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The equations studied in the book under review were introduced by Knizhnik and
Zamolodchikov [KZ] in the early eighties as the differential equations satisfied by
certain correlation functions in conformal field theory (CFT). Since then they have
found applications in several areas of mathematics, including the representation
theory of affine Lie algebras and quantum groups, braid groups, the topology of
hyperplane complements, and the theory of knots and 3-folds. The theory of the KZ
equations themselves is a generalization of the classical theory of hypergeometric
functions.

1. The KZ equations

Let g be a finite dimensional complex simple Lie algebra over C, and fix a g-
invariant bilinear form ( , ) on g; this identifies g∗ with g and hence corresponds
to a symmetric tensor Ω ∈ g ⊗ g. Let V1, . . . , VN be g-modules (not necessarily
finite dimensional), and let Ωij be Ω acting in the ith and jth factors of the tensor
product V = V1⊗· · ·⊗VN . The KZ equation for a V -valued function ψ(z1, . . . , zN)
is

∂ψ

∂zi
=

1
κ

 ∑
{j|1≤j≤N,j 6=i}

Ωij
zi − zj

ψ, i = 1, . . . , N ;(KZ)

here κ may be either a formal variable or a non-zero complex number.
The g-invariance of Ω has two important consequences. First, the space of so-

lutions of (KZ) is naturally a g-module. This means, for example, that if V is a
lowest weight module, every solution of (KZ) can be obtained from a solution with
values in the space V − of lowest weight vectors in V (or even the parts V −λ of V −

of a fixed weight λ). Second, (KZ) is consistent; i.e. if

Oi =
∂

∂zi
− 1
κ

∑
j 6=i

Ωij
zi − zj

,

then the differential operators Oi and Oj commute for all i, j. This means that
(KZ) can be interpreted as a flat connection on the trivial bundle with fibre V over
the space

YN = {(z1, . . . , zN) ∈ CN |zi 6= zj if i 6= j},

and solutions of (KZ) are flat sections of this bundle.
The consistency of (KZ), together with standard results in the theory of differ-

ential equations, also implies that any solution of (KZ) of the form ψ(z1, . . . , zN) =
zδ11 . . . zδNN f(z2/z1, z3/z2, . . . , zN/zN−1), where f is a formal power series and the
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δ’s are constants, is automatically analytic in the region |z1| > |z2| > · · · > |zN |.
We shall see at the end of the next section how to construct solutions of this type.

2. Affine Lie algebras and correlation functions

The affine Lie algebra ĝ associated to g is the unique non-trivial central extension,
with one dimensional centre Cc, of the Lie algebra g ⊗ C[t, t−1] of maps C× → g.
It is well known that the theory of highest weight g-modules can be extended to ĝ.
The irreducible highest weight ĝ-modules are parametrized by pairs (λ, k), where λ
is a weight of g and k ∈ C. The corresponding module Lλ,k is generated by a vector
v that is highest weight for g, is annihilated by the subalgebra g⊗ tC[t], and is such
that c.v = kv; the g-submodule of Lλ,k generated by v is a copy of the irreducible
g-module Lλ with highest weight λ. All the highest weight ĝ-modules considered
from now on are assumed to be generic: if g = sl2, so that λ ∈ C, this means that
k /∈ Qλ+Q.

There is another family of ĝ-modules that plays an important role in this theory.
If W is any g-module, the evaluation module is W (z) = W ⊗ C[z, z−1], where z is
an indeterminate, with c acting trivially and

(x⊗ tm).(w ⊗ zn) = (x.w) ⊗ zm+n (x ∈ g, w ∈W,m, n ∈ Z).

The objects of study in [KZ] were vertex operators, or primary fields. In the
language of representation theory, these are certain intertwining operators between
certain ĝ-modules. It is a basic result of the theory that there is a natural bijection
g ↔ Φg(z) between g-module homomorphisms g : Lλ1 → Lλ2 ⊗W and ĝ-module
homomorphisms Φg(z) : Lλ1,k → Lλ2,k ⊗W (z). (We ignore here and elsewhere
the necessity of using suitable completed tensor products.) To be a little more
precise, we recall that ĝ, and the families of ĝ-modules we have introduced, are
graded. Namely, ĝ has a derivation d that annihilates c and counts the power of
t in g ⊗ C[t, t−1], the modules Lλ,k have a natural grading given by the so-called
Segal–Sugawara construction, and counting the power of z gives an obvious grading
on the modules W (z). Then, the correspondence g ↔ Φg(z) is characterized by
the following property: if v ∈ Lλ1,k is of degree zero, the degree zero component
of Φg(z)(v) is g(v). However, Φg(z) itself is a graded map only if the grading
on W (z) is shifted from the obvious one: this amounts to redefining W (z) to be
W ⊗ z−∆C[z, z−1], where ∆ is a certain scalar depending on λ1, λ2, k.

