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This 685-page text by Goodman and Wallach constitutes a carefully organized
exposition, not indeed of the entire finite-dimensional representation-theory over R
or C of the classical groups (which would be hard to imagine in a single text three
times the size of this one), but rather of a selection of some key topics therein. This
selection of topics, especially as concerns invariant-theory, seems (as Goodman
and Wallach indicate in the preface to their text) to have been in many ways
inspired by the contents of H. Weyl’s The Classical Groups, Their Invariants and
Representations [31].

Approximately half of the text under review is purely introductory; the remaining
half then utilizes this introductory material to develop the main themes.

The introductory material, covered in a total of approximately 280 pages in the
first three chapters and in four appendices, introduces the reader to some necessary
topics in elementary algebraic and differential geometry and to such basic concepts
of representation theory as: linear algebraic groups and Lie groups, Lie algebras
associated to such, Jordan decomposition, maximal tori, roots and weights, real
forms of classical groups, the PBW theorem, invariant integration over compact
Lie groups, etc.

This hefty collection of introductory topics is presented in the Goodman-Wallach
text in a manner which is well-planned and carefully detailed (if in places a trifle
lacking in motivation). Since these matters are fairly standard, the reader learning
these introductory concepts for the first time may wish to shop around also in such
sources as, for instance, [3], [4], [10], [19] (there are many others) for the treatment
most to her or his taste.

With these elements assumed known, the Goodman-Wallach text then makes
available a rich selection of important and more advanced material, which it will be
convenient to divide into representation-theoretical material proper and invariant-
theoretical material.

The purely representation-theoretical material in the Goodman-Wallach text is
also available in other texts, though it is valuable to have it collected into a single
volume. This includes, for instance:

• Material (fairly standard) on homogeneous spaces for the classical groups.
• Two distinct proofs (presented in Chapter 7) of the Weyl character formula

(cf. [31], [29] or [4] for the first (analytic) proof; [11] or [20] for the second
(algebraic) proof).

• Chapter 8, dedicated to the Branching Rules for the irreducible representa-
tions of the classical groups, including the spin groups; most of this material
can also be found in the texts [2], [33] and (for tables) [27].

• An excellent discussion of symmetric spaces for the classical groups (a topic
developed more fully in Wallach’s text [30]).
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(N.B. This is not an exhaustive list of the material in representation theory
proper in the present text, but it covers much of this material.)

However, it is the material on invariant-theory which (in the reviewer’s opinion)
constitutes the most valuable and individual portion of the text under review. Much
of this material is not available elsewhere (outside of journals). It will be convenient
to subdivide the greater part of this material into 4 main topics:

Topic I

The First Fundamental Theorem of Classical Invariant Theory. The content of
this theorem will be discussed further below. In Weyl’s The Classical Groups [31]
this theorem is proved (for SLn(C)) using machinery centered about the Capelli
identity; in the 1970’s and 1980’s a number of proofs were given (in arbitrary
characteristic) using instead the machinery of double standard tableaux, developed
by Turnbull in 1945 (in [28]) in the context of invariant theory. In Goodman-
Wallach, the First and Second Fundamental Theorems of Classical Invariant Theory
(to use the terminology perhaps invented by H. Weyl) are proved for the classical
groups by a direct route, using neither of these auxiliary results. (For yet another
approach, cf. [18].)

Topic II

Schur’s famous ‘double centralizer’ method showed how (in characteristic 0) to
study the irreducible representations of GL(V ) by relating the decomposition into
irreducible representations of V ⊗m to the character table of the symmetric group
Sm. (An amusing variation from the usual treatment occurs in the Goodman-
Wallach text: they instead derive (in Chapter 9, §1) the characters of the symmetric
groups from those of the general linear groups.) Similar results hold with GL(n, C)
replaced by O(n, C) and with the group algebras C[Sm] replaced by a remarkable
class of algebras first introduced by Brauer and certain quotients of these.

It is perhaps a question of taste whether this topic, treated in detail in Chapter 10
of the present text, belongs to representation theory proper or to invariant theory.
The Goodman-Wallach text specifically assigns this topic to “classical invariant
theory” (preface, p. xiv). The text gives interestingly novel treatments of these
matters (also for the symplectic groups).

Topic III

As a further development of Topic II, the present text gives a valuable and
detailed discussion of Howe’s theory of “dual reductive pairs” (cf. [17]) which is
not readily available in books elsewhere.

