f is smooth:
!/
vip< 2ot g,
sng o f
Here, I — drd, is the tensor that orthogonally projects onto the complement of J,.
One slight problem, however, is that the Hessian is always zero in the direction

of 0,-, and so it is not really possible to extend the estimate to nonsmooth points.
Assuming that sec > k, we can replace f by a modified distance function fr. This
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function is obtained from f by composing it with a function ¢, which has the
property that in constant curvature & the modified distance function has a Hessian
which is a homothety, thus eliminating the zero eigenvalue. In the case where k = 0,
we simply change f to %fQ, and if £ = 1, then f; = 1 — cosof. As in the Ricci
curvature case one then has that

V2fe < (snj o f) I

on all of M. Here the right-hand side is the Hessian one has in constant curvature
k. One can then use the generalized maximum principle to show Toponogov’s com-
parison theorem: Any triangle on a Riemannian manifold with sec > k has larger
interior angles than the triangle on S7 with the same side lengths. Here a triangle
is simply three points joined by segments.

Toponogov first proved this for £ > 0 in [134] and then for £ = 0 in [136].
However, both results had been announced without proofs already in 1957. The
case where £ = 0 turns out to be the easiest to establish, and £ < 0 is also
not too hard. Toponogov’s interest in these results seems to have been motivated
by two rigidity results he also proves in these papers. The first is the mazimal
diameter theorem: If sec > k > 0 and the diameter has the maximal possible
value of 7/v/k, then (M, g) is isometric to Si. The second is the so-called splitting
theorem. Instead of having positive curvature, one simply has sec > 0. To replace
the maximal diameter assumption one then supposes the manifold contains a line,
i.e., a unit speed geodesic o : R — M with d (o (s),0(t)) = |s — t| for all s,t € R.
The conclusion is then that (M, g) is isometric to (N x R, gy + dt*) , where N
is a totally geodesic hypersurface with the induced metric from M. Note that, in
particular, such manifolds do not have any points where all curvatures are positive.
The proofs of these two results are quite simple given the above Hessian estimates.

In the first case simply consider two points p, g at maximal distance, and let f
and h be the distance functions from these points. Then we have from the triangle
inequality that

f(@)+h(z)>7n/VE

for all x € M, with equality holding for  on any segment joining p and g. The
modified distance functions will then satisfy

fe () + hy (2) > 2,

with equality for z on any segment joining p and ¢. The Hessian estimates on the
other hand show that this sum is concave:

V2 (f1, (z) + hy, (z)) < 0.

Thus the sum is constant. From this it follows that both functions are smooth away
from {p, ¢} and that the Hessians are what one would expect in constant curvature.
Now recall that the first fundamental equation from 3.3 tells us what the metric
must be if we know the Hessian of a distance function. Consequently, if the Hessian
is the same as it would be in constant curvature k, then it follows that the manifold
must have constant curvature k.

With this we can now also see how Berger established the important results that
lead to the quarter-pinched sphere theorem and the diameter sphere theorem. Given
the injectivity radius estimate, we have a manifold which satisfies sec > k > 0 and
inj >/ 2v/k. For simplicity let us suppose that £ = 1. The important point is that
if p and g realize the diameter ( > 7/2), then the two metric balls B (p,inj,) and
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B (q,inj,) cover M. To see this, fix ¢ B (p,inj,) . The modified distance function
f1 =1—cosof for the distance from p satisfies

V2f1 <cosof = (1— f1) 1.
The Hessian is therefore negative-definite on the complement of B (p,7/2) C

B (p,injp) . Thus ¢ must be the unigue maximum for f; (and f). Therefore, if
o is a segment joining g and z, the composition ¢ = f; o o will satisfy

" < 1-¢,
¢(0) = 1-—cosd,d=diamh,
¢'(0) = 0.
It is then fairly easy to check that ¢ must be smaller than the solution to
y'o= 1-y,
y(0) = 1-—cosd,
y'(0) = o

The solution to this equation is y (t) = 1 — cosdcos(t). As ¢(t) < y(t) =1 —
cosd cos (t) we see that ¢ < 1 for ¢ > 7/2. Or, in other words, that d (p,o (t)) < 7/2
if t > m/2. But this means exactly that x must lie in B (p, inj,) if it doesn’t lie in
B (q7 1n.]q)

A similar argument will now also establish the other result by Berger. Instead,
the assumption is that sec > 1 and diam > 7/2. If we pick p,r € M such that
d(p,r) = diamM = d > m/2, then we can argue as above that for ¢ sufficiently
close to p, any geodesic from p to ¢ is either minimal or has length > 7 (and
therefore index > n — 1).

In the case where sec > 0 and we have a line o, a construction similar to the
one used to prove the maximal diameter theorem can be devised. Instead of using
modified distance functions we simply use that

1 1
V2f< = (I—drd,) < =I
U a5
to get the estimate
1
V2if< =TI
f

everywhere. Given a ray v : [0,00] — M, ie., d(v(s),v(t)) = |s—t| for all
s,t € [0,00], we can construct a Busemann function

[y (z) = lim (d(z,v(t)) —t).

t—o0
This is simply the renormalized distance from infinity in the direction of the ray.
On Euclidean space Busemann functions look like f () = 4 (0) - (v (0) — z); that
is, they measure the length of the projection of x down on the line . The above
Hessian estimate now translates into the fact that these Busemann functions are
concave:

V3f, <0,

since the actual distance from any point x to 7 (co) is infinite. Given the line, we
can construct two Busemann functions fi by going off in both directions. The
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triangle inequality now implies that

f++f—207

with equality holding on the line. However, as the sum is also concave it must be
constant. Then each of the Busemann functions are linear (V2fy = 0), and the
hypersurface we seek is N = f 1(0). Rigidity of the metrics follows as before.

