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1. BASIC KNOTS

Knot theory is a subject with a deep cultural background and a short mathe-
matical history. The background of knot theory is marked by the entire past of
human invention and discovery in ropework and weaving. In all this time, while
knots were used for practical work and weaving [5], counting [6], games [13] and
magic [18], no topological mathematics of knots was developed until the end of the
last century. Of course, one may point out that the subject of topology had its
real origin in Euler’s work in the eighteenth century [14], but modern geometry has
specific mathematical roots in ancient geometry, and even Euler’s topology has its
roots in older theorems such as the classification of the regular solids.

I believe that the cultural reason why the topology of knots was unarticulated
until recent times has much to do with the practical origins of the subject. Knots in
use involve the full physicality of the rope, its frictional properties, its thickness and
its strength. To grasp a good mathematical model of all of this is a major problem
and one that is really just beginning to be tackled by mathematicians [38]. Quipu
[6], an aboriginal Peruvian method of counting and recording information with
knots, used only the locality of knots in sequence on a rope and the distinguishability
of different forms of knots seen “from the outside” as it were.

One may discern an origin of knot theory in the wonderful formula discovered
by Gauss [19] for the linking number of two space curves. The Gauss formula was
motivated by the problem of the strength of magnetic flux through a coil of wire,
and it gives a relationship between the differential geometry of the curves and their
topology. Nevertheless, Gauss did not go on to investigate the self-entanglement of
curves that is the basis of knot theory.

It was left for Lord Kelvin (William Thompson) in the nineteenth century (see
[29] for excerpts from his work) to ask a question that started mathematicians on
the road to knots. Kelvin had the idea that atoms could be three dimensional
vortices in the ether, smoke rings in the fluidity of space. In that time, it was
assumed that empty space was a fluidic plenum filled with an elusive substance,
the ether, that vibrated and flowed and carried light, heat, sound and the newly
discovered radio waves. This is such a natural hypothesis that it can seem a bit
strange to realize that it has disappeared under the onslaught of relativity, logical
positivism and Occam’s Razor. In Kelvin’s time one could look at the swirls in
the wake of a ship or the smoke rings floating from a good cigar and imagine that
these vortices taken by analogy into the ether were the very source of the material
world. One could imagine space itself and the patternings of that continuum to be
the source of matter.

Kelvin commissioned Tait, Kirkwood and Little to make a table of knots with
the intent that this would become a table of atoms. The idea of knots as atoms

1991 Mathematics Subject Classification. Primary 57M25.

©1999 American Mathematical Society

539



540 BOOK REVIEWS

did not prevail, but this first systematic table of knots became the beginning of a
mathematical investigation of the subject.

During this same period topology was beginning to emerge from geometry, alge-
bra and analysis in the hands of Riemann and later Poincaré with his discovery of
the fundamental group.

The knot tables show many interesting patterns. They were designed to exhibit
the knots as diagrams where a knot diagram is a projection of a knot to a curve in
the plane (with transversal self intersections, called crossings). At each crossing of
the curve with itself one indicates by a broken arc which curve segment underpasses
the other — from the point of view of that projection. In the case of the early
tables, the under- and overcrossings in a diagram are not indicated if the diagram
is alternating (in an alternating diagram the crossings go in the pattern under, over,
under, over, ... as one moves along the curve). Tait, Kirkwood and Little discovered
that all the knots with less than eight crossings were alternating, and they found
the first non-alternating knots with eight crossings. They did not have the means
to prove that these knots were non-alternating in all projections, nor to show that
some of the pairs of alternating knots produced by changing all crossings (unders
to overs and overs to unders) in a given diagram were topologically distinct. One
says that a diagram K* obtained by switching all the crossings in this way from
the diagram K is the mirror image of K. Tait noticed that different projections of
topologically equivalent alternating knots could be obtained from one another by a
large scale move called “flyping”. He conjectured that this was always the case for
alternating knot diagrams. The conjecture was finally proved in full generality by
Menasco and Thistlethwaite [33], but this is getting ahead of our story.