Topic IV

Yet another generalization of Topic II, of a rather specialized but quite interesting
nature, may be derived (via the theory of symmetric spaces) from a theorem of
Kostant and Rollis explained in Chapter 12.

The material just described (or at least Topics I, II, III) constitutes an expansion
of the topics in invariant theory discussed in Weyl’s Classical Groups; the Goodman-
Wallach text describes this material as ‘classical invariant theory’ (preface, p. xiv).
In his text, Weyl uses the phrase ‘classical invariant theory’ in rather a different
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way (2nd Edition, footnote 1 to Chapter VIII, p. 312), referring to such material
as that covered in the earlier texts [13], [15]. To clarify this distinction, let us next
briefly review some 19th century invariant theory.

Let Fn denote the set of all forms (homogeneous polynomials) of degree n, in
the independent variables x, y and with complex coefficients. We have

C[x, y] =
∞⊕

n=0

Fn,

and there is a natural action of SL2(C) on the (n +1)-dimensional complex vector
space Fn.

By a covariant of binary n− ic forms, of degree i and order w will be meant an
SL2(C)-equivariant polynomial map

Φ : Fn −→ Fw

homogeneous of degree i. If w = 0, one speaks of an invariant.

Example 1. The discriminant F2 −→ C = F0, a0x
2 + 2a1xy + a2y

2 7→ a2
1 − a0a2

of a binary quadratic form, is an invariant of degree 2.

Example 2. The Hessian of a binary cubic form

f = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3

is the quadratic form

H(f) = (a0a2 − a2
1)x

2 + (a0a3 − a1a2)xy + (c1c3 − c2
2)y

2,

and the resulting polynomial map H : F3 −→ F2 is a covariant of degree 2 and
order 2.

There is an obvious generalization to the concept of a simultaneous covariant.

Ψ : Fn1 × · · · × Fns −→ Fw(1)

of s binary forms of degrees respectively n1, . . . ns. Let us denote by Cov(n1, . . . , ns)
the C-algebra formed by all such Ψ, and by Inv(n1, . . . , ns) the sub-algebra formed
by the simultaneous invariants (for which w = 0).

In the second half of the 19th century, the phrase ‘modern algebra’ was used
to denote the intensive study of these invariants and covariants (collectively called
concomitants) – (cf. [24]). Perhaps one motivation for the detailed attention given
these concomitants was the hope they (and their generalizations to forms in n
variables) would furnish a basis-free geometric calculus for studying questions in
projective algebraic geometry (cf. [6] and [23]); in this connection, Weyl says (in
[31], 2nd Edition, p. 27), “The theory of invariants originated in England about
the middle of the 19th century as the genuine analytic instrument for describing
configurations and their inner geometric relations in projective geometry.”

Let us record here what was perhaps considered the main object of these 19th
century investigations, since it is a gorgeous open question of great antiquity. (One
wonders whether the coming century will finally bring its solution.)

Problem A. Construct explicitly generators and relations for the C-algebras
Cov(Fn1 , . . . Fns) and Inv(Fn1 , . . . Fns).
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We next discuss some of what is known for the sub-problem:

Problem B. Find a minimal generating set for the C-algebra Inv(n) of invariants
of binary n− ic forms.

Let µ(n) denote the minimal number of generators for Inv(n); then we have the
table

n 1 2 3 4 5 6 7 8
µ(n) 0 1 1 2 4 5 30 9

The values of µ(n) for n ≤ 4 were proved by Cayley and Sylvester, using precisely
the techniques (though not with their modern names) one would use today to study
these questions, i.e., roots and weights for SL2(C), Hilbert-Samuel polynomials,
etc.; for a 20th century account of their techniques, cf. [25].

These techniques of Cayley and Sylvester consisted of utilizing correct and beau-
tiful explicit formulas for the Hilbert-Samuel polynomials of the rings Inv(n) and
Cov(n), to analyze the structures of these rings. However, a subtle error in the
use of these techniques led Cayley to assert incorrectly in [5] that the rings Cov(5),
Inv(7) were not finitely generated. As Elliott ([9], p. 178) explains: “The error
arose from considering all syzygies independent, whereas there are syzygies of the
second order connecting syzygies.”

