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In 1991 the physicists Candelas, de la Ossa, Green and Parkes published a fa-
mous paper [3] which contained some astonishing predictions about rational curves
on the quintic threefold in P4. These predictions were obtained using a mysterious
“mirror symmetry” for Calabi-Yau threefolds, and they went far beyond anything
algebraic geometry could prove at the time. For this reason the paper [3] became a
challenge for mathematicians to understand mirror symmetry and to find a math-
ematically rigorous proof of the predictions made by physicists. The process of
creating a rigorous mathematical foundation for mirror symmetry is still far from
being finished. However, after the works of Givental [6], [7] and the paper of Lian,
Liu and Yau [10], it became clear that the first period of this process is already
over. During this period mirror symmetry has given impetus to new fields of alge-
braic geometry. The primary goal of the book is to give an introduction to these
algebro-geometric aspects of mirror symmetry.

1. Mirrors of quintic threefolds

Let us consider the power series

y0(x) =
∞∑
n=0

(5n)!
(n!)5

(−1)nxn = 1− 120x+ · · · .

If we put an = (−1)n(5n)!/(n!)5, then the numbers an satisfy the recurrent relation

(n+ 1)4an+1 = −5(5n+ 1)(5n+ 2)(5n+ 3)(5n+ 4)an.

It follows immediately from this relation that y0(x) is a solution to the differential
equation Dy = 0, where

D = Θ4 + 5x(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4), Θ = x
d

dx
.

The equation Dy = 0 has a regular singular point at x = 0. There is another
solution

y1(x) = y0(x) log(−x) + 5
∞∑
n=0

(5n)!
(n!)5

 5n∑
j=n+1

1
j

 (−1)nxn

with a logarithmic singularity at x = 0. Using y0 and y1, one can define near x = 0
another local coordinate q := exp(y1/y0). The mirror symmetry for a “generic”
quintic threefold V ⊂ P4 predicts that the function

K(q) :=
5

(1 + 55x)y2
0(x)

(
q

x

dx

dq

)3

,
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as a function of the local coordinate q, has the following expansion:

K(q) = 5 +
∞∑
d=1

ndd
3 qd

1− qd ,

where nd denotes the instanton number of rational curves of degree d on V . Direct
computations show that

K(q) = 5 + 2875
q

1− q + 609250 · 23 q2

1− q2
+ 317206375 · 33 q3

1− q3
+ · · · .

The number n1 = 2875 is classically known to be the number of lines on a generic
quintic threefold. It has been proved that n2 = 609250 and n3 = 317206375 are
analogous number for conics [8] and twisted rational cubics [4]. However, in general
one cannot expect that nd gives the number of rational curves on a generic quintic
threefold for all d ≥ 1 even if one assumes that this number is finite. This shows
the necessity of a rigorous mathematical definition of nd using so-called Gromov-
Witten invariants and the intersection theory on the Kontsevich moduli space of
stable maps [9]. One can easily show that all nd are rational, but so far it is
still unknown if they are integers (though this is true for all nd that have been
computed).

Mirror symmetry allows us to interpret the above differential equation Dy = 0
as the Picard-Fuchs differential equation for periods of a 1-parameter family of
Calabi-Yau threefolds V ◦x which are called mirrors of quintic threefolds V ⊂ P4.
The family of mirrors V ◦x can be constructed explicitly as follows. Let G be the
abelian group of order 125

G := {(a1, . . . , a5) ∈ (Z/5Z)5 :
∑
i

ai = 0 mod 5}/H,

where H ∼= Z/5Z is embedded diagonally. Then G acts on P4 as g(x1, . . . , x5) =
(µa1x1, . . . , µ

a5x5). The family V ◦x consists of minimal desingularizations of hyper-
surfaces in P4/G defined by the equation

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + ψx1x2x3x4x5 = 0, ψ ∈ C,

where x = ψ−5 is the parameter of the family .
For the Hodge numbers of V and V ◦ = V ◦x one has the equalities h1,1(V ) =

h2,1(V ◦) = 1 and h2,1(V ) = h1,1(V ◦) = 101 which reflect the mirror isomorphism of
the superconformal field theories associated with (V, ω) and (V ◦, ω◦), where ω (resp.
ω◦) denotes a complexified Kähler class on V (resp. on V ◦). This isomorphism
suggests that the Gauss-Manin connection of the variation of Hodge structure in
H3(V ◦,C) should be identified with the so-called A-connection of the A-variation
of Hodge structure in