In general the enterprise of making the knot tables raised a large number of ques-
tions, conjectures and ideas about the mathematics of knots. The combinatorial
topology of Euler predates the knot tables, but Poincaré’s fundamental group was
happening at nearly the same time. With the fundamental group came a precise
tool for studying a knot by studying the topology of its complement. That is, if one
regards a knot k as an embedding of a circle in three dimensional space S (we use
the three sphere S for the ambient space of the knot), then the fundamental group
of the complementary space, m1(S® — k), is an invariant of the topological type of
the knot (53, k). This idea combined in the hands of Dehn, Seifert, Reidemeister,
Wirtinger and others to produce algorithms for presenting the fundamental group
from a given diagram of a knot. By analyzing the fundamental group one could
begin the mathematical classification of knots. It was Max Dehn who first proved
that the trefoil (the simplest knot) and its mirror image are topologically distinct.

The study of three dimensional manifolds and the study of knots and links de-
veloped in parallel. For one thing, covering spaces of the knot complement and
branched covering spaces of the three-sphere along the knot are ways to study both
the manifolds and the corresponding subgroups of the fundamental group of the
base manifold. In 1920 J. W. Alexander [1] proved that every compact three man-
ifold is a branched covering of the three sphere along an appropriate link. At this
point the theories of knots, links and three manifolds became inseparable. In 1928
these ideas came to a special fruition in the work of J. W. Alexander [3]. Alexan-
der formulated a polynomial Ak (t) associated with an oriented knot or link K.
Alexander’s polynomial had the property that it was (up to multiples of £¢*!) an
invariant of the topological type of the knot. The polynomial was very useful in



BOOK REVIEWS 541

distinguishing many knot types. It was, however, not capable of distinguishing a
knot from its mirror image.

Alexander’s polynomial was motivated by the fundamental group and covering
spaces of the knot complement, but he presented the paper as a combinatorial algo-
rithm to compute the knot polynomial from its diagram. A diagrammatic method
had been formulated by that point by K. Reidemeister [36]. Reidemeister proved
the remarkable theorem that if K and K’ are diagrams for topologically equiva-
lent knots (or links), then there exists a series of transformations of these diagrams
based on three move types taking one diagram to the other (up to planar isotopy not
affecting the structure of the diagram). Reidemeister’s Theorem provided a combi-
natorial basis for the knot theory that applied directly to the original diagrams of
Tait and Kirkwood and Little. Alexander took advantage of Reidemeister’s Theo-
rem to prove the invariance of his polynomial. Reidemeister wrote the first book
on knot theory [36]. He based his approach on combinatorial topology and these
Reidemeister moves.

During this same period Alexander [2] showed that every knot was topologically
equivalent to a closed braid, and Emil Artin [4] developed the theory of braids as
an algebraic structure. A little later Markov [32] proved the key theorem interre-
lating the study of knots, links and braids. Markov’s Theorem made it possible,
in principle, to study knot theory entirely in terms of braids. This approach later
became highly developed [8].

While the Reidemeister moves provided a combinatorial basis for the Alexander
polynomial, it was quickly recognized through the work of Seifert [39] that three
dimensional techniques could illuminate its structure. Seifert showed how to cal-
culate the Alexander polynomial by using an orientable surface whose boundary is
the knot or link. Seifert gave an algorithm to produce such a surface from any link
diagram, and he gave a formula for the Alexander polynomial in terms of linking
numbers of curves on this surface. As a result, it became easy, given a polynomial
with a certain symmetry of coefficients, to produce knots or links with that given
polynomial as the Alexander polynomial. It became transparent how to produce
non-trivial knots with Alexander polynomial equal to one.

Given any orientable surface F' embedded in three-space, Seifert defines a bilinear
(asymmetric) pairing on the first homology group of F' by the formula

@Hl(F)®H1(F) — 7,

O(a,b) = lk(a™,b),

where [k(z,y) denotes the linking number of z and y and a* denotes the result
of translating the cycle a into the complement of F' by a small amount along the
direction of the positive normal to the surface. The Seifert pairing © is an invariant
of the embedding of the surface F' in three-space. Seifert proved the

Theorem. Ak (t)=Det(07 —tO)

Here = denotes equality up to sign and integral powers of ¢, and ©7 denotes the
transpose of ©. The determinant is computed by using a matrix of © in some basis
for the first homology group of F.

