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1. INTRODUCTION

Being a book lover, often as a result of the pleasant pastime of browsing through
library shelves on some loosely busy afternoon, I end up buying many books. The
selection is usually made on the basis of the choice of the topics presented, but
sometimes also on the basis of the ratio: fame of the author/price of the book. Too
often afterwards, when I start to read the book (not necessarily from the beginning),
I can be very disappointed, and the book goes back to the shelf to remain beautifully
untouched. A quite different fate occurred to the book by Gelfand, Kapranov and
Zelevinsky (GKZ for short), and I will try here to explain the reasons for this (at
the same time trying to justify the long delay of the present review by the fact that
I wanted to read the book and not just have a quick look at it).

This book has several peculiar virtues, the first one being leading us pleasantly
along a beautiful road which on the one hand comes from far away in the past,
on the other hand projects us into the future. The theories illustrated in the
book are indeed deeply rooted in the mathematics of last century (1800!), yet of
extreme current interest. To explain this seeming contradiction, I cannot refrain
from quoting Abhyankar’s motto “Eliminate the eliminators of elimination theory!”
(cf. [Abh]).

As is probably known, elimination theory (which occupies a central position in
the book) is the theory which, given a set of polynomial equations g;(z,y) = 0
where z = (z1,..%n),y = (Y1,-Ym), allows us to find equations r;(z) = 0 which
are satisfied, for a given z, if and only if there exists a y such that (z,y) is a
common solution of the equations g;(z,y) = 0. It is called elimination theory
simply because, in logical terms, we have eliminated the predicate “exists a y such
that”; in practical terms, we have eliminated the variables y, whence, continuing
to apply the procedure, we can reduce the study of systems of equations in several
variables to systems of equations of higher degree but each involving one single
variable. All of this was started on not very firm theoretical foundations by people
like Leibniz, Cramer and Euler in the 1700’s. In the second half of the century
elimination theory was founded on the basis of direct algebraic manipulations by
Bezout (cf. [Bezl], [Bez2], and [BrN] for a quite detailed historical account). Later
on, in the next century, the investigations focused on several interactions, e.g. with
the theory of algebraic invariants, and produced a vast amount of explicit and
complicated calculations. Here, the most eccentric exponent of the school seems to
have been Paul Gordan, about whom Hermann Weyl wrote ([Wey2]): “There exist
papers by him where twenty pages of formulas are not interrupted by a single text
word; it is told that in all his papers he himself wrote the formulas only, the text
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being added by his friends.” In fact, we owe to G. Kerschensteiner the editing of
his lectures ([GoK1],[GoK2]).

In our century, the emphasis was set more on abstract ideas than on algorithms
and recipes; indeed Andre Weil wrote in his book ([Wei]) the famous sentence “The
device that follows, which, it may be hoped, finally eliminates from algebraic geom-
etry the last traces of elimination theory....” For many people of my generation the
introduction to mathematics was so general and abstract (since we first had to face
all sorts of topological spaces before we would be confronted with simple mathe-
matical objects like conics or quadrics) that we were looking for something concrete
to understand before daring to launch ourselves again to abstract concepts. The
direction was reversing, and Abhyankar’s motto marks a revision of the tendency,
very much motivated by the computer revolution and a new feeling that perhaps
formidable calculations could no longer be completely out of reach.

Why should one go back to the past? The answer is simple. In the past mathe-
maticians dealt with problems coming from other sciences. For instance, the theory
of discriminants is intimately related to our vision schemes. What we see best of
objects is their boundary, or more precisely a projection of their boundary. That
is, while the surface boundary ¥ of an object is 2-dimensional, the visible boundary
T" is the 1-dimensional geometrical object parametrizing the family of rays issuing
from our eyes and touching the surface boundary X of the given object. Thus the
visible boundary is the contact curve I' consisting of the points P for which the
line-rays joining P and our eye O are tangent to the surface ¥ in P. If we assume
we set up projective coordinates where our eyes (or the sun’s light) is at infinity
on the z-axis and our surface boundary ¥ is described by a polynomial equation
F(z,y,z) = 0, we are looking for the projection on the (z,y)-plane of the contact
curve I' defined by the pair of equations F(x,y,z) = 0, %(m,y, z) = 0. This is
precisely a very particular case of the elimination problem we considered above;
we have two polynomial equations, and we would like to eliminate the variable z
from them, thus obtaining the equation A(z,y) = 0 of the plane picture (projec-
tion) of the visual boundary (as is well known, the singularities of A allow us to
recognize the ‘shapes’). The desired polynomial equation A(z,y) is here given by
the so-called discriminant of F' with respect to the variable z (we shall discuss this
concept more amply later).

