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1. Introduction

Let us consider the motion of an ideal incompressible homogeneous fluid in a
fluid container M , an n-dimensional compact oriented C∞ Riemannian manifold
with C∞ boundary ∂M and metric g. A mathematical model for such a fluid is
provided by the Euler equations of ideal hydrodynamics

∂tu(t, x) +∇uu(t, x) = −grad p(t, x),
div u = 0, u(0) = u0,
g(u, n) = 0 on ∂M,

(1)

where the unknown variable u(x, t) is a time dependent vector field on M represent-
ing the spatial or Eulerian velocity, and the pressure function p(x, t) is completely
determined by u via the Hodge projection. We use the notation ∂t to denote the
partial time derivative, ∇ to denote the Levi-Civita covariant derivative associated
to g on M , and n to denote the outward normal vector field on ∂M .

Let Dµ denote the Lie group of C∞ diffeomorphisms of M which preserve the
volume form µ and leave the boundary ∂M invariant. Group multiplication is
given by composition of maps. For any η ∈ Dµ, the tangent space TηDµ consists
of the smooth maps v : M → TM which cover η and satisfy div(v ◦ η−1) = 0 and
g(v ◦ η−1, n) = 0. Let 〈·, ·〉 denote the right invariant Riemannian metric on Dµ
given at the identity e ∈ Dµ by the L2 inner-product

〈u, v〉e =
∫
M

g(u(x), v(x))µ, ∀u, v ∈ TeDµ.(2)

The vector space TeDµ is the Lie algebra of C∞ divergence-free vector fields on
M which are tangential to ∂M , with Lie bracket [u, v] = ∇vu − ∇uv. In his
seminal paper [1], Arnold proved that a curve η(t) in Dµ is a geodesic of 〈·, ·〉
if and only if the projection of η̇(t) onto the Lie algebra TeDµ, given by u(t) =
η̇(t) ◦ η(t)−1, is a solution of the Euler equations (1). With this result, Arnold was
able to transfer the problem of studying the evolution equation (1) to the problem
of finding geodesics of 〈·, ·〉 on Dµ and, in particular, to the study of the geometry
of the volume-preserving diffeomorphism group. Thus began the modern theory of
topological or geometric hydrodynamics. Since then, a large number of researchers
have contributed greatly to this remarkably vast research area, and Arnold and
Khesin’s book is a wonderfully rich survey of the progress made over the last thirty
years. It is an invaluable reference to researchers already working in the area of
topological hydrodynamics and an indispensable learning tool for those wishing to
enter the subject.
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2. Lagrangian and Eulerian fluid motion

Symmetry reduction is a fundamental tool for reducing the number of equations
governing the dynamics of a physical system. In the simplest setting, the configura-
tion space of a dynamical system is a Lie group G (or more generally a topological
group), and the dynamics are governed by a Lagrangian function L : TG → R
which is either left or right invariant with respect to the lifted action of G on TG.
For concreteness, let us consider the right invariant case; then, there is a natural
symmetry reduction given by TG 7→ TG/G ∼= g, where g is the Lie algebra of G
with right Lie bracket [·, ·]R. Letting Rg denote right translation by g ∈ G, the
above reduction is given by (g, ġ) 7→ TRg−1 ġ. The problem, then, is to formulate
the equations of motion for the reduced variables on the reduced phase space g. The
solution is supplied by what is now called the Euler-Poincaré reduction theorem,
which we state in the context of right invariant systems following the development
of Marsden and Scheurle [17].

Theorem 2.1 (Euler-Poincaré). Let G be a topological group which admits smooth
manifold structure with smooth right translation, and let L : TG → R be a right
invariant Lagrangian. Let g denote the fiber TeG, and let l : g→ R be the restriction
of L to g. For a curve η(t) in G, let u(t) = TRη(t)−1 η̇(t). Then the following are
equivalent:

a) the curve η(t) satisfies the Euler-Lagrange equations on G;
b) the curve η(t) is an extremum of the action function

S(η) =
∫
L(η(t), η̇(t))dt,

for variations δη with fixed endpoints;
c) the curve u(t) solves the Euler-Poincaré equations on g

d

dt

δl

δu
= −ad∗u

δl

δu
,

where the coadjoint action ad∗u is defined by

〈ad∗uv, w〉 = 〈v, [u,w]R〉,
for u, v, w in g, and where 〈·, ·〉 is the metric on g and [·, ·]R is the right
bracket;

d) the curve u(t) is an extremum of the reduced action function

s(u) =
∫
l(u(t))dt,

for variations of the form

δu = ẇ + [w, u],

where w = TRη−1δη vanishes at the endpoints.