Now let Lλ1,k, . . . , LλN ,k be (generic) highest weight ĝ-modules; Wµ1 , . . . ,WµN−1

lowest weight g-modules (not necessarily finite dimensional) with lowest weights
−µ1, . . . ,−µN−1; and gi : Lλi+1,k → Lλi,k ⊗Wµi g-module homomorphisms (1 ≤
i ≤ N − 1). We consider the map Ψ(z1, . . . , zN−1) : LλN ,k → Lλ1,k ⊗Wµ1(z1) ⊗
· · · ⊗WµN−1(zN−1) given by

Ψ(z1, . . . , zN−1) = (Φg1(z1)⊗ · · · ⊗ 1) . . . (ΦgN−2(zN−2)⊗ 1)ΦgN−1(zN−1).

It is easy to see that Ψ is a formal power series in z−∆1
1 . . . z

−∆N−1
N−1 C[[ z2

z1
, . . . , zN−1

zN−2
]],

where the ∆i are scalars depending on the λ’s and µ’s. Fix a linear form u1 on the
degree zero part of Lλ1,k, and define the correlation function ψ(z1, . . . , zN−1) with
values in V = Wµ1 ⊗ · · · ⊗WµN−1 ⊗ L∗λN , by

ψ(z1, . . . , zN−1) = 〈u1 , Ψ(z1, . . . , zN−1)(•)〉.(1)
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It was proved in [KZ] that the function ψ(z1−zN , z2−zN , . . . , zN−1−zN ) satisfies
(KZ), with κ−1 = k+ ȟ and ȟ the dual Coxeter number of g. Conversely, it can be
shown that such correlation functions span the space of solutions of (KZ).

3. Monodromy and asymptotics

In Section 1 (from which we keep the notation) we saw that (KZ) corresponds
to a flat connection on a trivial bundle over YN with fibre V . This means that if
γ is any path in YN and Mγ : V → V is the holonomy of the connection along γ,
then the monodromy operator Mγ depends only on the homotopy class of γ. Taking
closed loops based at a point z0 ∈ YN , we thus get a representation of π1(YN , z0)
on V . In the special case V1 = V2 = · · · = VN , the symmetric group SN acts
on V by permuting the factors and on YN similarly, and we get an induced flat
connection on the configuration space YN/SN . The holonomy of this connection
gives a representation of the braid group π1(YN/SN , z0) on V .

It turns out that the monodromy operators can still be defined, and take on
a particularly simple form, if the basepoints are replaced by “asymptotic zones”.
For simplicity, let N = 3; then (KZ) reduces to a single equation in terms of
x = (z1 − z2)/(z1 − z3):

∂ψ

∂x
=

1
κ

(
Ω12

x
+

Ω23

x− 1

)
ψ.(KZ3)

If v ∈ V , there is a unique solution ψvz1>>z2>>z3
(resp. ψvz1−z3>>z1−z2>>0) which

is asymptotic to v (in a sense we shall not make precise) as x → 1 (resp. as
x → 0). Then we can consider the monodromy operator MV1,V2,V3 : V → V such
that ψvz1−z3>>z1−z2>>0 = ψ

M(v)
z1>>z2>>z3

.
Drinfeld pointed out that there is a braided tensor category C(ĝ, κ) whose objects

are the finite dimensional g-modules and in which the operators MV1,V2,V3 : (V1 ⊗
V2) ⊗ V3 → V1 ⊗ (V2 ⊗ V3) are the associativity maps; the symmetries σV1,V2 :
V1⊗V2 → V2⊗V1 are given by σV1,V2 = σeπiΩ/κ, where σ is the switch of the factors.
Moreover, he proved that, if κ ∈ C\Q or is a formal variable, C(ĝ, κ) is equivalent
as a braided tensor category to the category C(g, q) of finite dimensional modules
for the Drinfeld-Jimbo quantum group Uq(g), where q = eπi/mκ and m = 1, 2 or 3
accordingly if g is of type A/D/E, B/C/F or G. (The symmetry maps of C(g, q)
are defined using the universal R-matrix of Uq(g); the associativity maps are the
obvious ones.)