Given these results and the fact that Calabi developed the necessary analytic
tools to work with Laplacians rather than just Hessians, one would expect that
these two results would immediately have been generalized to the case where one
merely has a lower Ricci curvature bound. But it actually took some time for this to
happen. In the case of the splitting theorem for Ric > 0, this was done by Cheeger
and Gromoll in 1971 (see [30] and [44]). The same proof works, except this time
we only have that the Busemann functions are superharmonic:

Afy <0.

However, the maximum principle according to Calabi still works. So the fact that
the sum has a global minimum implies that the sum is constant. Thus the functions
are harmonic. Now the equation

0, (Afe) + tr(V2fe)? = —Ric(d,,0,)

shows that, in fact, the Busemann functions are linear, thus putting us in the
same situation as before. The maximal diameter result for manifolds with Ric
> (n—1)k > 0 and diameter 7/v/k was established by S.-Y. Cheng only in 1976.
His proof used eigenvalue techniques. However, the above proof for sectional curva-
ture again works without using modified distance functions. Thus, modulo a little
analysis, the proof is actually simpler than in the sectional curvature case.

In the paper [30] some interesting consequences for closed manifolds with Ric > 0
are also observed. Notably, any such manifold has the property that the universal
covering is isometric to N x R¥, for some closed Riemannian manifold N with Ric
> 0. From this we can see that the structure of closed manifolds with Ric > 0 is
essentially reduced to that of flat manifolds and closed simply connected manifolds
with Ric > 0. A particularly interesting consequence of this is that any closed
K (m,1) (i.e., the universal covering is contractible) with Ric > 0 must be flat (see
also the weaker but earlier result of Eells-Sampson in section 5.3 and compare to
Bochner’s rigidity result for such metrics on tori).

In the two papers [55] and [30], from 1969 and 1972 respectively, Cheeger, Gro-
moll, and W. Meyer extended Cohn-Vossen’s results for surfaces to all dimensions.
As the Gauss-Bonnet theorem is no longer useful in this more general context, en-
tirely new methods were necessary. In the first paper it is shown that any open
complete manifold of positive sectional curvature is diffeomorphic to Euclidean
space. In the second paper, open complete manifolds of nonnegative sectional cur-
vature are studied. The main result there is the so-called soul theorem, which
asserts that such manifolds are diffeomorphic to the normal bundle of a closed to-
tally geodesic submanifold, called the soul. Thus the first result merely says that in
positive curvature the soul must be a point. The first step in proving these results
is to use that all Busemann functions are concave. We fix € M and consider all
rays v emanating from z and with those the minimum f of all of the Busemann
functions f, corresponding to these rays. This function must again be concave.
Moreover, the superlevel sets are convex, and hence they must also be compact,
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for otherwise some superlevel set would contain a ray -y emanating from z, thus
contradicting that f < f,,. In particular, the maximal superlevel is compact. In
case the manifold has positive curvature this maximal level set is a point. Other-
wise it is just a compact convex subset C. If C' is a submanifold, we have found the
soul. If not, it is necessary to study the structure of C' and show that it contains a
closed convex submanifold. This is done by considering the distance function to the
boundary of C' and showing that this function is concave on C. To this end it is of
course necessary to show, in analogy with convex subsets for Euclidean space, that
if C' is not a submanifold, it is at least topologically a submanifold with boundary.
The final step after having identified the appropriate soul is then to use that the
concave functions, while not smooth, are sufficiently regular that one can use them
to nicely contract the manifold onto the soul. All of the steps in the proof are
quite geometric, but also very technical. A more complete analysis with a full set
of references is available in Greene’s article in [62].

In the context of Morse theory note that if a set S C M is totally convex (e.g.,
a sublevel set of a convex function), then any geodesic which begins and ends in
S must lie entirely in S. Thus all the critical points for the length functional are
curves which lie in S. This means, in particular, that M and S have the same
homotopy type. While this argument doesn’t give the exact statement of the soul
theorem, it at least gives one the correct result in homotopy theory relatively easily.

5.2. Cheeger’s thesis. All of the above results are structure results, in the sense
that from very few geometric assumptions one gains a rather complete picture of
what the underlying manifold looks like. With Cheeger’s thesis in 1967, a com-
pletely new type of result was introduced into global Riemannian geometry (see
[24] and [25]). About the same time Weinstein proved a similar but much weaker
and more specialized result in [138]. The idea is to see what one can say with much
weaker assumptions on curvature. Now keep in mind that any closed Riemannian
manifold can be scaled (blown up) until it has bounded curvature, say, |sec| < 1.
Such a condition therefore says very little about the manifold. However, one can
in addition also try to make assumptions on diameter and/or volume. The Gauss-
Bonnet theorem, for instance, says that only finitely many surfaces admit metrics
with sec > k and vol < V for any k € Rand V' € (0, 00) . In higher dimensions there
is more to topology than just the Euler characteristic. In dimension 3, for example,
we have infinitely many space forms of constant curvature 1. They certainly have
both bounded diameter and volume, but as the fundamental group increases the
volume decreases. The optimal situation that might give us a sort of finiteness
result is therefore to consider the class of closed Riemannian n-manifolds with

[sec] < K,
diam < D,
vol > w,

for fixed but arbitrary positive constants K, D,v. Cheeger’s finiteness theorem
states that each such class contains only finitely many diffeomorphism types.