Another elementary issue where discriminants pop up is for instance in the no-
tion of “envelopes” in the theory of ordinary differential equations (cf. [SC]). The
simplest way to analyse this concept is to abstractly consider everything exactly as
before, except that we view the equation F(z,y,z) = 0 as a family of plane curves
C', parametrized by the parameter z. Then the points (zg,yo) where A(z,y) does
not vanish are, by Dini’s implicit function theorem, such that if (zg,yo) belongs
to the curve C,,, then for all points in a neighbourhood of (xg,yo) we can write
the parameter z as a function g(x,y): this means that through each point there is
exactly one curve C, if the parameter z is rather near to 2z (or, in still other words,
our curves are locally given as the level sets of the function g(x,y)). This translates
into a unicity result for first order ordinary differential equations. Assume in fact
that we replace our variable z throughout by the variable p = dy/dx; then from the
“implicit” differential equation F'(z,y,dy/dz) = 0 we obtain locally an “explicit”
differential equation of the first order, i.e., dy/dx = g(z,y). And our discriminant
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curve of equation A(z,y) contains the singular solutions of our differential equa-
tion. There are thus several related concrete issues (focal loci, caustics, bifurcation
phenomena for P.D.E.’s) which illustrate the central role of discriminants, and this
explains why the first word in the title of the book is just ‘discriminants’.

On the other hand, in the traditional mathematical education of the present
time, the three clue words appearing in the title of the book follow each other (at
least in the one dimensional case) in the opposite order: namely, first determinants,
then resultants and finally discriminants. In all these cases we have a polynomial
in several indeterminates (e.g., the entries of a square matrix) which has the special
property that only relatively few monomials enter into its expression.

Problem 1. Roughly speaking, the main problems for a “special” polynomial such
as a determinant, a hyperdeterminant, a discriminant, resultant, or generalized re-
sultant are first to understand the geometry of its zero locus; second to understand
the set of the occurring monomials; finally to determine, if possible, the correspond-
ing coefficients by means of elegant formulae.

The case of the determinant of a square matrix detA =

a1,1 1,2 a1,n
a1 az2 .... Az,

det : : o (%)
Gn,1  QAn2 Ann

is completely solved thanks to the well known Leibniz formula
det(A) = Y e(0)(TT7_ i 4(s))-
€S,

Here, the coeflicient €(o) is the signature of the permutation o, equal to +1 or —1, so
in this case the problem of the determination of the coefficients is explicitly solved.
The case of the resultant is more complicated: recall that usually the resultant of
two polynomials f(z) = ag + a1x + ..anz™, g(x) = bg + biz + ...by,a™ or, better, of
the two homogeneous polynomials

F(xo,z1) =z f(x1/20) = apzxly + arzox} ' + ..a,z?
and

G(xo, 1) = 2i'g(21/70) = boxl* + brzox " 4 ..ol

is introduced via the Sylvester determinant, the determinant of the following Sylves-
ter matrix A, . (f,9) =

0O .. 0 a a1 .. ap

0

0 ap ai Qp, 0 .
ap ai . Qp 0 0 . (*)

bo b1 ... . by 0 ..

0 by br ... ... bnm

In fact, cf. [Coo], one can more generally define 74 (f, g) as the determinant of the
square minor Ay of order (m + n + 2 — 2k) obtained by deleting the first and last
(k — 1) rows and columns of A, ,,(f,g). Recall that the crucial property of these
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polynomial expressions in the respective coefficients of f, resp. g, is given by the
following classical

Theorem 1. The homogeneous polynomials F(xo,x1) = zf f(z1/x0), G(x0, 1) =
x'g(xz1/x0) have a common divisor of degree > k if and only if m(f,g) = ... =
Tk (f7 g) =0.

The reason why the theorem holds can be easily explained, since the rows of
the matrix express the polynomials 2™~ f, ...,z f, f,g, g, ...2" g in the standard
basis for polynomials. Therefore, the vanishing of the resultant r(f, g) = r1(f,g)
expresses the linear dependence of the above vectors. This amounts to saying that
their least common multiple has lower degree than (n + m)= expected degree of
fg, and this is clearly equivalent to saying that the greatest common divisor of
F,G is not a constant. One problem with the resultant is, however, that it is
not so easy to calculate: a very nice short-cut reducing it to the determinant of
a (n X m) matrix is presented in the lovely chapter 12 of the book, entitled “An
overview of classical formulas”. The trick consists in first reducing oneself to the
case where f(0) = ag # 0 (this is rather trivial) and then considering the rational
function g/ f and its Taylor development at the origin (MacLaurin development):
g(z)/f(z) = r(x) = ro+riz+r22?+.... The condition that f and g have a common
multiple of degree smaller than n + m can be rephrased as:

e there exist polynomials P of degree at most n — 1 and @ of degree at most
m — 1 such that Pg is congruent to fQ (mod z™*")
and in turn as:

e there exists a polynomial P of degree at most n— 1 such that the power series
Pg/f is congruent mod (z™*™) to a polynomial Q of degree at most m — 1.