This last result admits a highly non-trivial modification for κ ∈ Q, κ < 0, due
to Kazhdan and Lusztig. In that case, C(ĝ, κ) is taken to be a certain category of
ĝ-modules with the ‘fusion tensor product’. Using this result, Finkelberg extended
Drinfeld’s result to the case k ∈ Z, k > 0: then C(ĝ, κ) is replaced by the category
of integrable ĝ-modules with the fusion tensor product and C(g, q)—which is no
longer semisimple, since q is a root of unity—is replaced by a certain semisimple
quotient.

4. Solutions of KZ

In this section we restrict ourselves to the case g = sl2 for simplicity (so that
weights are just complex numbers); the solutions in this case were found by Date,
Jimbo, Matsuo and Miwa. We take Wµi to be the lowest weight Verma module for
g with lowest weight −µi. We observed in Section 1 that it is enough to look for
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z3

z2z1

Figure 1

solutions of (KZ) in the finite dimensional spaces V −λ , where λ is necessarily of the
form λ = −

∑
µi + 2m, with m ∈ Z, m ≥ 0.

In the simplest case m = 0, it is easy to see that any solution of (KZ) is of
the form ψ0(z).v, where z = (z1, . . . , zN ); v is any non-zero vector in the one–
dimensional space V −λ ; and

ψ0(z) =
∏
i<j

(zi − zj)µiµj/2κ.

The case m = 1 is already much more complicated. If N = 3, it is not diffi-
cult to show that any solution of (KZ3) can be expressed in terms of the Gauss
hypergeometric function

2F1(a, b, c;x) =
∞∑
n=0

(a)n(b)n
n!(c)n

xn,

where (a)n = a(a + 1) . . . (a + n − 1) and a, b, c are simple rational functions of
µ1, µ2, µ3 and κ.

For m = 1 and arbitrary N , the solutions can be expressed by integral formulas
that generalize Euler’s formula

2F1(a, b, c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)c−b−1(1 − xy)−ady.

Let {e, f, h} be the usual basis of sl2, and let er denote e acting in the rth factor
of the tensor product V . The solutions have the form

Ψ(z) = ψ0(z)
∫
C

ωz,1.v,(2)

where ωz,1 is the multi-valued differential form

ωz,1 =
N∑
r=1

ψz,1(t)
t− zr

er, ψz,1(t) =
N∏
j=1

(t− zj)−µj/κ,

and C can be taken to be any curve in

Yz,1 = {t ∈ C | t 6= zj for all i = 1, . . . , N}

that has winding number zero about each zj: C can still be homotopically non-
trivial, as shown by the Pochhammer loop illustrated in Figure 1 for N = 3.
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Finally, for m arbitrary, one replaces ωz,1 in (2) by a multi-valued differential
form on

Yz,m = {t = (t1, . . . , tm) ∈ Cm | ti 6= tj if i 6= j, ti 6= zr for all i, r}

of the form

ωz,m = ψz,m(t)× (rational function of t with no poles on Yz,m) dt1 ∧ . . . ∧ dtm

and

ψz,m(t) =
∏
p<n

(tp − tn)2/κ
∏
p,j

(tp − zj)−µi/κ.

The curve C must be replaced by a suitable m-cycle on Yz,m. The appropriate
homology is that dual to the cohomology of the complex of holomorphic differ-
ential forms on Yz,m with coefficients in a trivial line bundle LKZ on Yz,m; the
differential of this complex is given by a flat connection on this bundle which
can be characterized by saying that its local sections are of the form ψz,m(t) ×
(holomorphic function on Yz,m). The corresponding homology groups have been
computed by Aomoto.

5. Quantum KZ equation

Following the introduction of quantum groups by Drinfeld and Jimbo and the
realization that CFT provides the correct geometric framework for the representa-
tion theory of affine Lie algebras (explaining, in particular, the mysterious mod-
ular properties of their characters), it was natural to look for a q-deformation of
the structures of CFT. The first step in this program was taken by Frenkel and
Reshetikhin [FR] with their introduction of the quantum KZ equations.