The first step in his proof is to show that each manifold in such a class has a lower
bound for the injectivity radius which depends only on n, K, D, v (see also [70] for a
different proof of this). Thus exponential coordinates always exist on balls of an a
priori size. The curvature bound then tells us that the differential of the exponential
map is bounded. Moreover, as the manifold is bounded in size it takes only an a
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priori number of such charts to cover the manifold. Suppose now we have an infinite
collection (M;, g;) of Riemannian manifolds in this class. Then cover each of them
by charts as just described. By passing to a subsequence we can even assume that
the same number of charts are used on each manifold in this sequence. Let us
denote them by ¢;; : B (0,r) — M;. The transition functions (bi_jl o ¢ for fixed j, k
are uniformly bi-Lipschitz and can therefore be assumed to converge as well, after
possibly passing to a further subsequence, by the Arzela-Ascoli Theorem. For large
i the manifolds therefore have charts whose transition functions are close. This
indicates that the manifolds should be diffeomorphic. However, all one can show is
that they are homeomorphic, and even this required using some nontrivial results
from geometric topology. Using some general results from topology (see, e.g., [77])
it is then possible to show that in dimensions n > 5 any class of manifolds which
contains finitely many homeomorphism types must also contain only finitely many
diffeomorphism types. Much more work is of course needed to make all this rigorous,
but subsequent developments have made statements and proofs sufficiently simple
that the above outline really can be justified to the point of establishing finiteness
of diffeomorphism types directly. This will be discussed further in section 6.2.
The first proof in the literature of finiteness of diffeomorphism types occurs in [56,
Section 3], [59], and with more details in [110].

5.3. The Bochner technique comes of age. The next two interesting results
using the Bochner technique are due to Lichnerowicz. In the mid 1950s he developed
a Bochner formula for the curvature tensor (see [86]). In the special case where the
curvature is harmonic (i.e., divV R = 0, which is weaker than having constant Ricci
curvature), the formula looks like

1

As |R|* = |VR|” + 2K (R) .

Lichnerowicz at the time used this for various things related to mathematical
physics (see [87]), but we shall in a minute see how it can be used in a more
geometric setting. More importantly, in 1963 Lichnerowicz (see [88]) discovered a
Bochner formula for spinors. In case the spinor is harmonic it says

1 scal
Aslol* = Vol* + == ol
He was thus able to conclude that any spin manifold with positive scalar curvature
has vanishing A genus. This formula has been very important in various general
forms for almost all developments relating to scalar curvature including, in partic-
ular, Seiberg-Witten theory (see [95]). Given that the Bochner technique works for
more than just forms and vector fields, one is naturally led to conjecture that there
is some general abstract setting where one can apply this technique. The idea is
that it works for any type of section that satisfies appropriate symmetry conditions
on its (covariant) derivative (see e.g. [15]).

Eells and Sampson in 1964 (see also the survey [42]) showed how a Bochner for-
mula for functions between manifolds can be used to show various rigidity results.
Their idea is to first generalize Hodge theory to the point where one can show that
maps between closed manifolds such that the target has nonpositive sectional cur-
vature are always homotopic to a harmonic map. For harmonic functions one then
has a suitable Bochner formula which asserts that in case the domain has nonneg-
ative Ricci curvature and the target nonpositive sectional curvature, then the map
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is totally geodesic. Using these ideas, one can prove a weak type of von Mangoldt-
Cartan theorem for closed manifolds of nonpositive curvature. Namely, all of their
higher homotopy groups must vanish, as spheres of dimension greater than 1 have
positive curvature. They also realized that one could generalize Bochner’s maxi-
mal Betti number result in a very interesting direction. Namely, any metric with
nonnegative Ricci curvature on a closed manifolds which also admits a metric with
nonpositive sectional curvature must be flat. To see this find a harmonic map ho-
motopic to the identity, where the domain metric has nonnegative Ricci curvature
and the target metric nonpositive sectional curvature. As noted in section 5.1, this
result was generalized by Cheeger and Gromoll in 1971.

The next development came in 1971 with D. Meyer’s proof that any manifold
with positive curvature operator must have trivial Hodge cohomology. This had
been conjectured for a long time, and Bochner, Yano and others had many partial
results in this direction. Berger established the conjecture for two-forms in 1961.
Finally in 1975 D. Meyer and Gallot in [48] gave an almost complete classification of
all closed manifolds with nonnegative curvature operator. The classification states
that aside from taking products of such spaces, only spheres, complex projective
spaces, and locally symmetric spaces occur (in the first two cases the metric is not
necessarily the standard one). Their proof uses a nice result of Tachibana from 1974
to the effect that any manifold with nonnegative curvature operator and harmonic
curvature is locally symmetric. The proof of this uses the above-mentioned Bochner
formula for the curvature tensor.

6. SPACES OF RIEMANNIAN MANIFOLDS

In the last period (1975-1998) several new techniques were developed that led to
a much better understanding of the topological properties of Riemannian manifolds.
The main developments were critical point theory for nonsmooth distance functions,
Ricci flow, and various types of convergence for Riemannian manifolds.