Thus we get the condition that the n columns (of length n) corresponding to the
coefficients of ™,... 2™~ in the functions (power series) g/f,zg/f,...x" g/ f
yield a matrix R whose determinant must vanish. From this we obtain the equation
detR =

Tm Tm+1 -+ Tm4n—1
T'm— T oo T —
det m—1 m m+4n—2 —0. (*)
To 71 Tn—1

The matrix R and its determinant (the so-called Schur polynomial; cf. [Ful],
[ACGH]) are well known in the theory of determinantal varieties (cf. for these also
the classical [Ro]) and are used in the so-called Porteous’ formula yielding the lo-
cus where a map of vector bundles drops rank. From the computational complexity
point of view this formula yields a major improvement because it reduces drastically
the number of operations which are necessary. There arises naturally the question
whether one can do better. A false impression that one could do much better comes
from the so-called interpolation formula: this is a beautiful formula for the resultant,
which is often taken as a definition. If we write the polynomials f, g in terms of their
roots, f(z) = a,ll}_(z — i), g(z) = b IIT; (¥ — B;), the interpolation formula
expresses the resultant as follows: 7(f,g) = e(n,m) ap’ by, (I, 1172 (a; — B5)) =
e'(n,m) al* (II7_,g9(cv;)). Again, here e(n,m), ¢'(n, m) are equal to just +1 or —1,
but the clearly elegant formulae require a nonallowable operation, that is, root
extraction!
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The interpolation formula makes quite visible, however, the reason why the re-
sultant vanishes when f, g have a common root and can be particularly appreciated
in the case of the discriminant. The discriminant of a polynomial f(z) as above is
defined as the resultant of f(z) and its derivative, and then one obtains the formula:

55 = Resy(f(), f'(x)) = (~1) a2} (Iiey (i — a;)?).

The last formula is important in the Galois theory of field extensions where, though,
one is concerned with monic polynomials and can thus dispense with the term
aZ"=1. Writing now the discriminant & as a polynomial in the coefficients of f(z),
we still get a certain order of divisibility by the leading term a,: getting rid of this
factor, one obtains the more familiar discriminant A(f). The concrete calculation
of A(f) for polynomials of degree n presents interesting coefficients which tend to

be products of the first n numbers with rather large exponents:

Alag + a1x + azx®) =  4dagaz — a3

A(ag + a1 + a22? + azz®) = 27a3a3 + 4agal + 4aiasz — a?a3 — 18aparazas
([GKZ], pages 405-406).

The interesting part of the story is that resultants and discriminants are not
parents and children, but more cousins of each other, as taught to us by Cayley. In
fact, given two polynomials f(z) and g(z) as before, we can consider the polynomial
in three variables P(x,y0,9y1) = yof(z) + y19(z) and observe that the statement
“exists x such that f(xz) = g(z)” is equivalent to the statement “exists (x,yo,y1)
where P and its partial derivatives vanish”. This follows right away since the
three partial derivatives of P are f(x),g(x),yof () + y14'(z), and the third is
a linear equation in the two unknowns g, y1; thus the necessary condition that
f(x), g(x) vanish is also a sufficient condition. The morals of this simple-minded
example are two. The first one, which is not new, is the old moral that it is always
better to consider homogeneous polynomials: if we had considered just the two-
variable polynomial Q(z,y) = f(z) + yg(z), we would have had the problem that
the equation f’(z)+yg’(x) does not have a solution y when ¢'(x) = 0, but f(z) # 0.
The second moral is deeper and is just that we are naturally led to consider an
analogous notion of discriminant for polynomials of several variables. However,
this generalization brings us directly in medias res with the theory consistently and
progressively developed in the chapters of the book.

2. THE ABSTRACT SET UP

A far-reaching generalization of the notion of discriminant is obtained through
a rather old geometric idea, namely the theory of projective duality, which, after
precursor results by Pascal and Desargues in 1600, was established around 1818-
1827 by Poncelet, Gergonne and Moebius. (Poncelet called his theory “Theorie
generale des polaires reciproques”, while the word “duality” seems to have been
first introduced by Gergonne: cf. the second edition of [Po], especially the pages
359-396 of the “Section supplementaire” for an interesting account of the more than
40 years of priority fights between the two French geometers.)

Here, the final outcome is the concept of the dual variety XV (almost always a
hypersurface) of a projective variety X (cf. [Wal], [Wa2]). To explain it, we need
to recall how the concept of duality in linear algebra arose geometrically. If V is a
vector space, we associate to it the projective space P(V') whose points are the 1-
dimensional linear subspaces of V, so that the points in the projective space P(V")
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correspond to codimension 1 subspaces of V', the so-called “hyperplanes”. Now, if
X is an algebraic variety in P(V)—i.e., X is defined by finitely many polynomial
equations—then also the set XV, defined as the closure of the set given by the
hyperplanes tangent to X in a smooth point of X, forms an algebraic variety XV in
P(VV). In ‘almost’ all cases X is a hypersurface, which means that X" is defined
by a single polynomial equation; classifying the exceptions to this behaviour is an
intriguing, still open problem. Let us only recall that for surfaces in 3-space the
only exceptions are cones and tangential developable surfaces (note that cylinders
are the same thing as cones in projective geometry!).