The Seifert pairing turns out to be one of the great devices of knot theory. It
continues to play an important role to the present day.
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The Alexander polynomial presented quite a puzzle to knot theorists, and it
was not until the early 1950’s that its relationship with the fundamental group of
the knot complement was made completely clear in the work of Ralph Fox. Fox
developed a non-commutative calculus (the Fox free differential calculus) related to
the chains on a covering space, but formulated in pure algebraic terms. With the
help of this calculus the Alexander polynomial was seen to be an invariant of the
group of the knot. The polynomial can be extracted from any finite presentation
of the knot group by pure algebra. A beautiful account of this theory can be found
in the book by Crowell and Fox [12] and in the article by Fox entitled “A Quick
Trip through Knot Theory” [16]. Another remarkable property of the Alexander
polynomial comes through the work of Fox and Milnor [17]. They proved that a
knot in the three-sphere that bounds a smooth disk in the four-dimensional ball
(with boundary that three-sphere) has Alexander polynomial of the form f(¢)f(t~1)
for some polynomial f(¢). This result marked the beginning of the study of knot
cobordism and is a key fact in the interface between three and four dimensional
topology.

John Milnor’s discovery of exotic differentiable structures on higher dimensional
spheres [34] propelled the focus of geometric topology in the 1960’s and 1970’s into
higher dimensions. Higher dimensional knot theory is the study of embeddings of
n-dimensional manifolds in (n + 2)-dimensional manifolds. In all cases the funda-
mental group can still be used, along with other invariants from algebraic topology
and surgery theory. In the case of embeddings in (homology) spheres, the Seifert
pairing (appropriately generalized) is still available and very important [31]. With
the examples of Breiskorn and the work of Milnor [35] the original exotic spheres
were seen to be knots in high dimensions! These exotic knots can be constructed
by branched coverings and generalizations of branched coverings in a pattern of
geometric topology that goes right back to Alexander and Seifert (see [23], [24] and
[28]).

The work of Casson and Gordon [9] began a return of interest in low dimensions.
They gave examples of knots that did not bound disks in the four ball (non-slice
knots) where this property was undetectable by the Alexander polynomial or by
the Seifert pairing. These results are special to three dimensions. Another move-
ment towards dimension three was the development of the Kirby calculus [30], [15]
reformulating the classification of three manifolds in terms of moves on framed link
diagrams representing the three manifolds via surgery on the corresponding links.

During this period of the 1970’s there was another collection of results in knot
theory that slowly came to be appreciated. This was the work of John H. Conway
explained in concise form in his paper [10] and in lectures and conversation. His
work told how to compute the Alexander polynomial (single and multi-variable
versions) in terms of a recursive algorithm on the diagrams. In fact, Conway’s
method leads to a refinement of the Alexander polynomial that is often called the
Conway (Alexander) polynomial. The one-variable version of the recursion relation
for the Conway polynomial is shown below.
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In symbols it reads
CK+ - OK7 = ZOKO

where K1, K_ and Ky denote identical diagrams except at the site of one crossing
that is (respectively) positive, negative or smoothed. One takes this basic ex-
change relation, plus the stipulation that the Conway polynomial is an invariant of
topological knot type (exactly, not up to signs or powers of the variable) and nor-
malization to one on the unknot. The Conway polynomial can then be computed
entirely from the diagrams without recourse to determinants or any algebra other
than high school algebra! Conway stated that his polynomial and the Alexander
polynomial are related via the formula

CK(Z)iAK(t)

for z = t1/2 —t=1/2 leaving the proof of this puzzle to his readers or listeners! This
approach to knots and links is often called skein theory.