6.1. Critical point theory. Critical point theory should really be called regular
point theory, for it is the lack of critical points which is used throughout. Thus one
should be reminded of Lusternik-Schnirelmann theory rather than Morse theory.
The best comprehensive account of this theory in the setting we wish to concentrate
on is the article by Grove in [53, Vol. 3]. In Greene’s article in [62] it is also explained
how this theory works for convex functions and in connection with the soul theorem.
The idea began with a strengthening by Grove and Shiohama in 1977 (see [65]) of
Berger’s diameter theorem: Any closed Riemannian manifold with sec > k£ > 0 and
diam > m/ 2v/k is a homotopy sphere. Not only did they show directly that the
manifold must be a union of two discs and therefore homeomorphic to a sphere,
but they also introduced a new way of proving this. Without upper curvature
bounds one cannot hope to get injectivity radius estimates, but this doesn’t prevent
appropriate metric balls from being discs. Their idea was to consider two points p, g
at maximal distance. We have already seen how the distance functions from these
points are concave near the opposite points, and thus that these distance functions
have a unique global maximum. The important realization is that, in fact, these
functions in a suitable sense are regular on the whole region M — {p, ¢} . The way to
see this is via Toponogov’s comparison theorem. Take any x € M — {p, ¢} and join
the three points x,p,q by segments. As the base segment from p to ¢ has length
> 7/ 2k we see that a comparison triangle with the same side lengths in 5% has
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angle > 7/2 at . Thus the angle at x must also be > /2. But this means that
all segments from p to x will form an angle > 7/2 with a given segment from x
to ¢. A first variation argument then shows that if we go in the direction of the
fixed segment from z to g, then the distance from p must increase. Thus x is in a
suitable sense a regular point for the distance to p. A partition of unity argument
can now be used to get a vector field X on M — {p,q} with the property that
the distance from p increases along the integral curves for X. In this way we can
exhibit M — {p,q} as an open cylinder I x S"~1. From this we conclude that M is
homeomorphic to a sphere.

More generally we say that x is critical for p if for any direction from x we
can find a segment from p to z that forms angle < /2 with the chosen direction
at x. Thus «x is critical if one can’t find a direction in which the distance function
increases. Already in Berger’s work on the sphere theorem the idea of critical points
was important. Specifically, he showed that a point were the distance function is
maximal must be a critical point. His method of proof was simply to use a first
variation argument to show that at any point which is not critical one can find a
direction in which the distance function increases.

The next major development using this type of regular point theory for the
distance function came with Gromov’s Betti number estimate from 1981 (see [58]):
There is a constant C (n, k, D) so that any closed Riemannian n-manifold, (M, g),
with sec > k € R and diam < D has Betti numbers with any field coefficients, F,
bounded by

> b (M,F) < C(n,k-D?).
=0

Various extensions of the Bochner technique can also be used to get similar bounds
for the Betti numbers. But one can of course only bound the dimension of the de
Rham cohomology this way. Also much stronger curvature hypotheses are needed
in order to control the curvature quantities that appear in the Bochner identities
for forms. The best condition seems to be a lower bound for the curvature operator
and an upper bound on the diameter (see [9]).

With Cheeger’s finiteness theorem for the class: k£ < sec < K, diam < D, and
vol > v and Gromov’s Betti number estimate for the much larger class: k£ < sec and
diam < D, it is natural to conjecture that with the intermediate hypotheses: k£ <
sec, diam < D, and vol > v one should be able to obtain an intermediate finiteness
result, say, a bound on the number of homotopy types. Again using critical point
theory, but now for the distance function to the diagonal in M x M, Grove and
Petersen in 1988 were able to prove this (see [63]). The main hurdle to proving
this result is the fact that one cannot get a lower bound for the radius at which
metric balls are contractible. This is why one has to go to the Cartesian product
M x M and study how neighborhoods of the diagonal can be contracted onto the
diagonal. Soon after, it was realized that techniques from geometric topology could
be used to improve the conclusion of this result so that one essentially has finiteness
of diffeomorphism types, at least in dimensions > 4 (see [64]). Perel’'man refined
all of the above results that use critical point theory to hold for a larger class of
metric spaces (see [108]). Given that it has not been possible to prove these results
with more analytic methods, it is perhaps interesting that in fact the results of
[64] can be generalized to a setting where one has only integral curvature bounds
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(see [113]). Not only that, but the critical point theory still works in this setting,
despite the fact that a substitute for Toponogov’s theorem is no longer available.

In 1990 Abresch and Gromoll discovered a new way of estimating critical points
using an excess estimate (see [1]). The excess function for two points p, ¢ measures
the deviation of the triangle inequality to be an equality:

excpq () =d(p,x) +d(x,q) —d(p,q).

Thus excp 4 (z) = 0 iff = lies on a segment joining p and q. The height, h, of a
triangle p, x, g is the distance from x to the chosen segment from p to ¢. In a metric
space we have that these quantities are related by

excp ¢ (x) < 2h.

