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For almost three decades the two books [S2], [SW2] have been the basic reference
for mathematicians working in harmonic analysis in R™. By these books hundreds of
graduate students have been introduced to concepts like singular integrals, maximal
functions, Littlewood-Paley theory, Fourier multipliers, Hardy spaces, to mention
the main subjects.

The book under review is presented by the author as the third in the same
series. So the general framework remains intentionally the same, and in large part
the scope is to provide an updating of the same general subject. Still, whoever is
familiar with the other books will find this one surprisingly different.

The reason is that harmonic analysis has seen an enormous growth in the past
thirty years, and its implications in other fields of analysis have greatly diversified.

If the original work of Calderén and Zygmund was related to elliptic PDE’s,
later developments allowed applications of their theory to parabolic equations and
to general hypoelliptic operators, and the more recent explosion of interest in the
theory of oscillatory integrals and in problems involving curvature has much to do
with hyperbolic equations.

Referring to another traditional aspect of harmonic analysis, as the borderline
between real and complex analysis, there has been a considerable shift from one to
several complex variables. Here again objects like hypoelliptic operators and oscil-
latory integrals play an important role; also non-commutative Lie group structures
naturally appear.

If we add that this process has provided an occasion to revisit and clarify older
concepts, one can easily understand that the book presents a considerable number
of different facets and motives of interest for harmonic and non-harmonic analysts.

Introduction. As a preliminary introduction, let us recall some basic definitions
and mention three classical problems that have been central in the growth of Eu-
clidean harmonic analysis, particularly at the Zygmund school in Chicago: bound-
ary behaviour of holomorphic and harmonic functions, LP-regularity of solutions
of elliptic PDE’s, and convergence of Fourier series. The link among these appar-
ently different problems is given by the concepts of singular integrals and maximal
functions: in each case the relevant questions can be reduced to establishing bound-
edness on LP (or weak L' estimate) for an appropriate maximal or singular integral
operator.

The most elementary maximal function is the Hardy-Littlewood maximal func-
tion on R”
1

(1) Mf(x) =sup —— [ |f(z—y)ldy,
>0 |Br| B,
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where B, is the ball of radius r centered at the origin, and |B,| is its Lebesgue
measure. A basic fact in real analysis is that the differentiation formula

(2) f@) =tim — [ fa—y)dy,
B,

valid a.e. for every locally integrable function f, follows from the fact that M is
weak type (1,1).
The Hilbert transform

(3) Hf(z) = po. /

o T—1

oo

f(t)dt

is the most classical singular integral operator on the real line. Higher dimensional
examples are the operators

4)  Tf(z)=po. / K(z —y)f(y) dy = lim K(z —y)f(y)dy
=0 Jiz—y|>e
where the convolution kernel K (z) is homogeneous of degree —n, smooth away from
the origin and has integral 0 on the unit sphere.
Maximal operators and singular integrals are so closely related that they consti-
tute in fact two aspects of the same theory.

If f is a continuous function with compact support on the real line, its Poisson
integral

1 [ Yy
5 = — ———f(t) dt
(5) uaw) = 1 [ ot
defines a harmonic function on the upper half-plane R? = {(z,y) : y > 0}, which
solves the Dirichlet problem

(6) {AuzO inR3_2
w=f ondR7,

with the additional condition that « vanishes at infinity.

If we apply (5) to a function f € LP(R), 1 < p < oo, the resulting functon u(zx, y)
is still harmonic in RZ.. In order to say that u is a solution of (6), we need to know,
however, that

(7) lim u(e,y) = fz)  ae.

But (7) is not so different from (2), and in fact it also follows from the properties
of the Hardy-Littlewood maximal function.
Now, the function

0 @i =1 [ S0
v(z,y) = — —_—
R SN R R
is also harmonic in Rﬁ_, and it is called the conjugate harmonic function of u. It is
characterized by the fact that F' = u 4+ iv is a holomorphic function of z + iy and
by the condition that v(oco) = 0.

A relevant question in the theory of Hardy spaces is whether the assumption
that f € LP(R) induces uniform LP estimates on v in dx at all levels y > 0 (here we
must require p < oo in order that the integral in (8) converges). It turns out that
this is equivalent to requiring that the Hilbert transform be bounded on LP(R).
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The fact that the Hilbert transform (as well as the more general singular integral
operators in (4)) is bounded on LP only for 1 < p < oo is what makes the real
variable theory of Hardy spaces (to which we will come back later) almost trivial
for 1 < p < oo and non-trivial for p = 1.

The Calderén-Zygmund theory of singular integral operators was mainly moti-
vated by the regularity problem for solutions of linear elliptic PDE’s. A typical
question is: if D is an elliptic operator of order 2k with smooth coefficients, and
Du = f € LP, can we say that the distributional derivatives of u of order 2k are
locally in LP?