The connection with discriminants comes in directly when we take as X the n-th
Veronese embedding X! of a projective line P!, classically called the rational normal
curve of order n. X is the image of the map v,, : P! — P" given by all monomials
of degree n, v, (g, 1) = (x§, 20 'xy1,..2}), and the vector space of hyperplane
sections of X! is just the vector space of homogeneous polynomials of degree n in
(z0,21). Saying that a hyperplane is tangent means exactly that the corresponding
polynomial does not have n distinct roots; whence agyg + a1y1 + --.anyn, = 0 is a
tangent hyperplane if and only if the discriminant A(ag, a1, ...a,) of the polynomial
apxy +a1x0x?_1 +...apx} does vanish. At this point it is clear that we can extend
the notion of discriminants immediately to polynomials P(zg, 1, ... Z,) of several
variables simply by considering the n-th Veronese embedding X of P™.

We come here to an interesting historical and pedagogical point: to show that
XV is also an algebraic variety, one needs to apply a more general form of multivari-
able elimination theory, the theory of u-resultants (cf. [vdW]). Thus we seem to
enter into a vicious circle: resultants yield elimination theory among whose many
byproducts are the dual varieties, and in turn dual varieties produce generalized
resultants. Indeed, the modern abstract methods provide more elegant (on top
of the cited [Wei], cf. also [Mum]) but nonconstructive proofs that in projective
geometry elimination of variables leads to polynomial equalities only (that is, no
inequalities, as would occur in the following example: seeking the set of values for
x such that there is y so that the equation xy = 1 has solutions, we get the obvious
necessary and sufficient condition that z # 0). On the other hand, in the present
book we find one of the first systematic and combined expositions of the theory of
dual varieties and of the theory of Chow varieties. This is given in part I, under the
title “General discriminants and resultants”; although the topic is classic (indeed
the book also contains a brief but informative set of historical notes), we find here
a lot of new material, and many presentations are new, for instance the Lagrangian
point of view in the exposition of the theory of Chow varieties.

At this point I need to explain what a Chow variety is and what relations this
notion has with the theory of resultants. In general, if one takes r polynomials
filz1, .xn), ..y fr(x1,..x,) of degree d in n variables and asks whether they have
a common root, one can surely first of all reduce to the case where they are lin-
early independent. Afterwards, one can consider them as giving a subspace U of
dimension r of the space of polynomials of degree d and slightly reformulate the
problem as follows : in the so-called Grassmann space parametrizing all such linear
subspaces U of dimension r, what are the equations that must be satisfied in order
that all the polynomials in U have a common root?

We want once more to emphasize that our original problem involves equalities
and inequalities, so we are only considering the first part of the question. And,
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in order to answer the first question, it is easier to consider, instead of a single
r-tuple, the totality of such subspaces U. What we have gained is that in this
way we also allow roots “at infinity”; namely we consider instead of the original
polynomials their homogenization Fi(xo,z1,...xp), ..., Fr(Zo, 21, ... ), and we can
phrase our question then geometrically as follows : given the Veronese image X
of P™ (under the map whose coordinates are given by all monomials of degree d
in (zo,21,...2,)), when does the codimension r subspace UY dual to U intersect
X77 At this point dimension theory tells us that if » < n, then no equations
have to be satisfied by the coefficients of Fy, ..., F,. in order for this intersection to
be nonempty; whereas the case r > n + 1 can be reduced to the case r = n + 1
by the following trick: Fi,..., F,. have a common (nontrivial) solution if and only
if every (n+1) linear combination of Fy, Fy...,F, has a common root. (Viewed
geometrically, this means that if UY and X7 do not intersect, then we can find a
linear subspace of codimension n + 1, containing U, such that it does not intersect
X7.) Moreover, since in the case r = n + 1 one gets a single polynomial equation,
the algebraic counterpart of this trick is that for 7 > n+1 this single equation in the
coeflicients of those linear combinations is indeed a polynomial in the indeterminates
Ai,j parametrizing the (n+1) linear combinations >, A; jFj, (i = 1,..n+1). Since
we want this polynomial to vanish for each choice of the linear combinations, and
since its vanishing is equivalent to the vanishing of its coefficients as a polynomial
in the indeterminates ); ;, we finally obtain in this way a system of polynomial
equations in the coefficients of the original polynomials Fi, ..., F..

Therefore we have just seen how the problem of resultants is related to the fol-
lowing question: given a projective variety X of dimension n, find a polynomial
equation for the codimension n + 1 subspaces UV which have a nonempty inter-
section with X. Such a polynomial exists, is unique up to constants, and, in an
appropriate projective space of polynomials, yields the so-called Chow form of X.
Its importance in projective geometry is that the knowledge of the Chow form
completely determines our variety X. Finally, the Chow variety is the set of all
Chow forms of the projective varieties of a given dimension n and a given degree
m, and, as the words suggest, it is indeed an algebraic variety for which explicit
polynomial equations can be written. The name Chow variety is used in spite of the
fact that the idea goes back to Cayley (1860), just because Cayley limited himself
to considering the case of curves in a three dimensional space. The theory was
later generalized by Bertini, van der Waerden and Chow, and recently Green and
Morrison generalized Cayley’s method of writing equations for the Chow variety.