The German school of invariant theorists, comprising at this point especially
Aronhold, Gordan and Clebsch, had been constructing (it is perhaps fair to say,
in rivalry with the English school) a quite different (though also ingenious and
beautiful) machinery for the study of Problems A and B, based on the Aronhold
symbolic method and the theory of “Ueberschiebung” (the latter closely related
to the Racah-Wigner algebra of 3j- and 6j-symbols used by quantum physics (cf.
[1])). When Sylvester incorrectly denied that Cov(5) and Inv(7) were finitely gen-
erated, Gordan pounced. Not only did he correct these statements, but Gordan
was able to show that all the rings in Problem A and Problem B were finitely gen-
erated. When once the emphasis was thus shifted from the combinatorial problem
of computing explicit generators and relations for the rings in Problems A and B to
the problem of proving the rings involved are finitely generated over C, the stage
was set for Hilbert, who showed the latter easier question could be settled by bold
and simple new techniques. Hilbert utilized neither the techniques developed by
Cayley and Sylvester (which nevertheless evolved into some important techniques
of modern representation theory) nor the techniques of Clebsch and Gordan (which
essentially dropped out of sight for many years, with the important exception of
their utilization in Alfred Young’s important series of papers ‘On Quantitative Sub-
stitutional Analysis’, [32] I (1901) - IX (1952); these techniques have only recently
entered mathematics again in the work of Dixmier and others).

Speaking roughly, the techniques developed by the English school of invariant
theory give a lower bound for µ(n); those developed by the German school (pre-
Hilbert) give an upper bound (so are better adapted to proving finite generation).
In the cases of µ(5), µ(6) and µ(8), this lower bound and upper bound coincide,
giving the precise values µ(5) = 4, µ(6) = 5, µ(8) = 9. The 19th century result
µ(8) = 9 was reconfirmed in 1967 by work of T. Shioda [26] studying Inv(8).

The case Inv(7) was studied by F. von Gall in 1888 [12]; here, the lower bound for
µ(7) given by the Cayley-Sylvester techniques is 28 ≤ µ(7), while the upper bound
given by the Clebsch-Gordan techniques is µ(7) ≤ 33. Thus this troublesome case
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remained open (contrary to the incorrect assertion in [15], footnote to §177) until
fairly recently, when the Clebsch-Gordan Ueberschiebung formalism was once again
studied (after a gap of many years) by Dixmier and others; in particular, Dixmier
and Lazard in 1985 proved [8] that µ(7) = 30. (Further material concerning these
matters can be found in [7].)

The preceding is an example of what Weyl’s classical groups cite as “in the
tradition of classical invariant theory” (2nd Edition, p. 239 and reference 1, to
Chapter 8, p. 312), and the phrase “classical invariant theory” is used in essentially
the same way in [22], pp. 95-104. As noted above, the Gordan-Wallach text seems
rather to use this phrase to refer to the portion of invariant theory treated in Weyl’s
text. Thus the reader should be aware that “classical invariant theory” is used in
these two rather differing ways in the literature.

The ring Inv(1, 1, . . . , 1) of invariants of s binary linear forms a(1)x + b(1)y,
a(2)x+b(2)y, . . . , a(s)x+b(s)y may be proved to be generated by the s

2 determinants∣∣∣∣ a(i) b(i)

a(j) b(j)

∣∣∣∣ (1 ≤ i < j ≤ s).

This easily proved fact underlies the Aronhold symbolism, which was utilized by the
German school to study the much deeper facts about Problem B discussed above.
The generalization to SL(n) and GL(n) of this easy fact is what Weyl called the
‘First Fundamental Theorem of Classical Invariant Theory’. The treatment of
invariant theory in Weyl’s Classical Groups, and in the Goodman-Wallach text,
enters the long story at this point.

Finally, we conclude our discussion of the Goodman-Wallach text. The preceding
review has only touched on the major highlights of the material treated therein.
An enormous amount of care and intelligent work has obviously gone into the
preparation of this text. The result is an incredibly rich (though only partial)
selection of beautiful topics from the current frontiers of representation theory and
of invariant theory, whose study will be rewarding both to beginners and to experts
in these fields.
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[7] J. Dixmier, Quelques aspects de la théorie des invariants 43 (1990), Gazette des Math.,

39-64. MR 90m:15047
[8] J. Dixmier and D. Lazard, Le Nombre Minimum d’Invariants Fondamentaux Pour Les
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