In the simplest case, where D is the Laplacian, this question can be reduced to
establishing the a-priori inequality [|07;¢ll, < C||Awl|, for test functions ¢. Using
the Fourier transform, one can see that

¢ = RiR;(Ap)
where R; is the Riesz transform

&
14

Since these are nice singular integral operators, the answer is positive for 1 < p <
oo. It is also interesting to observe that, as we shall see later, the Riesz transforms
also intervene in the description of Hardy spaces in higher dimensions.

O Rew) = [ RS dg=po [ o Bl .

|z —yl

The most typical aspect of Fourier analysis is that one needs to control quantities
that are sums, or integrals, of oscillating terms. The first hard question that arises
in the study of the Fourier series of a 2m-periodic integrable function f is the almost
everywhere convergence of its partial sums

1 (7 sin(n+ 3)t
— —_— —t)dt .
27T/ sin § fle=1)

Suf(x) =Y flk)e™ =

k=—n -7

As for the differentiation formula (2), a maximal function governs this conver-
gence, namely

(10) M f(x) = sup
nez

)

™ eint
p.v./ ; flz—t)dt

-7

which has the additional feature of containing an oscillating factor.

The fact that the operator M* is bounded on LP for 1 < p < oo [Ca2], [Hu]
implies that the Fourier series of a function f converges to f as soon as f € LP for
some p > 1 (on the other hand, Kolmogorov’s example shows that this is not true
in general if f is only in L').

The classical examples that we have illustrated exhibit some of the main features
of most problems in Euclidean harmonic analysis. As Stein says in his prologue, the
three notions of maximal functions, singular integrals, and oscillatory integrals are
fundamental, and the story of this field of mathematics can be seen as the story of
the understanding of their interrelations and of their applicability to a large variety
of problems.
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The content of the book. Any attempt to give a presentation of Stein’s book
that is both synthetic and complete would be too ambitious. So we have chosen to
focus on some of its main themes, at the price of many omissions and simplifications.

In doing so, we will not follow the author chapter by chapter; we will, however,
indicate where the various subjects can be found in the book.

1. Real variable theory of Hardy spaces. The favorite definition of Hardy
spaces for harmonic analysts has gone through subsequent modifications. According
to the original definition, the Hardy space HP (with 0 < p < 00) on the upper half-
plane Ri = {x + iy : y > 0} consists of the holomorphic functions such that

(11) [E[ e = sup [[F'( y)|| o) < o0 -
y>0

This notion was extended by Stein and Weiss to higher dimensions [SW1] by
replacing the notion of holomorphic function with that of Riesz system.

A Riesz system on the upper half-space Ri“ = {(z1,...,Tnt1) : Tpt1 > 0}
is a vector-valued function F' = (fi,..., fnt1) characterized by the generalized
Cauchy-Riemann equations

i _ 04y S~

=22 forallij » 22 =0
j=1

Bacj Bxi Bacj

(to be precise, these conditions describe the first-order Riesz systems; we disregard
here higher-order Riesz systems, which are needed to define H? when p < Z—j)
The defining condition (11) for H? is then replaced by
(117) [Fllze = sup [[F(; @ng1)l|Le@n) < o0 -

Tpt1>0

Another step toward a real-variable theory of Hardy spaces consisted in putting
the emphasis on the boundary values of H? functions (or systems), rather than on
the systems themselves.

In dimension one, let f be a distribution on the real line that grows slowly
enough at infinity, so that its Poisson integral u(z,y) and its conjugate function
v(z,y) are well-defined by (5) and (8) respectively. One says that f € HP(R) if
the holomorphic function F' = u + v is in the “holomorphic” H? space; i.e. if it
satisfies (11). Observe that, from our previous remarks, H? = LP for 1 < p < oo.

Similarly, in higher dimensions (and restricting to p > Z—:f for simplicity), one
says that a distribution f on R™ is in HP(R™) if its Poisson integral u(z1, ..., Zp+1)
is the (n+1)-th component of a Riesz system F = (v1,...,v,,u) on R} belonging
to the HP space of Stein and Weiss. Again, HP = LP for 1 < p < oo.

Two important results from the early ’70s gave a big impulse to the theory of
Hardy spaces: the characterization of HP(R™) in terms of maximal functions, and
the realization of BMO(R™) as the dual space of H!(R") [FS].

The maximal functions to be considered here are constructed from smooth ap-
proximate identities. Let ¢ be a Schwartz function on R” such that [¢ = 1, and
set p(x) =t "p(z/t) for t > 0. The corresponding maximal function is

(12) My f(z) = iglglf*wt(x)l :
An even larger maximal function is the grand-maximal function
(13) My f(x) = sup M,f(x),

peBN
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where By is the unit ball in § in one of the norms || ||(y) defining the Schwartz
topology.