One of the purported aims of the book is to show how much deeper the con-
tributions of Cayley were, and indeed how his papers on the theory of elimination
and on combinatorics were deeply related to each other. The authors emphasize
the revolutionary idea of the determinant of a complex which goes back to Cayley.
This notion has been several times rediscovered and extended by several authors—
namely by Reidemeister, Franz and De Rham, later by Whitehead and Milnor—and
is recently at the centre of current research, through the notions of determinants
of families of differential operators, introduced by Quillen and Ray and Singer, and
of determinants of the cohomology, introduced by Mumford-Knudsen and later by
Deligne and Faltings. Since this is a central idea, we will try to explain it, pre-
senting it in a rather special case: let 0 - V; - Vo — ... -V, = V41 — 0
be a complex of linear maps a; : V; — V41 between vector spaces, each endowed
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with a fixed basis (one can easily generalize all the notions to the case of free
modules over a ring). Saying that we have a complex amounts to requiring that
each composition a;1 o a; = 0. If we assume moreover that the Euler Poincare
characteristic 3 ;(—1)7 dim(V;) of the complex equals zero, and if we let A; be
the matrix of the linear map a;, then there is a polynomial Det(A;,...A,) which
vanishes precisely when the complex is not exact, i.e., when for some i there holds
Im(a;) Cx ker(a;41). Here again, abstract algebraic geometry shows without great
difficulty that the above polynomial exists: what is more interesting is that (cf.
theorem 14, page 485) Cayley gave in 1848 formulae expressing this polynomial
as a rational function whose denominator and numerator are explicit products of
determinants of certain minors of the matrices A;.

The reader might wonder now what this may have to do with resultants and
discriminants: this is not easy to see unless one has some familiarity with the
commutative algebra concept of the Koszul complex. This complex is exact as soon
as a series of elements Fi,...F,. forms a regular sequence (geometrically this notion
simply means that each new equation makes the dimension of the solution set drop
down by 1): in our particular case, if ¥ = n + 1, our polynomials yield a regular
sequence exactly if they have no common zeroes on X as a subset of the given
projective space (i.e., the only solution is given by setting x; = 0 Vi). Therefore,
the Chow form of our variety X is obtained by calculating the determinant of
the complex associated to the subspace U spanned by Fi,...F,t1. In turn, the
method of Cayley also allows us in principle to write down explicitly the equation
Ax(f) of the dual variety XV (it vanishes when the hyperplane corresponding to
f is tangent to X). Thus, for instance, in the case of the Veronese embedding of
projective space yielding the discriminant of a general polynomial, we could think
that we know everything (at least in low degree and low number of variables); but if
we then ask a computer to write the discriminant, we obtain in response a formula
filling several pages. Well, then our eyes simply are not broad enough to read the
formula; therefore our next main purpose will be to rewrite it, if possible, in such
a way that we can interpret it or just apply it to special classes of polynomials
for which it might become simpler. Two typical instances where the discriminants
become simpler are:

e Presence of symmetry (cf. for a broader philosophical issue, [Weyl]): the
polynomials are invariant under the action of a group, often a finite one, and
we can apply representation theoretic considerations.

e Case of sparse polynomials (cf. e.g. [Stu]): many monomials have coefficients
equal to zero.

It is clear from what we have said that resultants and discriminants already give
examples of sparse polynomials, but to illustrate the concept we may choose a much
simpler basic example of a set of sparse polynomials. Among all homogeneous
polynomials of degree n, let us take those which are multilinear: this example will
allow us to introduce one of the basic newer concepts treated in the book, namely
the concept of toric varieties.

3. TORIC VARIETIES

If we consider in the affine plane two general conics whose equations are gen-
eral quadratic polynomials, then they intersect in 4 distinct points. If instead
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we consider two general bilinear equations (i.e., they involve only the monomi-
als 1,z,y,zy), then we shall see that the intersection points of the corresponding
hyperbolae are just two. One geometric way to see this is to observe that those
hyperbolae have parallel asymptotes; whence, in the projective plane, two of the
4 intersection points stay fixed at infinity (they correspond to the two fixed direc-
tions of the asymptotes). A better way to see this is that the map given by the four
monomials has as image a one sheeted hyperboloid in 3-space, whence it gives a
compactification of the affine plane which is not the projective plane but the prod-
uct of two projective lines P! x P!. Two such hyperbolae in the plane correspond
to plane sections of the hyperboloid; whence the two intersection points of two such
hyperbolae correspond to the two intersection points of the hyperboloid with a line
in P3.

A similar situation occurs for instance with the famous eight quadratic equations
which occur in the robotic arm problem: the number of solutions of these equations
in eight unknowns is not 256 as one would immediately conjecture, since the equa-
tions, although complicated, are easily seen to be bilinear with respect to a splitting
of the eight variables into two sets. A similar argument as above easily shows that,
for such general bilinear equations, the expected number of solutions should indeed
be 64 (we refer to [SoWa| for a recent survey on these kinds of problems). The above
examples are based on the fact that to different spaces of polynomials correspond
different compactifications of the affine space (in the first example, P! x P! instead
of P?). The theory of toric varieties goes all the way through and considers a set
A of Laurent monomials in & — 1 variables, i.e., monomials having also possibly
negative coefficients: whence results a map fa of H := (C*)¥~! in a projective
space of dimension |A| — 1, and in case f4 is an embedding, the closure X4 of the
image is called a projective toric variety.

