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ELEMENTARY DERIVATION OF THE EQUIVALENCE
OF MASS AND ENERGY

ALBERT EINSTEIN

The special theory of relativity grew out of the Maxwell electromagnetic equa-
tions. So it came about that even in the derivation of the mechanical concepts and
their relations the consideration of those of the electromagnetic field has played an
essential role. The question as to the independence of those relations is a natu-
ral one because the Lorentz transformation, the real basis of the special relativity
theory, in itself has nothing to do with the Maxwell theory and because we do not
know the extent to which the energy concepts of the Maxwell theory can be main-
tained in the face of the data of molecular physics. In the following considerations,
except for the Lorentz transformation, we will depend only on the assumption of
the conservation principles for impulse and energy.

We begin by making plausible the expressions for impulse and energy of the
material particle in the well known way. The fundamental invariant of the Lorentz
transformation is

ds2 = dt2 − dx2 − dy2 − dz2,

or

ds = dt(1− u2)1/2,

where

u2 =
(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

= u2
1 + u2

2 + u2
3.

If one divides the components of the contravariant vector (dt, dx, dy, dz) by ds, one
obtains the vector(

1
(1− u2)1/2

,
u1

(1 − u2)1/2
,

u2

(1− u2)1/2
,

u3

(1 − u2)1/2

)
.

Let (dt, dx, dy, dz) belong to the world-line of a material particle of mass m. We
obtain a vector connected with the motion of the latter by multiplying by m the
four-vector of velocity that we have just written down. We thus have

(ησ) =
(

m

(1− u2)1/2
,

mui
(1− u2)1/2

)
,

where the index i runs from 1 to 3.
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Neglecting the third power of the velocity, we can express the components of this
vector by

(ησ) =
(
m+

1
2
mu2,mui

)
.

The space components of (ησ) express in this approximation the components of the
impulse in classical mechanics, while the time component, aside from the additive
constant m, expresses the kinetic energy of the material point.

If one goes back to the exact expression for (ησ), it is therefore natural to take
mui

(1− u2)1/2

as the impulse and

m

(
1

(1− u2)1/2
− 1
)

as the kinetic energy of the particle. However, how is one to interpret the time
component m/(1 − u2)1/2 itself, the expression for which after all is the really
significant one? Here it is natural to give it directly the meaning of energy, hence
to ascribe to the mass-point in a state of rest the rest-energy m (with the usual
time unit, mc2).

Of course, this derivation cannot pretend to be a proof since in no way is it
shown that this impulse satisfies the impulse-principle and this energy the energy-
principle if several particles of the same kind interact with one another; it may be a
priori conceivable that in these conservation-principles different expressions of the
velocity are involved.

Furthermore, it is not perfectly clear as to what is meant in speaking of the rest-
energy, as the energy is defined only to within an undetermined additive constant;
in connection with this, however, the following is to be remarked. Every system
can be looked upon as a material point as long as we consider no processes other
than changes in its translation velocity as a whole. It has a clear meaning, however,
to consider changes in the rest-energy in case changes are to be considered other
than mere changes in translation velocity. The above interpretation asserts, then,
that in such a transformation of a material point its inertial mass changes as the
rest-energy; this assertion naturally requires a proof.

What we will now show is the following. If the principles of conservation of
impulse and energy are to hold for all coordinate systems which are connected
with one another by the Lorentz transformations, then impulse and energy are
really given by the above expressions and the presumed equivalence of mass and
rest-energy also exists.

We start from some simple kinematic consequences of the Lorentz transforma-
tion:

t =
t′ + vx′

(1− v2)1/2
, x =

x′ + vt′

(1 − v2)1/2
, y = y′, z = z′,

where v is the relative velocity of the coordinate systems K and K ′. The same
relations hold for the differentials dx, etc. By suitable division one obtains the law
of transformation of the velocities:

u1 =
u′1 + v

1 + u′1v
, u2 =

u′2(1 − v2)1/2

1 + u′1v
, u3 =

u′3(1− v2)1/2

1 + u′1v
.
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From this one obtains

u2 =
u′2 + 2u′1v + v2 − u′22 v2 − u′23 v2

(1 + u′1v)2
,

and
1

(1− u2)1/2
=

1 + u′1v

(1− u′2)1/2(1− v2)1/2
,

as well as
u1

(1 − u2)1/2
=

u′1 + v

(1− u′2)1/2(1− v2)1/2
,

u2

(1 − u2)1/2
=

u′2
(1− u′2)1/2

,
u3

(1 − u2)1/2
=

u′3
(1− u′2)1/2

.