Theorem [FS]. The following are equivalent, for 0 < p < oo and f € §':
(i) f € HP(R™);
(ii) Myf € LP(R™) for some ¢ € S;

(iii) My f € LP(R™) for some N > N(p).

There are many other alternative characterizations of H?, also obtained by Fef-
ferman and Stein, and which involve the Poisson integral u(z,t) of f on the up-
per half-space R7"' = {(z,t) : = € R", t € Ry}. To state two of them, let
I'(z) ={(y,t) : |y — | < t} be the upward cone pointed at (z,0). Then each of the
conditions

u'(x) = sup Ju(y,t)| € L”,
(y;t)er(z)
(14) 1/2
Sf(x) = (/ |Vau(y, t)|?t' ™ dy dt) eL?,
I'(z)

is also equivalent to f € HP.

A considerable simplification in the use of Hardy spaces is given by atomic de-
compositions, introduced by Coifman in one dimension [Co] and extended to other
settings, including R™, by Coifman, Weiss and some of their students [CW].

For 0 < p <1, a p-atom is a function a(z) supported on a ball B and such that

(i) la(x)] < |B|7Y?,

(ii) [z*a(z)dz =0 for |a| < n(% —1).

Then HP, with 0 < p < 1, consists of those functions (or distributions) that can
be written as sums }; Aja;, where the a; are p-atoms and ), |A;|7 < oc.

This material is contained in Chapter III, together with applications to HP-
boundedness of singular integral operators.

2. BMO and Carleson measures. A locally integrable function f(z) on R™ has
bounded mean oscillation if, calling fp the mean value of f on a ball B, one has

1
(15) oo = sup /B (@) — il de < oo .

This notion was introduced by John and Nirenberg [JN]. BMO(R™) is defined
as the space of equivalence classes, modulo constants, of functions having finite
BMO-norm (observe that constant functions have zero BM O-norm).

The importance of BM O in harmonic analysis is due to C. Fefferman’s theorem
[FS], stating that BMO(R™) is the dual space of H'(R").

The notion of Carleson measure goes back to [Cal]. Given a ball B = B(zg, )
in R”, let T(B) be the cone in R with basis B, T(B) = {(z,1) : |z —xo| <r—t}.
Then a positive Borel measure p on ]R’}FH is called a Carleson measure if the pu-
measure of T'(B) is controlled by the n-dimensional Lebesgue measure of its basis,
ie. if
(16) wT(B)) <C|B|,
with C' independent of B.
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If w(z, t) is the Poisson integral of a function f(z) on R™, then (16) is equivalent
to saying that for every f € LP, 1 < p < o0,

a7) [ uorduen <c [ |fapds.
RiJrl Rn

The following theorem provides a relation between BM O-functions and Carleson
measures which is “dual”, in some sense, to the maximal characterization of H*(R™)
[FS].
Theorem. The following are equivalent:

(i) f € BMOR");

(ii) if p € S is radial and [ ¢ =0, then the measure
dz dt

t

dp(z,t) = | f * pi()]?
on ]RT'l is a Carleson measure.

Carleson measures are presented in Chapter II, in connection with the other
notion of “tent space”. Chapter IV deals with BMO and its duality with H".

3. Spaces of homogeneous type. A considerable part of the theory of maximal
functions, singular integrals, Hardy spaces and BM O requires very mild assump-
tions on the underlying space, and therefore it can be generalized to a large variety
of different contexts.

One can replace R™ by a space X endowed with

(i) a locally compact topology defined by a quasi-distance d (this notion differs
from the ordinary notion of distance in that the triangular inequality is re-
placed by the more general condition d(z, z) < C(d(z,y) + d(y, z)) for some
constant C' > 1);

(ii) a positive Borel measure m satisfying the doubling condition

m(B(z,2r)) < C'm(B(z,r))
for some constant C”.

Such a triple (X,d,m) is called a space of homogeneous type. Even though
special instances had appeared before in the literature, the general notion was
introduced by Coifman and Weiss [CW].

Relevant homogeneous-type structures on R™ which are different from the stan-
dard Euclidean structure are obtained by replacing

(i) the Euclidean distance with a non-isotropic distance
(18) d(z,y) =D | — |/
i=1
for given exponents §; > 0;
(ii) the Lebesgue measure with a weighted measure dm(z) = w(z) dz, where w is
an Ao weight (see below).

Non-isotropic distances were originally used by Fabes and Riviere [FR] to extend
the Calderon-Zygmund theory to parabolic equations.