In general a toric variety is a variety X with an action of the algebraic group
H := (C*)*~1 and having an open dense orbit isomorphic to H. Expositions of the
theory are given in [Fu2], [O]; here a quicker and easier presentation is given by
emphasizing the role of projective toric varieties (in savant language, these are the
pairs of a toric variety and of an equivariant projective embedding). The essential
feature of toric varieties is the synergy of methods from the geometric theory of
convex bodies with algebro-geometric methods (indeed, the interaction, as often
in mathematics, takes place in both directions; cf. [CSh]) and of methods from
representation theory (here, one views the Laurent monomials as characters of the
algebraic torus H).

In the above situation we consider A as a subset of Z*~', and we consider the
convex hull @ of A. Then there is a bijection between the H-orbits and the faces
of the convex polytope Q. The book is, by the way, also very stimulating for the
many beautiful and inspiring pictures it contains of the special polytopes which
occur. The idea of considering convex hulls of points with integer coordinates,
corresponding to monomials with nonzero coefficients, goes back to Newton, who
introduced the so-called Newton diagram in order to produce an algorithm to find
local parametrizations of algebraic plane curves (the fractionary power series thus
appearing are nowadays called Puiseux series). The Newton diagram of a function
is obtained from the points w corresponding to monomials with nonzero coefficients
via taking the convex hull of the union of the sets w + Z* and has been used
with continued success in singularity theory (cf. work of Hironaka, Kouchnirenko,
and lately Bierstone and Milman; see e.g. the most recent paper [BM]). There
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is an obvious link to singularity theory in that considering the cone Y4 over the
projective variety X 4 is the combinatorial counterpart of viewing A as a subset of
Z*! = {w € Z¥|wy, = 1}. In this situation one considers the semigroup S generated
by A in Z*, denotes by K(S) the convex hull of S, and defines the diagram of S,
denoted by K (S), to be the convex hull of S —{0}; then K_(S) = K(5)— K1(5)
is called the subdiagram of S. The above notion is very important since in this
way one can analyze the local structure of the singularities of toric varieties and
in particular describe the multiplicity of the singular point as the volume of the
subdiagram.

The idea of calculating multiplicities is ubiquitous in the theory; for instance,
given k — 1 functions which are general linear combinations of the monomials in A,
the number of common roots in H = (C*)*~1 of these functions equals the volume
of the polytope @ in R*~!. This is the theorem of Kouchnirenko, which was applied
to calculate Milnor numbers of complete intersections, and holds more generally to
calculate Euler Poincaré characteristics of complete intersections of any number
h < (k — 1) of general functions as above. In turn, there is a generalization by
Bernstein of the Kouchnirenko theorem, where each function f; is general among
those which are linear combinations of the monomials in a set A;, and the result
is expressed as the mixed volume of the corresponding polytopes @, i.e., as the
coefficient of Aj..A\p_1 in the volume of the polytope \1Q1 + ... \g—1Qr—1 (this
notion goes back to Minkowski).

It is worthwhile noticing that the theory of toric varieties, and of toroidal singu-
larities, was developed in connection with the problem of compactifying the moduli
space of Abelian varieties, first by Mumford and coworkers ([KKMS|, [AMRT]),
then by Oda, Voronoi, etc. Later, it was systematized in an article of Danilov
([D]), and nowadays it is also at the centre of attention as a benchmark for veri-
fying difficult conjectures in particular cases. To give a brief idea of the relation
of toric varieties with periods of Abelian varieties, it may suffice to recall that,
when we consider complex numbers z which are taken mod Z, then the complex
coordinate ¢ = exp(2miz) takes values in C* and, as z tends to ico, ¢ tends to O;
in a similar way one compactifies the moduli space of period matrices of Abelian
varieties. After this rather lengthy introduction, not much space is left for the
description of the main original body of the book, which summarizes the results of
about a dozen papers of the authors.

4. SECONDARY POLYTOPES, A-RESULTANTS
AND A-DISCRIMINANTS

We come now to the crucial part of the book: The notion of toric varieties has
made clear what it means to consider special classes of polynomials (sometimes
called “sparse” if the number of monomials considered is relatively small). What
remains is to consider the associated generalized resultants and discriminants; in
the geometric terms previously described, we have to consider the associated Chow
form and the dual variety.

In connection with the Chow form Rx of a toric variety X one introduces another
convex polytope Ch(X), called the Chow polytope of X. The definition is rather
straightforward, since we have a polynomial Rx ( the Bertini form), and we simply
look at the set S of vectors in (Z)" which are the exponents of the monomials
appearing in Ry with nonzero coefficient: after that we take the convex hull of §. A
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brief reflection shows that if X is a toric variety, with polytope P, this new polytope
depends only on P, and what is very interesting is to describe the polytope Ch(X)
in terms of P. It turns out that we get the so-called “secondary polytope” of P,
defined through the concept of a coherent triangulation of P. To this purpose, one
assumes that A is a finite set whose convex hull is P and considers triangulations
of (P, A), i.e., a decomposition of the polytope P as a union of simplices with
vertices in A, such that the intersection of two simplices is again a simplex. A
triangulation 7" is said to be coherent if there exists a continuous concave function
g : P — R such that it is linear on the simplices of 7', and the maximal subdomains
of linearity are indeed simplices of T'. To such a triangulation, one associates a so-
called characteristic function of T', ¢ : A — R, such that ¢r(a) is the sum of
the volumes of the simplices having the point a as a vertex. Finally, the secondary
polytope is defined to be the convex hull (in the space R*) of such characteristic
functions.