We introduce now for the following concept of the particle-pair. By this we un-
derstand two material points with equal and opposite velocities referred to K ′ (and
later to be chosen of equal mass). The two particles are designated by the indices
+ or −. Hence u′+ = u′−, u

′
1+ = −u′1−, etc. Applying to these our transformation

equations after addition, we get
1

(1 − u2
+)1/2

+
1

(1 − u2
−)1/2

=
2

(1 − u′2)1/2(1− v2)1/2
,

u1+

(1 − u2
+)1/2

+
u1−

(1 − u2
−)1/2

=
2v

(1 − u′2)1/2(1− v2)1/2
,

u2+

(1 − u2
+)1/2

+
u2−

(1 − u2
−)1/2

= 0,

u3+

(1 − u2
+)1/2

+
u3−

(1 − u2
−)1/2

= 0.

(1)

The sums on the left sides of these equations depend, therefore, only on the velocity
u′ of the pair referred to the special system K ′ and on the relative velocity v of K ′

with respect to K, not however on the direction in which the particles are moving.
We remark that the equations (1) can be derived more clearly if one considers

directly the transformation for the sum of the four-vectors of the velocities of a
particle-pair. I have chosen the above representation, however, because the con-
servation laws indicate the use of this 3-dimensionally inhomogeneous manner of
writing.

We now go to the actual considerations. We assume that impulse and energy of
a material point are given by expressions of the form

Iν = muνF (u), E = E0 +mG(u), (ν = 1, 2, 3),

where F and G are universal, even functions of the velocity u, which vanish for
u = 0. Then mG(u) is the kinetic energy, E0 the rest-energy of the material point,
m the rest-mass or, simply, the mass. It is here assumed that impulse and energy
of the mass-point are independent of direction of motion and of the orientation of
the mass-point relative to the velocity. It is further assumed that in impulse and
energy the same mass-constant m occurs, for which, however, we shall find later a
partial justification.

We consider now the elastic eccentric collision between two particles of equal
mass. One can always choose the coordinate-system K ′ so that, referred to the
latter, the velocities of the masses before the collision are equal in magnitude and
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opposite in direction; how are the velocities after the collision constituted with
reference to K ′? If the velocities after the collision were not likewise equal and
opposite, the impulse law would be violated. If the common velocity of both masses
after the collision were not equal in magnitude to that before the collision, in case
the collision is elastic, the energy law would be violated. This holds independently
of the particular law of dependence of impulse and energy on the velocity. The
collision, therefore, changes only the direction of motion of the two mass-points
referred to K ′. We can express this briefly as follows. A particle-pair before the
collision is transformed by the latter again into a particle-pair of the same velocity
u′.

The right side of (1) is therefore not changed by the collision. It follows then,
from (1), that, referred to K, we have for the states before and after the collision
the equations:

1
(1− u2

+)1/2
+

1
(1− u2

−)1/2
=

1
(1− u2

+)1/2
+

1
(1− u2

−)1/2
,

ui+
(1− u2

+)1/2
+

ui−
(1− u2

−)1/2
=

ui+

(1− u2
+)1/2

+
ui−

(1− u2
−)1/2

.

(2)

Barred quantities are those which refer to the state after the collision. These
equations, which are valid in general for elastic collisions of equal masses, have the
form of conservation equations; it may therefore be taken for granted that no other
symmetrical or anti-symmetrical functions of the velocity-components exist which
in the present case of the elastic collision of two identically constituted material
points give anything analogous. Consequently we shall have to regard

mui
(1− u2)1/2

(3)

as impulse and

m

(
1

(1− u2)1/2
− 1
)

(4)

as the kinetic energy of a particle.1

We now turn to the proof of the assertion that the mass is equal to the rest-
energy. For the total energy E of a moving particle we shall have to take

E = E0 +m

(
1

(1− u2)1/2
− 1
)
,(4a)

where we imagine that E0 (rest-energy) and m can be changed in the case of
interactions of material points that are not elastic.