The first part of Chapter I presents the basic theory of Hardy-Littlewood maxi-
mal functions and singular integrals in this general context. The underlying topo-
logical space is assumed to be R™, but the same proofs apply to general spaces.
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4. A, weights. (See Chapter V.) A non-negative locally integrable function w on
R™ is an A, weight, for 1 < p < oo, if it satisfies the inequality

(19) (ﬁ/}gw(x) dx) (ﬁ/Bw(x)_p,/p dx)p/p/ <A< oo,

for all balls B. Observe that for p = 1 the Aj-condition is equivalent to the point-
wise inequality Mw(z) < Cw(z) a.e., where M is the Hardy-Littlewood maximal
function.

The A, classes are ordered by inclusion: A, C A, if p1 < p2, and the union of
all the A, is called Ao. Weights w € A are characterized by a “reverse Holder
inequality” on balls: there exists a ¢ > 1 such that

(20) (] w@qu)”q <o [ v,

for all balls B.
The role played by A, weights is indicated by the following theorem.

Theorem. [M], [CF], [HMW] The following are equivalent for 1 < p < co:
(i) we A,
(ii) the Hardy-Littlewood mazimal operator is bounded on LP(w(x)dx);
(iii) the singular integral operators in (4) are bounded on LP(w(x)dx).

A, weights also appear in other areas of analysis, like potential theory on Lips-
chitz domains, quasi-conformal mappings and calculus of variations.

5. Singular integrals and pseudo-differential operators. Pseudo-differential
calculus is a fundamental tool to construct parametrices (i.e. inverses modulo
smoothing operators) of linear differential operators and to study regularity of so-
lutions of PDE’s. Hence pseudo-differential operators (¢do’s in brief) are closely
related to Calderén-Zygmund singular integral operators.

Such relations are discussed in Chapter VI and in part of Chapter VII, where
the main boundedness properties of ¥do’s are also presented. The key problems
concern ¥do’s of order zero,

(21) Tﬂ@=j/a@£k%“fﬂﬁdé,

with symbol a(z,§) in one of the symbol classes 5’215 with 0 < p,§ <1, defined by
the condition

(22) |070¢ a(w, )] < Ca,p(1+ [¢]) P
for all multiindices «, (3.

If we set
(23) K(z,y) = / a(w, €)e™ V) de |
then K is the integral kernel of T', i.e.
(24) 7f(0) = [ Klz) ) dy

(these formulas must be interpreted in the sense of distributions).
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Ifa e SY p» then K is a Calderdn-Zygmund kernel; this means that it is a smooth
function away from the diagonal x = y and

(25) 0202 K (z,y)| < Caple —y| =" 11=17]

for all multiindices «, (.

By itself, (25) does not imply any boundedness for 7. However, once bounded-
ness on L? is known, then the standard Calderén-Zygmund theory gives bounded-
ness on LP for 1 < p < oco. A localized version of boundedness on HP, 0 < p < 1,
and on BMO also follows.

As to boundedness on L2, this is relatively easy to prove if a belongs to the

“standard” class S7, and it follows from the Calderén-Vaillancourt theorem for
a€ Sl)p with p < 1. However, it may fail for p = 1.

6. Almost orthogonality. This crucial principle, also known as Cotlar-Stein’s
lemma, can be formulated in the general context of linear operators on Hilbert
spaces, and it is widely used in harmonic analysis to obtain L? estimates, e.g.
for singular integral operators on Lie groups, for oscillatory integrals, etc. It is
presented in Chapter VII, where it finds its first application to the proof of the
Calderén-Vaillancourt theorem, stating that ¢do’s with symbols in Sg) o p<1are
bounded on L2.

A sequence {T}} of linear operator on a Hilbert space H is called almost orthog-
onal if there is a numerical sequence v(j) € £*(Z) such that

(26) T T3\ + 1T < (i — )2

Theorem. If {T}} is an almost orthogonal sequence, the series 3 ;T is strongly
convergent to a bounded operator T with |T|| < C||7ylle:.

7. L? boundedness of Calderén-Zygmund kernels. The remaining part of
Chapter VII deals with the extra conditions on a Calderén-Zygmund kernel K,
such as in (25), that must be imposed in order to have boundedness on L? of the
associated operator T'.

If K(x,y) = k(x — y) is a convolution kernel, then it is well known that bound-
edness of T on L? is equivalent to the condition k € L>. In the general case, where
no such simple criterion is available, it turns out that the key point is to test the
operator on functions with compact support, normalized in an appropriate way.
Precisely, a normalized bump function (nbf) on the ball B = B(zo, R) is a smooth
function ¢ supported on B such that |0%p| < R~I%l if |a| < N, for some N.

Theorem. Let K satisfy (25). Then T is bounded on L? if and only if
(28) ITell2 < CRY?,
for every R and every nbf on any ball of radius R.