Skein theory captured attention again around 1978 when John Conway gave talks
on his polynomials in a number of places. This reviewer [25] and independently
Cole Giller [20] found a model for the Conway polynomial using the Seifert pairing.
Later, Hartley [21] wrote a paper showing how to model the polynomial via the
Fox calculus. This reviewer found a combinatorial model [26] based on state sums
that reformulated Alexander’s original approach.

A state summation defines the invariant via a collection of states of the diagram,
each state contributing a product of vertexr weights to the sum over all the states.
Rewriting the Alexander polynomial as a state sum was a prescient step, as shown
by the events that followed! In 1984 Vaughan Jones [22], using the trace of a rep-
resentation of the Artin braid group to a von Neumann algebra, produced a new
(Laurent) polynomial invariant of knots and links, denoted Vi (t), that outdid the
Alexander polynomial in a number of ways. In particular the Jones polynomial
could distinguish many knots from their mirror images (one says that the polyno-
mial could detect the chirality of some knots). On top of this Jones showed that
his polynomial also satisfied a Conway — type identity, namely

Wk, —tVie = (2 =tV V.

Suddenly, the Conway method of skein calculation had two valid topological exam-
ples, and a bunch of topologists realized that the skein method had extraordinary
potential. The first discovery was a direct generalization of the original Jones poly-
nomial to an invariant Pk (a, z) in two variables ¢ and z such that

LLPKJr — a_1PK7 = ZPKO.

Pk is called the Homflypt polynomial after the different people that discovered it and
proved its properties. They are Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter,
Przytcki and Trawzyk in the order of the acronym. The collaborative pairs are LM,
FY and PT. In all cases except Ocneanu and Freyd-Yetter, this new polynomial
had its properties analyzed by pure induction on the diagrams and the Reidemeister
moves. (To avoid proliferation of references, we now refer the reader to the book
under review for references to the source papers for the new polynomials.)

A few months later Millett and Ho found another new invariant Q(z) (in one
variable) on unoriented diagrams that satisfied the identity

Qk + Q' = 2(Qex + QEK’)
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where K and K’ differ by the switch of one crossing and EK and EK' are diagrams
that result from smoothing the crossing in the two ways that are possible without
orientation. The @ polynomial was the first explicit appearance of an invariant
that did not depend on the orientation of the link K. The @-polynomial does not
detect chirality.

The reviewer, in 1985, found a way to generalize the (Q—polynomial to a two
variable polynomial Fi (a, z) that can distinguish many mirror images. This gen-
eralization involves using a representation of knot diagrams that respects twisting.

We need the concept of a curl in the diagram. A curl is a place in the knot
diagram where an observer moving along the diagram goes through a crossing twice
in quick succession with no intervening crossings before the repeat takes place. The
curl has the appearance of a little loop in the rope.

One first defines a polynomial L (a, z) that is invariant only under the second
and third Reidemeister moves and so that

Lk + Ly = 2(Lgx + Lek')

and

LK(—) = a_lLK

where K (+) denotes a diagram with a single curl of positive or negative type, and
K denotes the result of removing the curl from that diagram. Note that L has the
same skein relation as @. The difference between the two polynomials is in the way
that they treat the twisting data corresponding to the curl. The fully invariant
polynomial F is defined by the formula

Fi(a,z) = a™ ") Lyc(a, 2)

where w(K) denotes the sum of the signs of the crossings of the oriented link K.
In the wake of this generalization came a state summation model for a special-
ization of Lg [27]. In this model, denoted < K >, we have

<K>=A<EK>+A""'<EK' >

where A is an independent variable making < K > (A4) a Laurent polynomial in A.
Here EK denotes the result of smoothing a given crossing in the diagram K, and
EK' denotes the result of smoothing the switch of that crossing. This relation is
indicated below.