In general this cannot be improved. However, if we are on a Riemannian manifold
with Ric > (n — 1) k, then

exCp,q (¢) < Ey.gz. (h/s) - h,

where s = min {d (p, z) ,d (x,q)} and Ej.g>,, is a function which depends only on
the lower Ricci curvature bound and dimension, and R, where the triangle pxq is
contained in a ball of size R. In addition we have that Ej.ge,, () — 0 as t — 0.
The lower Ricci curvature bound therefore leads to an improved excess estimate for
triangles where z isn’t too close to p or g. In the special case where kK = 0 we have
Eo., (t) = 8t/ Note that the dependence on k - R? is very important in case
k isn’t zero. Namely, we could apply the excess estimate to the case where we have
a line and two Busemann functions as in Section 5.1. In this case

(f- + f+) () = Jim excyr) e (2)

is simply the excess of a triangle with fixed height and base going to infinity. Thus
we should obtain f_ + fi = 0 from the excess estimate. However, due to the
dependence of R this only works in case we have k = 0. Note that, in particular,
the excess estimate gives us a new proof of the splitting theorem in nonnegative
Ricci curvature. While this is a roundabout way of proving the splitting theorem,
it has the important consequence that one can prove it for appropriate limit spaces
(see [26] and also Section 6.2 below).

The way to use the excess estimate in connection with critical point theory is to
observe that if x is critical for p, then triangles p, z, ¢ can be chosen to be acute at x.
Acute triangles, however, have a tendency to have rather large excess, although one
can only get a specific lower bound from using Toponogov’s comparison theorem.
Using this, Abresch and Gromoll showed that any complete Riemannian manifold
with Ric > 0, sec > k and bounded diameter growth, i.e., the diameter of the
distance spheres S (p,r) remain bounded as r — oo, has the property that the
distance function to p has no critical points outside some compact set. In particular,
such manifolds must be homeomorphic to the interior of a compact manifold with
boundary. There seems to be no way of getting rid of the lower sectional curvature
bound. In 1994 Pere’'man discovered a new way of using this excess estimate
(see [109] and Zhu’s article in [62]). His idea was that instead of assuming that
distance spheres are small relative to their radius, one could get information out of
assuming that they have large volume. Specifically, we have that if Ric > (n — 1) &,
then volB (p,r) < vol(B (p,r) C Sj) . If the volume of B (p, r) attains this maximal
value, then it is easy to see that it is isometric to B (p,r) C Sj. Perel’'man’s idea is
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that if volB (p, ) is close to the maximal possible value, then there are lots of long
segments emanating from p that go all the way out to the boundary of this ball.
The excess estimate can then be used to conclude that this ball is contractible, at
least inside a slightly larger ball. This conclusion is similar to the work in [63], and
indeed one obtains a similar finiteness result: There is an ¢ (n, k,r) > 0 such that
the class of closed Riemannian n-manifolds with

Ric > (n—1)k,
diam < D,
volB (p,r) > (1—¢)vol(B(p,r) C S})

contains only finitely many homotopy types. The methods from [64] still work
in this context, and so the conclusion can be strengthened to finiteness of diffeo-
morphism types in dimensions > 4. Below we shall see how Cheeger and Colding
have improved this substantiality to conclude that the balls B (p,r) are both met-
rically and topologically close to B (p,r) C Sj. From this one can get finiteness of
diffeomorphism types in all dimensions.

Finally we should mention a few other results which don’t really fall under this
heading, but are related to some of the classical results already mentioned.

First, related to the soul theorem, there is the paper of Ozaydln and Walschap
(see [105]) where it is shown that not all vector bundles over closed manifolds
with nonnegative curvature admit complete metrics with nonnegative curvature.
In particular, nontrivial bundles over tori do not admit such metrics.

Then there is Perel’man’s improvement on the soul theorem (see [107]), which
says that there is a Riemannian submersion from the entire space onto the soul.
This result, in particular, shows that if such a manifold has positive curvature
somewhere, then the soul must be a point and hence the space diffeomorphic to
Euclidean space.

Wilhelm in [140] extends Synge’s theorem. Synge’s theorem does not hold if one
merely has positive Ricci curvature, but something can still be done if the closed
geodesic under investigation is long. To make this precise define the first systole,
sys1, as being the lower bound on the lengths of noncontractible loops (simply
connected spaces thus have infinite first systole). The result can now be stated
as: If Ric > (n—1)k > 0 and sys; > (/2=2 . 7/Vk, then (1) if the manifold is
even dimensional and orientable, it must be simply connected; while (2) if it is
odd dimensional, it must be orientable. The technique used is a very ingenious
extension of Synge’s original argument. The systole bound is, moreover, easily seen
to be a necessary condition for this result to hold.

Finally Myers’ diameter bound was generalized to situations where one has in-
tegral curvature bounds in [114].

6.2. Convergence. Recall Berger’s example of metrics on the 3-sphere with the
property that the curvature stays bounded while the volume goes to zero. More
generally, if we have a Riemannian manifold (M, g) and a Killing field X without
zeros, then we can shrink the metric ¢ in the direction of X so as to obtain a
family of metrics with bounded curvature, bounded diameter and volume going
to zero. In the case of the Berger sphere we used the Killing field associated
to the Hopf fibration; thus the space looks as if it is collapsing to the base of
this fibration, namely the 2-sphere. The Killing field can, however, be positioned