Interested readers should also see [14].
In the case of incompressible hydrodynamics, where G = Dµ and l =

∫
M g(u, u)µ,

the functional derivative δl/δu = u, so that geodesic flow satisfies ∂tu = −ad∗uu on g.
It is a simple matter to verify that ad∗uu = ∇uu+grad p; hence, geodesics of (2) are
solutions of (1). The symmetry group is the massive particle relabeling symmetry
of hydrodynamics, arising from the action of Dµ on TDµ. Presented as reduction
on the tangent bundle TDµ, this is Euler-Poincaré reduction, while the identical
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reduction on the cotangent bundle side (where the Lagrangian is replaced by the
Hamiltonian) is termed Lie-Poisson reduction. In terms of classical fluid mechanics
terminology, the unreduced motion of the fluid particles on TDµ is termed the
Lagrangian or material representation, while evolution of the spatial velocity field
on the reduced space TeDµ is termed the Eulerian representation. Chapter I of
Topological Methods in Hydrodynamics presents a thorough development of this
reduction process as well as the Lie-Poisson reduction of T ∗Dµ onto T ∗eDµ, where
the Euler equations, expressed in terms of 1-forms, are given by ∂tu+ £u]u = −dp̃,
where u] is the vector field associated to u and £ denotes the Lie derivative (see
[18] as well).

3. The geometry of Dµ
The entirety of Chapter IV is devoted to the geometry of Dµ and begins with

Arnold’s famous curvature computation that first appeared in [1] and later in Ap-
pendix 2 of [2]. As an application of his new methodology, Arnold tackled the
problem of idealized weather prediction by studying the Lagrangian stability of
fluid particles. Because solutions of the Euler equations are geodesics of (2) on
Dµ, one may study the linearized stability problem by considering solutions of the
Jacobi equation along a given geodesic curve; it follows that the sectional curva-
ture K of the metric (2) on Dµ completley determines the growth rate of initial
errors. Arnold made a few simplifying assumptions, approximating the surface
of the Earth by T2 and the trade-wind current by a sinusoidal stream-function,
and proceeded to compute K < 0 at the identity for all possible perturbations.
Consequently, exponential growth of initial errors results, prohibiting accuracy in
long-term weather prediction. Other authors have since obtained similar results for
the volume-preserving diffeomorphism group of S2 and other compact Riemannian
manifolds (see the authors’ extensive bibliography).

In the case that M is a bounded subset of Rn, Dµ is naturally isometrically
embedded into the vector space L2(M,Rn), and this embedding has led to some
remarkable analytic results, some of which are described in a section written by
Shnirelman. Before describing these results and their connection with the tradi-
tional PDE approach to (1), it must be noted that Arnold and Khesin’s presentation
is strictly formal, in that they do not specify the topology of Dµ, instead referring
the reader to the 1970 paper of Ebin and Marsden [7], wherein C∞ differentiable
structure is supplied to a slightly enlarged class of volume-preserving diffeomor-
phisms.

Let Hs denote the Hilbert space whose elements and their first s distributional
derivatives are in L2, and consider the set of Hilbert class volume-preserving dif-
feomorphisms of M given by

Dsµ = {η ∈ Hs | η is bijective, η−1 ∈ Hs, η∗(µ) = µ}.

The well-known theorem of Ebin and Marsden [7] states that whenever s > (n/2)+
1, Dsµ is a C∞ topological group with smooth right multiplication. Because left
multiplication and inversion are only continuous (as maps of Dsµ into Dsµ), the
set Dsµ is not a Lie group. In fact, the group exponential map does not even
cover a neighborhood of the identity; nevertheless, this smooth topological group
in many ways behaves like a Lie group because of the remarkable geodesic properties
established in [7]. Namely, Ebin and Marsden proved that (1) could be reexpressed
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as the ODE

η̈(t) = S(η, η̇),
η(0) = e, η̇(0) = u0,

(3)

where S is in C∞(TDsµ, T 2Dsµ). The vector field S is the geodesic spray of 〈·, ·〉 onDsµ
and is a smooth zeroth-order differential operator; consequently, the fundamental
theorem of ordinary differential equations on Hilbert manifolds immediately gives
local existence and uniqueness of C∞ geodesics that depend smoothly on the initial
data.1 Recall that these are geodesics of a weak metric, that is, a metric which
induces a topology onDsµ which is weaker than the originalHs topology, s > n/2+1,
and that in general, weak metrics do not generate geodesic flow.