This is a slightly different, but equivalent, formulation of the so-called “T(1)
theorem” of David and Journé [DJ].

8. Kakeya-type sets. Kakeya sets are sets of measure zero in the plane which
contain a segment of unit length in any direction. Related sets are the Besicovitch
sets, constructed in detail in Chapter X. A Besicovitch set E. is the union of
N = N(e) rectangles with sides 1 and 1/N, arranged in such a way that: (a) they
have so many overlappings that |E.| < ¢; (b) if each rectangle is translated by two
units in the direction of its longer side, the new rectangles are pairwise disjoint.
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Sets of this kind exist, and they are the source of a number of negative results in
harmonic analysis having to do with maximal functions or convolution operators.
Given a family R of (hyper-)rectangles in R, n > 2, let

(20) M f(a) = sup ﬁ /R fla—y)|dy .

When R consists of all cubes centered at the origin, then Mg f is essentially the
Hardy-Littlewood maximal function. It is natural to expect that Mz may fail to
be bounded if the family R is too large.

If R consists of all rectangles with sides parallel to the coordinate axes and
centered at the origin, then My is still bounded on L? for 1 < p < oo, but it is no
longer of weak type (1,1).

More interesting is the case where R is the family of all rectangles centered at the
origin but with arbitrary orientations. Testing Mz on the characteristic functions
of Besicovitch sets, one can see that it can only be bounded on L*°.

A similar test on characteristic functions of Besicovitch sets is used to prove the
following result, concerning the so-called “ball multiplier” [F2].

Theorem. Let B be the unit ball in R™, n > 2. The operator
(30) Tfa) = [ HOS = 1 o)

is bounded on LP if and only if p = 2.

The roundedness of the ball plays a crucial role here. If B denotes a polyhedron
instead of a ball, the operator in (30) is bounded on every LP with 1 < p < oo.
An important consequence of this theorem concerns spherical summation of mul-

tiple Fourier series. Let
> et

keZm

be the (multiple) Fourier series of a function f which is 27-periodic in each of its
variables. The spherical sums are

(31) Svf@) = 3 fkye.

S kISN?

Then f = limy Sy f in the LP-norm for every f € LP? if and only if p = 2 (in
contrast, polyhedral sums converge in the LP-norm when 1 < p < 00).

9. Oscillatory integrals. In many problems one needs estimates either of definite
integrals

(32) /ei“"(w)z/}(x) dx |

or of operator norms for
(3) Tf(a) = [ Do) o) dy

which take into account the cancellations due to the oscillatory factor e*. In order
to emphasize the dependence on the rapidity of the oscillations, one often introduces
a real parameter A in the exponent to multiply the phase function ¢. Then the
question is to understand the decay in A of such quantities as A — oo.
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The history of integrals of the form (32), which Stein calls “oscillatory integrals
of the first kind,” is very old but still alive [PS], [Sc|, [V]. The most classical
results, presented in Chapter VIII, are van der Corput’s lemma and the asymptotic
stationary phase estimates. The key fact is that the decay in A of the integral

b
I(/\):/ M@ g

is determined by the degeneracy of ¢ at its stationary points.

The main application of these estimates in Fourier analysis concerns the decay
at infinity of Fourier transforms of surface measures. Considering the graph of a
smooth function x,, = ®(a’), the Fourier transform of its surface measure is given
by

(34) / ¢m2mi(¢ s +€026)) (1 1 |y 2) /2 da! |

If S now is a smooth compact hypersurface in R” and ug is its surface measure,
then fig(€) is a finite sum of terms as in (34). The behaviour of the phase function
in (34) at its stationary points (which depend on the choice of a direction in the
&-space) ultimately reflects the curvature of S at its various points. So, if S is of
finite type (i.e. if it has a finite order of contact with its tangent lines), then

(35) fis(€) = O(l¢] %)

as { — oo for some € > 0. The optimal decay, with ¢ = “5=, is attained when the
Gaussian curvature of S never vanishes.

10. Restriction of the Fourier transform and Bochner-Riesz means. It is
well known that if f € L*(R™), then its Fourier transform f () is defined for every
& and is a continuous function of £. In contrast, the Fourier transform of a generic
function in LP, with 1 < p < 2, is only defined almost everywhere.

Nevertheless, it turns out that if S is a surface with some amount of curvature
(e.g. of finite type) in the £-space, and if p is close enough to 1, then an a-priori
estimate

(36) 1 fisllzzcsy < ClIflly

holds for f € §. Thus the operator f —— f‘ . extends to all f € LP by continu-

ity. This surprisingly gives a knowledge of restriction of f to S, despite S having
measure zero.