334 PETER PETERSEN

in such a way that the space collapses even further. Note for instance that on
the standard 3-sphere we have an isometric torus action. If we quotient out by
this action, then we obtain an interval. Now simply choose the Killing field to
correspond to an irrational flow on this torus to get a sequence of metrics on the
3-sphere collapsing to an interval. This construction can easily be generalized to
a situation where one has a commuting set of Killing fields, although no further
examples will be obtained, as one can always use the trick of irrational flows to
reduce the construction to one Killing field. The next step in trying to generalize
this is to consider a nilpotent Lie algebra of Killing fields, i.e., a collection of Killing
fields that can be spanned by Killing fields without zeroes, {Xi,... , X}, subject
to the condition that [X;, X;] =340 axiijy cijk, The interesting idea is now that
one can still shrink the manifold in the direction of these vector fields and obtain a
collapsing sequence with bounded curvature and diameter. This time, however, one
must shrink the metrics more in some directions than in others. A very interesting
example is gotten from this. In dimension three there are many closed manifolds
which admit a nilpotent three dimensional Lie algebra of Killing fields, namely, the
closed quotients of a three dimensional nilpotent Lie group. Thus one obtains a
sequence of metrics on such manifolds with bounded curvatures and such that it
collapses to a point; i.e., the diameter goes to zero. By rescaling, we can arrange
matters so that the diameter is bounded and the curvature goes to zero. In this
way we have examples of manifolds which are almost flat but do not admit flat
metrics. Note that, in fact, any metric can be scaled to have almost zero curvature,
but then the diameter will necessarily be very large. Thus some extra condition is
necessary in order to say something intelligent. In 1978 Gromov (see [56]) proved
that if the scale invariant quantity

diam? - max |sec|

is sufficiently small depending only on dimension, then the universal covering can
in a natural way be identified with a nilpotent Lie group. Subsequently Ruh gave a
complete characterization of such manifolds (see [124]). Better yet, in [32] Cheeger,
Fukaya, and Gromov gave a complete picture of what a manifold with bounded
curvature must look like if it is collapsed in certain places. Note how this comple-
ments Cheeger’s finiteness theorem: When no collapse occurs we have bounds on
the geometry and topology of the space.

Simultaneously with the idea of collapse the idea of compactness was also de-
veloped by Gromov in [59]. There are several ways in which metric spaces and
Riemannian manifolds can converge. The weakest form is Gromov-Hausdorff con-
vergence. This is merely an abstraction of the classical Hausdorff distance between
sets in a given metric space. Thus two metric spaces have Gromov-Hausdorff dis-
tance < ¢ if they can be isometrically embedded into some metric space where they
have Hausdorff distance < €. (Note that an isometric embedding means a distance
preserving map; thus Euclidean spheres are not isometrically embedded into Eu-
clidean space.) The useful result here is that the class of Riemannian n-manifolds
with Ric > (n — 1) k and diam < D is precompact in the Gromov-Hausdorff topol-
ogy for any k € R and D € (0,00). The idea of the proof is to use the relative
volume comparison estimate. This estimate was first observed by Bishop around
1960 for small balls (see [17]), and then extended to hold for all balls by Gromov
around 1980. Gromov was also the first to observe the importance of this result in
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many different contexts. The relative volume comparison result is a type of mono-
tonicity formula that asserts that if Ric(M™,g) > (n — 1) k, then the volume ratio
with constant curvature

vol (B (p,r) C M)
vol (B (p,r) C S})

is decreasing. Given that M also has bounded diameter, one can from this inequality
conclude that M can be covered by N (&) balls of radius €, where the function N (¢)
depends only on n, k, D. This is the idea behind establishing the precompactness
theorem mentioned above. With the help of the precompactness result, one can
under very minimal hypotheses always assume that a sequence of closed Riemannian
manifolds converges to a compact metric space in the Gromov-Hausdorff topology.
From this weak convergence result, one can then with more stringent hypotheses
try to get better information about the limit space and then use this to study the
sequence or class under investigation.

One of the most useful stronger topologies on closed Riemannian manifolds is
that of the C** topology. We say that (M;,g;) — (M,g) in the C** topology if
for large ¢ there are diffeomorphisms f; : M — M;, such that the pullback metrics
ffg; — g in the C*2 topology on M. Note that even for a sequence of metrics on a
given manifold one might not have convergence without moving the metrics in the
sequence by a gauge transformation. Thus, our convergence concept is gauge in-
variant. Note that in each of these stronger topologies a given class of Riemannian
manifolds can only be precompact if it contains finitely many diffeomorphism types.
In order to see when one obtains precompactness in these topologies, we introduce
a more modern concept: The C¥*-norm on the scale of r of a closed Riemann-
ian manifold (M™, g), |[(M, g)ll,. o« measures (in the C*2 sense) how the metric
deviates from the Euclidean metric (d;;) in coordinates ¢ : B (0,r) C R* — M.
The idea is that Euclidean space has norm zero on all scales, flat manifolds have
zero norm on small scales, and all Riemannian manifolds have small norm on small
scales. The content of the developments Cheeger started with his thesis is then that
for fixed but arbitrary =, Q, the set of closed Riemannian manifolds with C**-norm
< @ on the scale of 7 is precompact in the C*# topology for each 3 < «. This, of
course, makes the theory look like Hélder’s extension of the Arzela-Ascoli lemma.

From a geometric point of view we are now left with the question of how these
norms are bounded in terms of the geometry. Under the conditions

[sec] < K,
diam < D,
vol > w,

we saw that the exponential map made the C° norm bounded on the scale of the
injectivity radius. The fact that one only has a C° bound of course complicates
matters a bit, and this was something Cheeger had to worry about. However, using
distance functions as coordinates gives us C' bounds on the scale of the injectivity
radius. This follows from the Hessian estimates for distance functions. But this
doesn’t seem to have been used until 1980 (see [59]). Even better bounds can be
obtained if one uses harmonic coordinates as in [75]. Harmonic coordinates have
the property that the gradient of the coordinate functions is harmonic. As early
as 1922 harmonic coordinates (see [83] and [38]) were used in relativity theory to
simplify the description of gravitational waves. They were also used in [37] to show
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that the metric has the best regularity properties in such coordinates. If we polarize
the Bochner identity to a formula for the inner product of harmonic vector fields
X,Y, then we have

1
589 (X.Y) =g (VX,VY) + Ric(X,Y).