A corollary to the Ebin-Marsden result is that in a sufficiently small neigh-
borhood of the identity, any two fluid configurations can be joined by an en-
ergy minimizing curve, but Shnirelman has proven the surprising result that when
M = [0, 1]3, this local minimization is not globally attainable; namely, there does
not exist a minimal geodesic connecting any two fluid configurations (see [23]).
Hence, the calculus of variations fails in the large on Dsµ, but, by relaxing the
regularity and invertability requirements of fluid configurations, it is possible to
construct a generalized flow (a curve in this weakened space of fluid configurations)
which is indeed globally energy minimizing. Both Shnirelman and Brenier [3], [23]
developed this notion, but Brenier’s latest result [3] is truly spectacular, as he con-
structs Young-measure-valued solutions to the (barely) convex global minimization
problem on the space of Lebesgue measure preserving maps of [0, 1]3, which are both
Eulerian and Lagrangian in nature and sharpen the Eulerian Young-measure-valued
solutions of DiPerna and Majda [6] – averaging Brenier’s solution with respect to
the Lagrangian variable recovers the DiPerna and Majda result. With the exception
of the most recent results, the book provides an extremely readable presentation of
these ideas (previously only available in a collection of difficult-to-read papers) all
in one concise chapter.

4. Other hydrodynamical-type systems

Amazingly, many other hydrodynamical systems arise from symmetry reduction
on either a central extension or a semi-direct product of certain diffeomorphism
groups.

For example, the equations of magneto-hydrodynamics (MHD) are the geodesic
equations on the semi-direct product of Dµ with Ω1/dΩ0 (Ωk denotes the vector
space of differential k-forms on M), with respect to the right invariant metric given
at the identity by

∫
M [g(u, v) + g(B,C)]µ where (u,B), (v, C) are in the Lie algebra

TeDµ × (Ω1/dΩ0). See Holm and Kuperschmidt [10] to see this development using
Clebsch variables and Marsden, Ratiu and Weinstein [16] for the geometric picture
using semidirect product theory.

The compressible Euler equations are obtained through Lie-Poisson reduction
on the semi-direct product of D with C∞(M) (see Marsden [13]) and are governed

1This result, in turn, gives sharp local well-posedness of classical solutions to the Euler equa-
tions on compact Riemannian manifolds with boundary. It should be noted that the classical
PDE approach to the Euler equations yields only C0 solution curves in Hs and C0 dependence
on initial data, so that with respect to analytic considerations, it is better to work over the entire
tangent bundle TDsµ as opposed to the single fiber TeDsµ.
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by the reduced Hamiltonian

H(u, ρ) = −
∫
M

(
1
2
ρg(v, v) + φ(ρ)

)
µ,

where ρ is the density of the fluid, and (d/dρ)φ(ρ) = h(ρ), the pressure function.
Of course, inhomogeneous incompressible fluids can be handled in a similar fashion.

When M = S1, the KdV equation arises as geodesic flow with respect to the
right invariant L2 metric on the Bott-Virasoro group (in addition to the text under
review, see [14] as well for a nice discussion of this central extension); this is the
set D ⊕ R with multiplication law

(φ(x), a) ◦ (ψ(x), b) =
(
ψ(ψ(x)), a + b+

∫
S1

log(φ ◦ ψ(x))′d logψ′(x)
)
.

More recently, the completely integrable shallow water equation

ut − utxx + 3uux − 2uxuxx − uuxxx + κuxxx = 0

extensively studied by Camassa and Holm [4] (see also [8]) has been formally shown
in [20] to arise as geodesic flow on the Bott-Virasoro group with right invariant
metric given at the identity by the H1 inner-product

∫
S1(u2 + u2

x)dx. In the most
interesting case when κ = 0, this equation admits peaked soliton solutions with
infinite slope [4], thus modeling the breaking wave phenomenon while maintaining
complete integrability. With κ = 0, this equation is a geodesic of the weak H1

right invariant metric on the diffeomorphism group of the circle Ds(S1) for s > 3/2
(the Hilbert class diffeomorphisms). It has been shown that C∞ geodesics of this
weak metric exist due to the fact that the geodesic spray is smooth (see [21], [22]),
and thus well-posedness of this PDE is given for initial data in Hs(S1) for s > 3/2.
Classical hyperbolic PDE techniques have not yielded this sharp result (see the
beautiful results of [5]).