It is easy to see that no estimate like (36) can possibly hold if S is flat; hence the
curvature of S plays a fundamental role. As shown in Chapter VIII, the fact that
(36) holds for some range of p > 1 is a direct consequence of the decay estimate (35).
However, the more refined analysis of the exact range of exponents p, ¢ for which
the estimate ||ﬁSHLq(5) < C|f|l, holds, for a given surface S, requires different
ideas, and it still presents open problems, even for spheres. Taking ¢ = 2, the
best possible value of p for hypersurfaces with non-vanishing Gaussian curvature is
p= % That this is in fact the case is proved in Chapter IX, as a consequence
of a general LP — L4 estimate for oscillatory integrals “of the second kind”, i.e. as
in (33).
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A somewhat related problem concerns the Bochner-Riesz means of order 6 > 0
of a function f on R™, defined as

. 2\%
(37) Sf () :/|£|<Rf(§) (1_ |§_|2) prmice ge

The Bochner-Riesz summability problem for Fourier integrals concerns the va-
lidity of the limit formula

(38) flo)= lim Spf(z),

in the LP-norm or almost everywhere. There is an analogous summability problem
for multiple Fourier series. The Bochner-Riesz means of a function f on the n-
dimensional torus are

2\°
s = 3 g (1-Fif) e

Y kI<R?

Convergence of Bochner-Riesz means in the LP-norm, both for Fourier integrals
and for Fourier series, is equivalent to boundedness in LP of the single operator
S° = 89 in (37).

If 6 = 0, this is the ball multiplier in (30) and it is bounded only for p = 2. For
positive values of 6, S? is bounded for a non-trivial range of p, depending on 6,
around p = 2. This range is known precisely in dimension 2, but its determination
is still an open problem in higher dimensions.

11. Fourier integral operators. Part of Chapter IX is concerned with LP bound-
edness of Fourier integral operators

(39) Tf(z) = / 2T o ) F(€) d |

where a(z,) is in the symbol class ST, and the phase ®(z,§) is homogeneous of
degree 1 in £. The relevance of these results in the study of hyperbolic PDE’s,
Radon transforms and in other problems involving propagation of singularities is
also explained.

If &(x,€&) = x-&, then (39) becomes a pseudo-differential operator and its integral
kernel K (z,y) is singular on the diagonal x = y. This implies that the singular
support of T'f is contained in the singular support of f. In the general case, the
kernel K (z,y) is singular on the set

Y={(z,y) : y = Ve®(x, &) for some &} ,

which governs the propagation of singularities produced by the operator T'.
A natural non-degeneracy assumption for ® is that

0?®
det | ——— 0
on the support of a, which allows us to obtain the following result.

Theorem. [SSS| Let T be a Fourier integral operator with non-degenerate phase
and symbol a € Sy ", with 0 < m < "T_l Then T is bounded on LP for ‘% — %‘ <

n—1-°
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The proof is quite lengthy, and it involves many notions and techniques that the
reader has already found in the previous chapters. The result follows by complex
interpolation from an L2-estimate for m = 0 and an H' — L'-estimate for m =
"T_l. The L2-estimate is a consequence of the fact that, when m = 0, T*T is a
better operator than T itself (in fact it is essentially a do). At the other extreme
(p = 1), the atomic decomposition of H' is needed together with a clever dyadic
decomposition of the operator to compensate for the fact that the operator does

not have a Calderén-Zygmund kernel.

12. Averages over submanifolds and related maximal functions. The max-
imal operators that the reader has encountered so far involve averages of functions
with respect to probability measures that are absolutely continuous with respect
to Lebesgue measure. Of a different nature in this respect is therefore the spherical
mazimal function

(10) M) =sp [ 1= )l

r>0

where dw is the normalized surface measure on the unit sphere S"~! in R™. Moti-
vations for considering M and its boundedness properties on LP spaces come, for
instance, from the study of the wave equation.

It is quite obvious that no boundedness (except for p = co) can hold in dimension
1. In higher dimensions, a simple test performed on a function f that grows like
|z|~"*1 at the origin shows that M cannot be bounded on LP if p < —. Hence
the following result is optimal. It was proved by Stein [S1] in dimensions n > 3
and, more recently, by Bourgain [B] in dimension 2.

Theorem. The sherical mazimal operator on R™, n > 2, is bounded on LP for
p>

_n_

—=, the spherical averages of an L? function f,

As a consequence, when p >

U@ = [ fa—rw)ds
(initially defined for a.e. x and a.e. r > 0), can be extended by continuity to every
r >0 for a.e. z, and

}%(Arf)(x) = f(x) for a.e. = .

Chapter XI contains a detailed treatment of these issues in dimensions n > 3 (the
two-dimensional case requires a rather different approach). The proof emphasizes
the geometric aspects that are needed to extend this result to more general surfaces.