If we use X = Vz? and Y = VaJ for a harmonic coordinate system, then we arrive
at

%Ag (in, ij) =g (Vin, Vij) + Ric (in, ij) .

Writing Vz* and V2z* out in terms of the metric g then yields a formula of the
type

1 .
§Agij = Q(g,09) + Ricyy,

where @) is a universal function in the metric components and its derivatives. From
this equation one sees that if harmonic coordinates exist on a certain size region,
where one has already obtained C' bounds on the metric and has bounds on the
Ricci curvature, then one gets C1'® bounds on the metric as well from standard
elliptic theory (see, e.g., [51]). The problem, of course, is to show the existence of
such harmonic coordinates. Jost and Karcher in the above-mentioned paper man-
aged to do this for the class of manifolds that Cheeger considered. Thus for each
« one can bound the C1'**-norm on a given scale for this class. Consequently one
also gets O precompactness for this class and, in particular, finiteness of diffeo-
morphism types. This result is known as the convergence theorem of Riemannian
geometry.

At this point it is worthwhile to explain a little bit about who did what, aside
from what has already been mentioned. Suppose we have a sequence of Riemannian
manifolds satisfying Cheeger’s conditions which converges in the Gromov-Hausdorff
topology to a metric space. Around 1980 Nikolaev was already aware that this
metric space has bounded curvature in the comparison sense, and from this he
was able to conclude that it must be a smooth manifold with a C'® Riemannian
metric (see [102]). Using the harmonic coordinates of Jost and Karcher, Peters
and Greene-Wu around 1987 showed that the convergence actually happens in the
Lipschitz topology (see [52] and [111]). This topology is, however, weaker than even
the C° topology, and thus the above statement is much stronger. Probably Kasue
was the first to state the result as it is stated above (see [76]).

In 1990 Anderson discovered a new way of obtaining bounds on the metric.
The idea was to use a contradiction type argument in connection with harmonic
coordinates (see [5]), the main point being that one gets a boost in the regularity
of the metric from using these coordinates, as we just explained. His idea then
centers around assuming that one can’t find these coordinates on certain size balls
and extract a contradiction from this, rather than attacking the problem directly,
as Jost and Karcher did. With this, Anderson obtained a C1® precompactness
result for the class satisfying

|Ric]

diam

K,
D,

i.
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In this case a lower volume bound no longer suffices, as Cheeger’s lemma for esti-
mating the injectivity radius fails when one only has bounded Ricci curvature (see,
however, [6]).

For more on compactness and collapsing results (and how this fits into the lan-
guage of norms) we refer the reader to Petersen’s article in [62], and also to [112],
[117]. Fukaya in [45] has an extensive survey of Gromov-Hausdorff convergence and
its uses, including a proof of Gromov’s almost flat manifold theorem.

The latest development in convergence theory came with Colding’s work and its
elaborations by Cheeger and Colding. This work has significantly enhanced our
understanding of manifolds with a lower Ricci curvature bound. We explain very
briefly some of the main points here. It will be convenient to generalize the norm
concept from above. The Reifenberg norm on the scale of r of an n-dimensional
metric space (X, d) is simply

I(X,d)||, =r~"-maxdg_u (B (p,7),B(0,7)),
peX

where dg_pg denotes the Gromov-Hausdorff distance and B (0,r) € R™. A Rie-
mannian manifold has the property that this norm goes to zero as the scale goes
to zero. Conversely if this norm is sufficiently small for all small scales, then the
metric space is in a weak sense a Riemannian manifold (see [27]). This extends an
older result by Reifenberg for subspaces of Euclidean space. The other important
information Colding obtains in [36] is that for a manifold with a given lower Ricci
curvature bound, the Reifenberg norm on the scale of r is small iff the volume of r-
balls is close to the volume of a Euclidean r-ball. From relative volume comparison
one then has that in the presence of a lower Ricci curvature bound the Reifenberg
norm is small on all scales provided it is small on just one scale. This gives one
an amazing control over the metric, and it can be used to show some very nice
results for manifolds with almost maximal volume that extend Perel’'man’s results
mentioned above. In particular, one obtains differentiable stability rather than just
topological stability for a sequence of manifolds with these properties. One of the
main ideas in this new development of Colding is an integral version of Toponogov’s
comparison result for thin triangles as in the excess estimate. This, in turn, comes
from a new L? bound on the Hessian for distance functions. Recall that Topono-
gov’s result depended on an upper bound for the Hessian. The fact that one can
get an L? bound from lower bounds on Ricci curvature might seem strange, but in
the places where the Hessian is very negative the metric develops conjugate points,
and this means that the volume form in these places is very small as well. Thus,
when integrating, these nasty spots disappear. In [116] much of this work has been
generalized to the situation where one has integral Ricci curvature bounds.

In a completely different direction Rong has gained an understanding of con-
vergence when one has positive curvature. Some of his results can be paraphrased
as follows: If the universal covering space of a positively curved manifold admits
a nontrivial Killing field, then the fundamental group contains a cyclic subgroup
whose index is bounded from above by the dimension. This result is, of course, only
interesting in odd dimensions, given Synge’s result, but the important point is that
manifolds with small volume and curvature bounds of the type 0 < § < sec < K
have nearby metrics with sufficient symmetry that one almost gets the desired
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Killing field. In any case, the result still holds for such manifolds (see [122]). An-
other interesting result by Rong can be found in [123], where he extends Bochner’s
theorem of the nonexistence Killing fields in negative Ricci curvature.