Analogues of the highest weight modules Lλ,k and of the evaluation modules
W (z) can be defined for Uq(ĝ), and we denote them by the same symbols as in the
classical case. We can then define correlation functions as in (1). But to obtain
equations satisfied by these correlation functions, it is now necessary to take u1

to be a lowest weight vector in L∗λ1,k
and evaluate ψ on a highest weight vector

uN ∈ LλN ,k. In other words, we now define

ψ(z1, . . . , zN−1) = 〈u1 , Ψ(z1, . . . , zN−1)(uN )〉.(3)

To write down the equations satisfied by ψ, we recall that, like all Drinfeld–
Jimbo quantum groups, the quantum affine algebra Uq(ĝ) has a universal R-matrix
R ∈ Uq(ĝ)⊗2 (again, a suitable completion of the tensor product should be used
here); let Rop be the result of applying to R the switch of the factors in this
tensor product. The action of Rop on a tensor product of evaluation modules
W1(z1) ⊗W2(z2) depends only on z2/z1; we write it as RW1,W2(z2/z1). (Actually,
we should be using a ‘truncated’ version of R, but we ignore this point from now
on.)
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Frenkel and Reshetikhin showed that the correlation function ψ defined in (3) is
a solution of the system of difference equations

Ψ(z1, . . . , pzj , . . . , zN−1) = RWj−1,Wj

(
pzj
zj−1

)
. . . RW1,Wj

(
pzj
z1

)
× (qλ1+λN+2ρ)j

(qKZ)

×RWj ,WN−1

(
zN−1

zj

)−1

. . . RWj ,Wj+1

(
zj+1

zj

)−1

Ψ(z1, . . . , zj, . . . , zN−1).

In this formula, p = q−2κ; RWj ,Wk acts on the factors Wj and Wk in the tensor
product W1 ⊗ . . .⊗WN−1; and qλ1+λN+2ρ means qh, where h is the element of the
Cartan subalgebra of g corresponding to λ1 + λN + 2ρ under the invariant inner
product on g, ρ being half the sum of the positive roots of g and the subscript j
indicating that the operator qh acts on the jth factor Wj . Finally, we have written
Wj for Wµj .

There are actually two q-analogues of (KZ); we have just described the trigono-
metric form, so-called because the matrices RWj ,Wk(zk/zj) are rational functions of
eαzk/zj for various constants α. There is also a rational form, which is related to a
different quantization of ĝ called the double Yangian; the corresponding R-matrices
are then rational functions of zk − zj .

We shall not describe the solutions of (qKZ) in any detail. Suffice it to say that,
in the simplest non-trivial case g = sl2,m = 1 (cf. Section 4), the solutions can be
expressed in terms of the q-hypergeometric function

2φ1(qa, qb, qc; q, x) =
∞∑
n=0

n−1∏
j=0

{a+ j}{b+ j}
{c+ j}{1 + j}

xn;

here, {a} = (1−qa)/(1−q). In the general case, one introduces appropriate discrete
analogues of the vector bundles with flat connection used in Section 4.

6. Further developments

The geometric formulation of CFT is in terms of the moduli spaces of vector
bundles on Riemann surfaces with marked points. The algebraic theory described
here corresponds to the genus 0 case. It is thus natural to ask for ‘higher genus’
versions of (KZ) and (qKZ). So far, the appropriate equations have been found
only in the genus 1 case: they are called the Knizhnik–Zamolodchikov–Bernard or
elliptic KZ equations.

Elliptic analogues of the constructions we have described also arise when at-
tempting to extend the equivalences of categories between representations of ĝ and
Uq(g) described in Section 3. On the one hand, one could replace ĝ by Uq(ĝ): then
Uq(g) should be replaced by a 2-parameter deformation of g. The appropriate ob-
ject was discovered by G. Felder and is called an elliptic quantum group (because its
R-matrices involve elliptic functions). On the other hand, one could replace Uq(g)
by Uq(ĝ): then ĝ should be replaced by the maps of the two-dimensional torus into
g.

7. The book under review

This book treats all the topics we have touched on (and more) with virtually
complete proofs. It begins with a mini–course on simple and affine Lie algebras
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and their representation theory. The authors then review the basic properties of
the (KZ) equations and give an explicit construction of their solutions in terms
of certain integrals. Chapter 5 studies the relation between the solutions of the
(KZ) equations and vertex operators. Chapters 7 and 8 study the geometry behind
the construction of solutions of the (KZ) equations. The remaining chapters are
devoted to generalizing the theory to the quantum case.

The exposition simplifies many results that have so far only been accessible in
difficult journal articles (the description of the homology theory of the relevant
local systems is a notable example). There have, of course, been advances in the
theory since the book was written. One example is the description given by Tarasov
and Varchenko of the solutions of (qKZ) in terms of continuous integrals, the book
including only their earlier description in terms of Jackson integrals. Nevertheless,
this book will be an essential introduction for anyone wishing to enter this fascinat-
ing field at the interface between representation theory, geometry and mathematical
physics.
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