One sees that the definition is rather subtle, but indeed the authors show how
relevant and meaningful this notion is. In fact, even the simple examples of the
coherent triangulations of a segment P in the real line R (where the finite set A
contains more than 2 points) lead to remarkable connections with the representation
theory of the Lie algebra of matrices with trace zero, in particular to the solution
of a conjecture by Konstant.

Quite interesting are the next examples, which the authors treat in detail: the
case of a polygon in the plane, whose sides are labelled x1,...x,, s, leads to all
the possible ways of multiplying, in a non-associative composition law, 1, ...z, in
the given order. This essentially amounts to putting parentheses: e.g., a possible
way of multiplying x1, %2, 3,24 i ((x122) (r374)). In this part the authors insti-
gate the reader to investigate open problems, such as the study of the secondary
polytope for a seemingly innocuous example, namely the product of two simplices
AP x A9 (A is in this case the Cartesian product of the respective sets of vertices).
In this example, one is able to understand only the maximal simplices of the poly-
tope in terms of bipartite graphs and some other simplices related to the shuffles
of words A;...A,Bj...By (these are the permutations which leave the relative order
of the A;’s, resp. of the B;’s, unchanged). Later in the book, the authors show
how shuffles are related to certain “extreme” monomials appearing in the classi-
cal Sylvester determinantal expression for the resultant, which were observed by
Gordan (“extreme” is now understood as meaning: yielding vertices of the New-
ton polytope). Finally, concerning more recent results, the hard core of the book
is contained in chapters 8-11, dedicated to A-resultants and Chow polytopes, A-
discriminants, principal and regular A-determinants and A-discriminants. Again,
here A is a subset in Z*¥~!, and one considers resultants and discriminants for linear
combinations of monomials having exponents which are vectors in A. The main tool
is a complex of differential forms whose determinant equals the resultant: moreover
it is explained that, while the Chow polytope equals the secondary polytope of the
convex hull of A, the coherent triangulations correspond to some degenerations of
the toric variety X 4 under the action of the algebraic torus H = (C*)*~1,

In chapter 9, one main result is a formula for the degree of the A-discriminant as a
sum of volumes of faces of the polytope P spanned by A and a differential geometric
characterization of A-discriminantal hypersurfaces. In chapter 10, an allied concept
is taken into consideration, i.e. the concept of the principal A-determinant, which is
indeed the resultant of f and of the functions x; f; (f; is the partial derivative with
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respect to x;); for this, the Newton polytope is described as a secondary polytope,
and a calculation is provided for the coefficients of the monomials which correspond
to vertices of the secondary polytope. Since the principal A-determinant is clearly
divisible by the A-discriminant, but contains extra factors, the rather technical
chapter 11 is devoted to removing those, finally expressing the A-discriminant as a
product, with exponents equal to +1 or —1, of principal determinants obtained by
taking the intersection of A with certain faces of its convex hull P. The tools used
range from the theory of logarithmic de Rham complexes to Whitney stratifications,
constructible sheaves, vanishing cycles and holonomic D-modules, making full use
of the Riemann-Hilbert correspondence and of ideas of mixed Hodge structures.

5. BRIEF HIGHLIGHT OF OTHER INTERESTING THEMES

Hypergeometric integrals were the main motivation behind the theory developed
in the book, but, as the authors hint, the book grew too much in size for this
latter theory to also be developed; quite probably this topic will be taken up in a
forthcoming volume. As the authors say, hypergeometric integrals can be viewed
as a “quantization” of discriminants (cf. [HLY]). The idea is to study the integral
of expressions like f(x1,...x5—1)z]* ...xzk_’f dxy,...drg_1, for f varying in the space
spanned by a certain set of monomials and to express this as a very interesting
power series in the coefficients of f (called “hypergeometric” after Gauss’ celebrated
hypergeometric series, which yields the solution in a very particular case, i.e. the
1-variable case).

On the other hand, plenty of other applications are given, for instance, to the
study of domains of convergence of Laurent series, related to the study of the so-
called amoeba of a Laurent polynomial f. The amoeba is the image of the zero
locus of f in (C*)* under the map log : (C*)* — R* given by taking the logarithm
of the coordinates. The relation to the Newton polytope N(f) here is that the
intersection of the amoeba complement with a sphere of big radius M has a limit,
given by the codimension 1 skeleton of the triangulation of the sphere determined
by the faces of N(f). What pops out here, under the log map, is a particular case
of the so-called moment map, defined more generally for a toric variety X4 and
with values in the polytope P which is the convex hull of A.