In fact, one can consider families of hypersurfaces that vary from point to point.
For each x € R™ one assigns a hypersurface S, and the averages contributing to
M f(z) are taken over all dilates of S, about x itself.

That a certain amount of curvature is required follows from the following obser-
vation: no LP estimate for p < oo can occur if all the hypersurfaces contain a flat
portion oriented in a fixed direction (like replacing the unit sphere in (40) by the
boundary of the unit cube).
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The curvature condition that intervenes is called rotational curvature: if the S,
are implicitly defined as S, = {y : ®(z,y) = 0}, one requires that the Monge-

Ampere determinant
) 0y ®
det ((?wCI) 8§y<1>)
does not vanish on any Sy.

This includes the situation where S, = S is a fixed hypersurface with non-zero
Gaussian curvature and, at the other extreme, certain distributions of hyperplanes,
provided that their orientation changes “rapidly enough” as x moves.

A different problem, also concerning averages over submanifolds, arises if, in-
stead of scaling the surfaces S, in the ambient space, one restricts the averages to
small neighborhoods of a fixed base point in S,. This problem is treated in the
translation-invariant case, i.e. with S, = z + Sy, but allowing the manifold Sy to
have arbitrary dimension k <n — 1.

If Sy is parametrized by means of a smooth function ~(¢) with ¢ € R¥, the
maximal function we are talking about is

Me) =supr ™ [ |f( =]
r<l [t|<r

The curvature assumptions on Sy that suffice to prove that M is bounded on
some LP with p < oo are restricted to the base point v(0), and in fact they can be
very mild; for instance, M is bounded on the full range of LP, 1 < p < oo, provided
Sp is of finite type at v(0). The “flat” case, i.e. with Sy not of finite type at ~v(0),
is also interesting and non-trivial. References about the flat case are given at the
end of Chapter XI.

13. Singular integrals on homogeneous groups. Motivations to study singu-
lar integral operators on homogeneous Lie groups originally came from two different
areas of analysis: complex analysis in several variables and representation theory
of semisimple Lie groups.

A homogeneous Lie group has R™ as its underlying manifold and its multiplica-
tion law is compatible with a family of non-isotropic dilations

do(x1,...,xn) = (0%x1,...,0xy,) , 6>0,

in the sense that such dilations are automorphisms: 6 o (z - y) = (§ o x)(d 0 y).
The simplest non-commutative example is the Heisenberg group H"”, whose ele-
ments can be expressed as pairs (z,t) € C" x R, with product

(z,0)- (2", t') = (z+ 2/, t +t' + 2Im(z, 2")) ,

and dilations 0 o (z,t) = (62, 8°t).
Two proofs are given of LP-boundedness of singular integral operators of convo-
lution type

Tﬂ@:fuamzpu/ﬂwK@*@@,

where K is a Calderén-Zygmund kernel adapted to the given dilations.

Each of these proofs exploits different ideas and leads to different generalizations.
Since homogeneous groups have a natural structure of spaces of homogeneous type,
the key fact to be proven is L?-boundedness.
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The first proof, to be found in Chapter XII, is given on the Heisenberg group.
Taking the Fourier transform in the central variable ¢, matters are reduced to a
family of oscillatory integrals of the second kind on C™, called twisted convolution
operators, of the form

(41) fﬂf@):fmlﬁw):pu/}w@Kﬂz_wﬁ%M@mdw7

where A € R\ {0} and K(z) is the partial Fourier transform of K(z,t) in the ¢
variable evaluated at .

The analysis of Ty in (41) leads, on one hand, to a more general treatment
of oscillatory singular integrals with a bilinear phase and, on the other hand, to
unravelling the connections between twisted convolution, the Weyl correspondence
in the formalism of quantum mechanics, and the Weyl calculus of pseudo-differential
operators.

The second proof, contained in Chapter XIII, is given on general homogeneous
groups. It is basically the original proof given in Knapp and Stein [KS], which
constitutes the first application of the almost orthogonality principle.

14. The J,-complex on the Heisenberg group. The problems in several com-
plex variables alluded to above, and which motivate the study of certain operators
on the Heisenberg group, are explained in Chapter XIII. A preliminary part is
meant to introduce the general formalism for the O-Neumann problem on general
domains in several complex dimensions and to explain the crucial role played by
the boundary conditions. These involve the boundary dj-complex and the Kohn
Laplacian

(42) b = 570y + 3637

on (0, g)-forms.