/
/

In this case, one also has that

<OK >=d< K >
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where O denotes an unknotted closed loop disjoint from the diagram K and d =
—A? — A=2. The bracket model can be construed as a sum over “states” S of the
diagram K that are obtained by making a choice of smoothing at each crossing.
Then

<K>=) <K|S>dISI
S

where [|S]| denotes the number of simple closed curves in the state S and < K|S >
denotes the product of vertex weights (equal to A or A™!) associated with the
smoothed crossings in S. This state summation is very closely related to the parti-
tion function of the Potts model in statistical mechanics, and it provides a bridge
between these two subjects. The bracket state model gives a direct construction of
the original Jones polynomial. The formula is

Vic(t) = fre(t%)
where
fr(A) = (=4%)7*F) < K > (A).

The Laurent polynomial in A, fx(A), is an invariant of ambient isotopy for knots
and links in three space. As the formula above states, the original Jones polynomial
is a reparametrization of fx (A).

The bracket state model for the Jones polynomial was followed by a big influx
of ideas from statistical mechanics applied to knot theory. In the bracket polyno-
mial the combinatorial structure underlying the partition function is the knot or
link diagram itself. In statistical mechanics it is customary to use a graph as the
underlying combinatorial structure. It became apparent that one could mimic the
assignment of vertex weights in statistical mechanics in the category of knot and
link diagrams. In particular, one could import certain matrices, called “solutions to
the Quantum Yang-Baxter Equation” to do the main job for making vertex weights
in such a model. A given solution to the Quantum Yang-Baxter Equation would
always provide a representation of the Artin braid group, and sometimes it can be
augmented to provide an invariant of knots and links. At this stage it was noted
by Jones, Turaev and others that this use of the Yang-Baxter equation provided
a way to construct a series of specializations of all the known skein polynomials
(as described above). Logically these specializations are sufficient to determine the
existence of the skein polynomials. In this sense, all the skein polynomials are
subsumed under the theory of these quantum link invariants.

The solutions to the quantum Yang-Baxter equation are closely related to the
theory of quantum groups (non co-commutative Hopf algebras) which are in turn
deeply related to the classical Lie algebras. As a result, the quantum groups became
tied in with the knot theory, and a complex texture of algebra and topology arose.

These theories took a new turn in the late 1980’s with Edward Witten’s discovery
[40] of a far-reaching relationship between knot invariants and quantum field theory.
By interpreting knot invariants as certain functional integrals he showed how the
invariants derived from quantum groups related to classical Lie algebras could be
taken directly from those Lie algebras and their representations. He also showed
how the quantum field theory context defined many invariants of three dimensional
manifolds and how these invariants could be calculated (by a surgery description)
through invariants of knots and links in the three dimensional sphere. At the
same time, Reshetikhin and Turaev [37] discovered a method of defining invariants
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of three manifolds by using the algebraic structure of representations of quantum
groups. It became clear that (to the extent that the Witten invariants are well-
defined) the invariants of Witten and the invariants of Reshetikhin and Turaev
coincide.

This development was a landmark in the evolution of a new theory of knots,
links and invariants of three manifolds. Along with the quantum field theoretic
viewpoint came a notion of topological quantum field theory [7] (forged by Witten
and by Atiyah) that gave a framework into which many new results could fit. The
perturbation expansion of Witten’s integral promised more insights. It has delivered
these in recent years in relation to other forms of three manifold invariants and in
the formulation of Vassiliev invariants. We will say little about these in this review
other than to point out that Vassiliev invariants provide a way to make a theory
of knot and link invariants that is based directly on Lie algebra or generalized Lie
algebra data. The Vassiliev invariants are closest in formalism to the perturbation
series of Witten’s integral.

So far we have given a sketch of the development of the theory of knots and links
and its radical transformation in the last fifteen years. Now we turn to the contents
of the book A survey of knot theory by Akio Kawauchi.