We now consider the inelastic collision between two particles of equal mass and
equal rest-energy, which before the collision again form a particle-pair with respect
to K ′ (velocities equal and opposite). We assume here for simplicity that the
internal changes which the material points suffer in the collision are equal to each
other. From the impulse principle referred to K ′ it follows as above that the final
velocities of the two particles must be equal and opposite (u′+ = −u′−). The energy

1This must naturally vanish for u = 0; for it is defined as the expenditure of energy necessary
to impart the velocity u to the particle initially at rest (without internal change).
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law gives then, referred to K ′ and K, respectively,

2E0 + 2m
(

1
(1− u′2)1/2

− 1
)

= 2E0 + 2m
(

1
(1− u′2)1/2

− 1
)
,

2E0 +m

(
1

(1− u2
+)1/2

− 1
)

+m

(
1

(1 − u2
−)1/2

− 1
)

= 2E0 +m

(
1

(1− u2
+)1/2

− 1
)

+m

(
1

(1− u2
−)1/2

− 1
)
.

As the points form a pair before and after the collision, one can write the last
equation on the basis of (1) in the form

E0 −m+
m

(1− u′2)1/2(1− v2)1/2

= E0 −m+
m

(1− u′2)1/2(1− v2)1/2
.

The first equation we write analogously in the form

E0 −m+
m

(1− u′2)1/2
= E0 −m+

m

(1− u′2)1/2
.(5)

Multiplying the last equation by 1/(1 − v2)1/2 and subtracting from the previous
one we get

[(E0 − E0)− (m−m)]
(

1
(1 − v2)1/2

− 1
)

= 0,

or

E0 − E0 = m−m.(6)

The rest-energy changes, therefore, in an inelastic collision (additively) like the
mass. As the former, from the nature of the concept, is determined only to within
an additive constant, one can stipulate that E0 should vanish together with m.
Then we have simply

E0 = m,

which states the principle of equivalence of inertial mass and rest-energy.
If we apply the impulse law to the x-component, it follows (for an inelastic

collision) that

m
u+1

(1− u2
+)1/2

+m
u−1

(1− u2
−)1/2

= m
u+1

(1− u2
+)1/2

+m
u−1

(1− u2
−)1/2

,

or by the application of the second of equations (1), for the state before and after
the collision,

m

(1 − u2)1/2
=

m

(1− u2)1/2
.

The same relation follows also from equations (5) and (6) which were obtained
from the energy principle. If, from the beginning, we had provided the expression
for the impulse with a mass-constant different from that of the energy, these consid-
erations would show that the impulse-mass changes in an inelastic collision like the
energy-mass. This is a partial justification for setting both mass-constants equal to
each other.
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The result of this consideration is therefore as follows. If for collisions of material
points the conservation laws are to hold for an arbitrary (Lorentz) coordinate-
system, the well known expressions for impulse and energy follow, as well as the
validity of the principle of equivalence of mass and rest-energy.

Professor G. D. Birkhoff has called my attention to the fact that in the book
which he has written in collaboration with Professor R. E. Langer, Relativity and
Modern Physics, quite similar considerations are given concerning collisions of par-
ticles, as well as concerning impulse and energy. In spite of this, I believe that the
present derivations merit a certain amount of interest.

Thus, in the book just mentioned, essential use is made of the concept of force,
which in the relativity theory has no such direct significance as it has in classical
mechanics. This is connected with the fact that, in the latter, the force is to
be considered as a given function of the coordinates of all the particles, which is
obviously not possible in the relativity theory. Therefore I have avoided introducing
the force concept.

Furthermore, I was concerned with avoiding making any assumption concern-
ing the transformation character of impulse and energy with respect to a Lorentz
transformation.
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