This part is necessarily very sketchy and rather hard to follow for the non-expert.
However, it motivates the computations that come next, that is, the explicit and
neat construction of these objects in the “model” case of the Siegel domain (or
generalized upper half-space)

n

(43) U" =< (21, oy 2ng1) - Imzp g > Z s

j=1

in C"*!. The reader who will follow the author all the way to the Appendix at the
end of Chapter XIII will find the explicit solution, on U™, of the problem stated at
the beginning of the chapter.

The Heisenberg group enters into this picture because it can be naturally identi-
fied with the boundary of U™ in such a way that the relevant differential operators
are invariant under left translations. Similarly, the integral operators that appear
as their inverses are convolution operators on the Heisenberg group.

In particular the study of (42) reduces to the analysis of the sub-Laplacian £ on
H,, and of the Folland-Stein operators

Lo =L +iad/ot
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for appropriate values of . The sub-Laplacian is a left-invariant differential oper-
ator with a “sum of squares” structure, i.e.
1 n
_ 2 2
=130,
j=1
where the X; and the Y} are left-invariant vector fields generating the Heisenberg
Lie algebra. Setting z; = x; + iy; for j < n, we have
0] 9] 9] 0
Xi=—+4+2y;—, Y= — —2z;,— .
1= 0y Vo A T
Since we are in dimension 2n + 1, £ is not elliptic. However, the missing tangent
direction, corresponding to the derivative 9/9¢t, arises from the commutator of each
X; with the corresponding Y;. So, by a celebrated theorem of Hérmander [Ho], £
is hypoelliptic.
As to the operators L, Folland and Stein [FS] proved the formula
nta o c
(44) Lo (22 = it) (22 + )77 ) = u 5 -

()

This implies that if o # £(n + 2k) for some k € N, then £, is hypoelliptic. In
fact the constant on the right-hand side of (44) is different from zero, so that one
easily derives from this formula a fundamental solution of £, which is smooth away
from the origin.

On the other hand, if & = £(n + 2k), the distribution u on the left-hand side of
(44) is a non-smooth solution of the homogeneous equation L,u = 0. This shows
that £, is not hypoelliptic.

A specific section of Chapter XIII concerns the famous Lewy operator,

This is the first known example [L] of an unsolvable operator (in the sense that
there are smooth data f such that the equation Zu = f has no solution in any
neighborhood of a given point).

One easily realizes that Z lies in the complexification of the Heisenberg Lie
algebra, namely Z = 1(X —iY’), and that ZZ = —L;. So the analysis of the Lewy
operator fits naturally into this picture.

Also, the conditions that have to be imposed on f so that the Lewy equation
Zu = f can be solved near a given point explicitly involve the realization of H; as
the boundary of U;: the necessary and sufficient condition is that the Cauchy-Szego
projection of f on U; can be continued analytically through the given point of the
boundary.

About the book. Despite the intrinsic difficulty of the subject and the enormous
amount of material that is treated, Stein has been able to make this book very
readable, choosing an organization that tends to highlight the key notions and
ideas and to explain their interrelations.

As a consequence, some theorems are not presented in their sharpest form, nor
in their widest context; some applications are indicated but not fully pursued, etc.
All this helps the reader to get a clearer idea of the salient parts. When the proofs
become involved, they are often divided into sections so that the right emphasis
can be given to explain the ideas arising at the various stages.
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Each chapter, however, contains a last section of “Further results” and sometimes
an appendix. Here one finds much of the material that has been filtered from
the main body of the book, together with the presentation of a large number of
applications and related material. Each single note can be the starting point of
a long tour, very informative and documented. Sometimes this kind of research
(aided by a very efficient index and a list of cited authors) crosses a large part of
the book transversally.

I think that all readers can find their own way to access the book, depending on
their expertise and their familiarity with the field.

A large part of the book can very well be the subject of one or more advanced
graduate courses, especially if integrated with preliminaries from the previous books
[S2], [SW2]. T have experienced that myself very successfully. However, a few
chapters (in particular in the second half of the book) are very dense, and a certain
amount of assistance may be desirable for a graduate student.

The more expert harmonic analyst will find Stein’s approach and his synthetic
view of the different issues very illuminating. I have personally profited from the
parts of the book I am not particularly familiar with by organizing sparse ideas
collected by listening to lectures or conversing with colleagues (and I doubt that
many people, apart from the author, would feel confident with the whole content
of the book).

The book is also recommended to a larger class of analysts, specifically to those
who work in several complex variables and in various areas of PDE.

From the presentation given above, one is tempted to view Stein’s book as a
summa of harmonic analysis (and consequently to make a personal list of what is
missing or understated). On the contrary, the book has a strong personal touch,
which is not surprising if we consider the leading role played by the author in the
research activity in the field. Quoting the author: “... T cannot deny that this
book is in part autobiographical: as the narrator of the story, I have chosen to
recount those matters I know best by virtue of having first-hand knowledge of their
unravelling.”
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