The authors present many other examples as well; of particular interest is the
amazing fact that the completely integrable filament equation for the time evolution
γ(t, x) of the initial curve γ(0, x), x ∈ S1 given by

∂γ

∂t
= k(t, x)

∂γ

∂x
× ∂2γ

∂x2
, k = curvature of γ,

is the Hamiltonian function with respect to the Marsden-Weinstein symplectic
structure on the space of knots (see also [18] and [16]). This, in turn, is related to
Chorin’s vortex blob method in three-dimensions for integrating the Euler equa-
tions and the evolution of vortex filaments. In a new development, Chorin’s vortex
method (with a particular choice of blob) is a geodesic on Dsµ with respect to a new
right invariant metric given at the identity by

〈u, v〉+
α2

2
〈£ug,£vg〉, α > 0,(4)

where 〈·, ·〉 is the L2 inner-product (see [22]). The resulting PDE is given on the
interior of M by

∂t(1− α24r)u+∇u(1− α24r)u− α2(∇u)t · 4ru = −grad p,
div u = 0, u(0) = u0, 4r = −(dδ + δd) + 2Ric.(5)

Because of the complicated nature of the mixed spacetime partial differential op-
erators appearing in this PDE, it is a surprising fact that when treated in terms of
the Lagrangian variables (η, η̇), this PDE is in fact an ODE governed by a vector
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field with no derivative loss. In other words, the geodesic spray of (4) is a C∞ bun-
dle map, taking an Hs class bundle into an Hs bundle for s > (n/2) + 1 (see [15]
and [22]). This PDE is also the equation for a second-grade non-Newtonian fluid,
and this connection may shed light on the intriguing relationship between filament
behavior in turbulent regimes and polymer flow, which has been addressed in the
turbulence literature. Finally, (5) is also the averaged Euler or Euler-α equations
considered by Holm, Marsden, and Ratiu [11] and analyzed by Marsden, Ratiu,
and Shkoller [15].

It should be emphasized that the Arnold approach to fluids has been extremely
influential in both the ocean dynamics and the plasma physics community, both for
stability theory, which we mention next (see [16]), as well as for studying Arnold-
type dynamics on the group of symplectic diffeomorphisms (a nice discussion of this
can be found in Marsden and Weinstein [19]).

5. Further topological methods

There are a great number of additional topics covered by Arnold and Khesin that
have yet to be mentioned. Among these is the extremely important and interesting
notion of stability of stationary solutions to the Euler equations and, more generally,
to Lie-Poisson systems on the duals of Lie algebras, known as the Arnold or energy-
Casimir method. This method, as well as its generalization, the energy-momentum
method (presented in a short section written by Marsden), is thoroughly reviewed
in Chapter II; the interested reader should also see [12] and [14]. Finally, there
is a superb chapter on the topological properties of magnetic and vorticity fields,
wherein it is shown that the Helicity invariant for divergence free vector fields ξ,
defined in a simply connected domain M ⊂ R3 by H(ξ) = 〈ξ, curl−1ξ〉, is the
average self-linking of ξ and is related to the self-linking of knots in a magnetic
field associated with ξ. Freedman’s solution of the Sakharov-Zeldovich problem of
energy-minimization of the unknotted magnetic field and the lower bound of the
L

3
2 norm of ξ by the asymptotic crossing-number is given a very clear presentation

(see [9]), and there is a short section on asymptotic holonomy wherein the Jones-
Witten invariant as well as the Chern-Simons functional are discussed. The authors
write in the preface that “some statements in this book may be new even for the
experts,” and this certainly seems to be the case.

In short, there is an enormous wealth of content provided by the authors, much
of it not to be found in any other single source. Certainly, all topological and
geometric techniques for studying hydrodynamics are discussed, so the title is un-
questionably appropriate. This book, and its extensive bibliography, should serve
as a tremendous reference for all researchers in the field and certainly belongs on
the bookshelf next to other classic mathematical references.
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