The moment map makes its appearance once more later in connection with real
algebraic geometry, especially with Hilbert’s problem, which in this context asks for
the topological classification of real hypersurfaces corresponding to real polynomi-
als lying in the complement of the A-discriminant. Here, the main theorem is due
to Viro and shows that the isotopy type of such a hypersurface has a completely
combinatorial description. The idea is that the real part of the toric variety X4
can be glued by copies of the polytope P (the moment map is crucial to construct
this homeomorphism), and inside each copy of P one constructs, with the aid of
the corresponding coherent triangulation 7" and an appropriate choice of signs, a
very explicit union of cells of the dual subdivision to 7. This different proof of
Viro’s theorem lends itself to analysing the manifold surgeries that one obtains
while crossing the discriminantal hypersurface: these have an extremely direct de-
scription in terms of the corresponding initial and final coherent triangulations. We
find that there is no time here to comment more on other exciting topics, such as
Gale transform, Matroids, Shuffles, generating functions associated to discriminant
degrees, possible probabilistic interpretations of coefficients of A-discriminants as
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“entropies”, explicit classification (due to Weyman) of the resultants for which Cay-
ley’s method of calculating the determinant of a complex reduces to the determinant
of a single matrix, and many others.

The final very interesting topic which we would like to briefly introduce is the
one of the hyperdeterminants, treated in chapter 14. The role that determinants of
square matrices play for the determination of the rank of a matrix is well known.
In general, for a k-tensor, the rank is the smallest integer r such that the tensor
can be written as the sum of r simple tensors (i.e., those obtained by taking the
tensor product of k vectors). More interesting is the so-called border rank, which
is the minimal r such that our tensor is in the closure of the tensors of rank r. For
algebraic geometers (working over the complex numbers) the condition is simply
expressed by saying that the border rank is < r if the corresponding point lies in
the r-secant variety of the Segre product of the corresponding projective spaces.
Here, the hyperdeterminant is defined through the equation of the dual variety
to the Segre variety cited above, and many methods, also classical, to compute
hyperdeterminants are explained. To tie in with the case of matrices, we only
need to remark that in this case the dual variety to the space of rank r matrices
(more precisely, rank < r) is the variety of corank r matrices. It is not clear that
an inductive treatment such as the one for matrices can be given also for higher
tensors. Finally, the combinatorial characterization of the hyperdeterminant yields
relations with the theory of error correcting codes, which the authors mention as
an interesting direction of research.

6. FINAL COMMENTS

One of the reasons why the authors are able to cover such vast material in the
book is that they tend to develop the main ideas exactly to the right degree of
generality that they need. Moreover, the treatment is always done by progressing
from the special to the general case, essentially avoiding pedantic verifications.
Sometimes the proof is even given through the right picture: the authors have really
saved the reader from a lot of unnecessary heavy notation. Moreover, the notation is
not only simple, but also everywhere consistent (also in the review I have been trying
to use the standard notation of the authors). There are several examples of this
tendency to avoid interesting but not useful digressions: for instance, concentrating
only on the case of the complex and real numbers, thus e.g. avoiding the pathologies
of the duality theorem in positive characteristics (although a general reference is
given, [KP]). It is quite pleasant, moreover, to see the basic features of several major
theories exposed in a terse way. Another example of this attitude is the treatment of
normal singularities: the general standard definition through the algebraic property
of the coordinate ring of being integrally closed is recalled, but soon a very precise
criterion is given for the case of toric varieties (without proof, but with full reference
after a basic example illustrates the meaning of the criterion).

One basic question I would like to answer is whether this book is meant for
(graduate) students. My feeling is that first of all it is very nice for students to
see so many concrete examples and pictures. The reader here is well motivated
by simple but illuminating examples (one such instance being on pages 18-19, the
calculation of dual curves in the simplest cases) before being faced with general
notions; this is done quite systematically in the book, where examples and pictures
always precede the proofs and allow those to be easily stated and easily understood.
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There is of course a small price for this; general concepts such as spectra, sheaves,
triangulations, and cohomology have to be taken for granted (in fact, the authors
do refer to the book [Hart] by Hartshorne), and, although many important con-
cepts of commutative and homological algebra are explained, the authors resist the
temptation of launching themselves into interesting generalizations (e.g., Fitting
ideals or Eagon-Northcott complexes) which would, however, not be necessary for
the needed purposes. The essential ideas of the proofs are always given (an excep-
tion occurs only once, for Theorem 1.6 on page 126, which is followed by a “Proof”
which actually only proves the first (and easier) assertion).

The above remarks, together with the observation that I could only catch a
missing reference ([Whi]), show that actually the book is almost perfectly written,
and thus I warmly recommend it not only to scholars but especially to students. The
latter do need a text with broader views, which shows that mathematics is not just
a sequence of apparently unrelated explosions of new theories, avidly investigated
in the beginning and then rapidly forgotten as soon as difficult problems come up,
but instead a very huge and intricate building whose edification may sometimes
experience difficulties (as the one of the Babel Tower) but eventually progresses
steadily. Of course one needs for this purpose expert engineers of the mathematical
science who do not get lost with the polishing of a finer detail, but always keep in
mind the whole complex architecture, like the writers of the present book.
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