6.3. More on the Bochner technique and other analytic methods. In a very
interesting development, Gromov and Lawson managed to almost classify simply
connected manifolds with positive scalar curvature and also established some new
restrictions on manifolds with nonnegative scalar curvature. They did this work in
1980. Similar but weaker results were also obtained by Schoen and Yau just prior
to this. The classification (completed by Stolz in [129]) simply says that either the
manifold is not spin, in which case it admits positive scalar curvature, or if it is
spin it only has positive scalar curvature when A=0 (thus yielding a converse to
Lichnerowicz’s theorem). The new restrictions they obtained, in particular, gener-
alize the rigidity result of Eells and Sampson mentioned above. Namely, they show
that on a closed spin manifold which admits nonpositive sectional curvature, any
metric with nonnegative scalar curvature must be flat. Their result is actually much
more general and also works for infrasolvemanifolds (spaces covered by solvable Lie
groups). The story is explained nicely in [82].

Another important technique was introduced by Hamilton in 1982. He studied
the Ricci flow on a Riemannian manifold

Gtgt = —QRngt .

This flow deforms the metric in the direction of the Ricci tensor. The equation,
while not quite parabolic, is nice enough that one can show local existence for this
flow. The problem then is to study to what extent one gets long time existence.
Note that if one starts with positive curvature, then the metric will shrink in finite
time, as the curvature will always increase. This can be partially averted by suitably
rescaling the time variable. Hamilton obtains two results that so far have not been
obtained with other methods: (1) Any closed three manifold with positive Ricci
curvature admits constant positive curvature. (2) Any closed four manifold with
positive curvature operator admits a metric with constant curvature. These results
and many other things are explained quite well in the article [67], and for some
other interesting results that use the Ricci flow see the articles by Min-Oo and Ruh
and also Nishikawa in [126]. The short time Ricci flow can also be used to give
a different proof of the Gallot-Meyer classification of manifolds with nonnegative
curvature operator (see [34] and Chen’s article in [53, Vol. 3]). This work relies
heavily on other important developments by Mok (see [94]) and Micallef-Moore (see
the next paragraph).

In a different direction, Micallef and Moore in the mid 1980s (see, in particular,
[90]) were able to generalize Synge’s result on closed geodesics in positive curvature
to a similar result for harmonic two-spheres. First they obtain a second variation
formula for such harmonic two-spheres and rewrite it in such a way that one gets
the curvature term to depend on what is known as the isotropic curvature, which
is the sectional curvature on isotropic two planes when one complexifies the tan-
gent bundle. Then they use this formula to show that any closed simply connected
n-manifold n > 4 with positive isotropic curvature is a homotopy sphere. This
result is interesting, not only in its own right, but also because both pointwise
quarter pinching and positivity of the curvature operator imply positivity of the
isotropic curvature. Thus they generalized simultaneously the hypothesis of the
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classical sphere theorem from section 5.1 and the conclusion of D. Meyer’s theo-
rem from section 5.3. It is an interesting problem to study manifolds with positive
(or nonnegative) isotropic curvature that are not simply connected, as this class
is closed under taking connected sums (see [91]). Hence the fundamental group of
these spaces can be quite large, something which is not possible when one assumes
positive Ricci curvature. It is possible that while the Ricci curvature is known to
control one forms, the isotropic curvature controls forms of higher degree and per-
haps better yet the integral homology interpreted as H? (M, Sl) = HPTY (M, Z),
p=1,...,n—3,n >4 In [91] the authors show that in even dimensions isotropic
curvature controls two-forms, and also that this is not true for odd dimensional
manifolds. Finally in [68] Hamilton uses the Ricci flow to classify four manifolds
with positive isotropic curvature.

7. BIBLIOGRAPHY

The book that most extensively covers the material discussed here in greater
detail is [112], but there are other books which also cover other aspects of Rie-
mannian geometry. See, for instance, [80] (gives the most comprehensive treatment
of the variational calculus of geodesics), [47] (does a little bit of everything including
eigenvalues), [23] (also covers curvature free geometry and eigenvalues), and [103]
(also covers general relativity). For the Bochner technique we have [112], [141], and
[42] (which emphasizes maps), and with more on how the Bochner technique can be
used to estimate topology there is [9]. Finally, on how spin geometry unifies some
of the Bochner techniques see [82]. Finiteness and convergence theorems are cov-
ered in [112] and [29], and for more general and recent material there is [62]. This
last book contains surveys on sphere theorems, manifolds of nonnegative curvature,
Ricci curvature, convergence theorems and much more. Most of the articles in this
book give at least a good indication of proof techniques as well. M. Berger has
written a much more extensive survey of Riemannian geometry (see [10]). There
are two other nice survey articles that are particularly appropriate in the context
of this article, namely, the articles by Abresch and Kreck in [49].

The bibliography contains several articles which have not been mentioned in the
text. The reader who wishes to learn more about nonpositive curvature is referred
to the comprehensive text [41]; two other goods texts on this subject are [7] and [8].
For more on examples and counterexamples there are [4], [3], [16], [15], the articles
by Abresch-Meyer and Perel’'man in [62], [104], and the article by Sha and Yang in
[53].
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