2. A SURVEY OF KNOT THEORY

The book by Kawauchi is not just a survey of knot theory. It is in fact a small
but feisty encyclopedia of the subject. It achieves this aim in a compact space by
accurate statements of theorems and examples and by eschewing the details of the
proofs of many theorems. The book is endowed with an excellent index that this
reviewer has tested on a number of occasions. It is actually possible to ask a specific
technical question in knot theory, use this index and get significant information!
Where the index fails, the table of contents often succeeds. For example, T just
looked for the word “mutant” in the index. It is absent from the index. However,
chapter heading 3.8 refers to this term, and turning to that section I find a lucid
discussion of the meaning of the term and the fundamental example of the mutant
pair of knots: the Conway knot and the Kinoshita-Terasaka knot. Each of these
knots has Alexander polynomial equal to one. Furthermore, the text reminds the
reader of the fact that the Kinoshita-Terasaka knot bounds a smooth disk in the
four-ball ( i.e. it is a slice knot), while it is an unsolved problem whether the same
is true of the Conway knot.

This is what I like about this book. You start by looking up something in
it, and it ends up by telling you about an interesting problem that rivets your
thought. Another good feature of the book is an extended list of references to
the literature arranged alphabetically by author. The book comes equipped with
six appendices, the first five on background topics (for example, Appendix C is an
account of the canonical decompositions of three-manifolds with clear statements of
Dehn’s Lemma, the Loop and Sphere theorems, properties of Haken manifolds and
properties of hyperbolic three-manifolds). The sixth appendix is a new tabulation
of the knots through 10 crossings with information about symmetry and skein
polynomials. These appendices make the book particularly useful for researchers
in three dimensional topology.

Now, turning to the book’s overall organization, we find the first three chapters
concerned with fundamentals, braids, bridge presentations, torus knots and pretzel
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knots. Chapter 3 discusses aspects of compositions and decompositions of knots and
links via direct sums and tangles. Chapters 4 and 5 discuss the construction and
application of spanning surfaces of knots and links. In Chapter 5 the Seifert pairing
and Arf invariant are introduced and applied to the calculation of the homology
groups of cyclic coverings of the knot complement. In Chapter 6 the fundamental
group is introduced and used to study knots and links. The chapter ends with a
brief discussion of link homotopy and the Milnor p invariants. Chapter 7 discusses
multivariable Alexander polynomials via branched covering spaces and via the Fox
calculus. In Chapter 8 the Jones polynomial is introduced, first by way of the
bracket polynomial state summation model. Then the notion of skein identities is
introduced, and the Conway, Homflypt and Kauffman polynomials are discussed.
The chapter ends with a description of a state model for a specialization of the
Homflypt polynomial that is based on a solution to the Yang-Baxter equation,
but this source of the model (due originally to Vaughan Jones) is not mentioned.
Chapter 9 is a brief discussion of the construction of the Homflypt polynomial via
representations of Hecke algebras.

Chapter 10 deals with symmetries of knots, using the knot polynomials and
geometric techniques to obtain specific results. The chapter ends with a useful
discussion of the decomposition work of Bonahon and Siebenmann.

Chapter 11 discusses transformations of knot diagrams that can be used to
achieve transformation and unknotting.

Chapter 12 is an introduction to knot cobordism with a useful discussion of
unsolved problems.

Chapters 13 and 14 begin a discussion of the embeddings of spheres in four
dimensional space. These are called “2-knots” and form the first significant gener-
alization of knot theory beyond dimension three.

Chapter 15 discusses the knot theory of embedded graphs in three dimensional
space. This is a subject of interest for applications to chemistry and biology and for
interconnections with graph theory. This reviewer notes one slip in the references
here: the correct reference [11] to Theorem 15.2.8 (Any embedded image of the
7-complete graph K7 into R® contains a non-trivial constitutent knot) is missing.

Chapter 16 discusses the basic formalism of the Vassiliev-Gusarov invariants and
relationships with the Jones polynomial and with the Kontsevich integrals. This is
the last chapter of the book before the appendices.

As the reader can see from this description of A survey of knot theory, this is
a useful reference book that can serve as an introduction to many topics in the
modern theory of knots. In terms of the developments of the past fifteen years this
book does not treat the connections with statistical mechanics, quantum groups
and invariants of three manifolds. On the other hand, there is a concise description
of Vassiliev invariants, and this topic can lead the interested reader (through the
references) to many of the topics in quantum topology. I regard this book as an
indispensable addition to any library of books on knots.
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