⊕3
i=0 H

2i(V,C). The precise meaning of this identification
is the content of the Mirror Theorem proved by Givental [6] and by Lian-Liu-Yau
[10]. The Mirror Theorem plays one of the central roles in the whole book. The
main ingredients of its proof are explained in Chapters 9-11. The Mirror Theorem
would be impossible to prove without the creation of new mathematical theories
of Gromov-Witten invariants and quantum cohomology. Different mathematical
approaches to these theories are discussed in detail in Chapters 7 and 8.
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2. Generalizations and toric geometry

It would be more difficult to investigate mirror symmetry if quintic threefolds
were the only examples of Calabi-Yau threefolds for which one could make explicit
calculations of instanton numbers of rational curves and compare them with clas-
sical results from enumerative geometry. Fortunately, there exists a large class of
examples for which all the above calculations can be generalized. These examples
are Calabi-Yau hypersurfaces and complete intersections in toric varieties [2], [11],
[12]. Moreover, toric geometry helps to express mirror symmetry in an elementary
way in terms of polar duality between special convex polyhedra [1].

Let M be a free abelian group of rank d, N := Hom(M,Z) the dual group,
and 〈∗, ∗〉 M × N → Z the natural pairing. A convex d-dimensional polytope
∆ ⊂MR := M ⊗ R is called reflexive if the following conditions are satisfied:

1) the origin 0 ∈M is contained in the interior of ∆;
2) all vertices of ∆ belong to the lattice M ⊂MR;
3) all vertices of the polar polytope

∆◦ = {v ∈ NR := N ⊗ R : 〈u, v〉 ≥ −1 for all m ∈ ∆}
belong to the dual lattice N ⊂ NR.

It is easy to see that if ∆ ⊂ MR is reflexive, then ∆◦ ⊂ NR is again reflex-
ive and (∆◦)◦ = ∆. Therefore one obtains a natural involution on the set of all
d-dimensional reflexive polyhedra. It turns out that this involution has a direct re-
lation to mirror symmetry. Let us consider elements m ∈M as algebraic characters
Xm of the algebraic torus TM ∼= (C∗)d and elements n ∈ N as algebraic characters
Y n of the dual torus TN . Take two families of Laurent polynomials

f(X) =
∑

m∈∆∩M
amX

m, g(Y ) =
∑

n∈∆◦∩N
bnY

n

by choosing two sufficiently general sequences of complex numbers {am}m∈∆∩M ,
{bn}n∈∆◦∩N . The equations f(X) = 0 and g(Y ) = 0 define two families of affine
hypersurfaces Zf ⊂ TM and Zg ⊂ TN . It is important that both families of hy-
persurfaces admit Calabi-Yau compactifications Ẑf , Ẑg with at worst Gorenstein
terminal singularities. If d = 4, then Ẑf and Ẑg are smooth Calabi-Yau threefolds
whose Hodge numbers satisfy the equalities

h1,1(Ẑf ) = h2,1(Ẑg), h2,1(Ẑf ) = h1,1(Ẑg).

These equalities can be considered as the first evidence of Ẑf and Ẑg being mirror
symmetric.

In order to calculate the predictions for instanton numbers of rational curves on
Ẑf and Ẑg one needs to know solutions of the Picard-Fuchs differential equations
for their periods. It turns out that all these solutions are well-known generalized
hypergeometric functions introduced by Gelfand, Kapranov and Zelevinsky [5] in
connection with toric varieties P∆ and P∆◦ associated with reflexive polyhedra
∆ and ∆◦. Moreover, there exists a natural combinatorial way (so-called GKZ-
decomposition) for describing the boundary points on the moduli spaces of Ẑf and
Ẑg having the maximal unipotent monodromy. Using the generalized hypergeomet-
ric functions, one can define canonical q-coordinates in small analytic neighbour-
hoods of these boundary points. Using multidimensional q-expansions of so-called
normalized Yukawa couplings, one obtains the instanton numbers of rational curves
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in the same way as for quintic threefolds. A detailed introduction to toric methods
and their applications to mirror symmetry calculations can be found in Chapters
3-6 of the book.

3. Conclusions

As the authors observed, the greatest obstacle facing a mathematician who wants
to learn about mirror symmetry is knowing where to start. Another problem is the
scattering of many mathematical ideas throughout the physics literature, which is
difficult for mathematicians to read. The present book seems to be a successful
attempt to collect all these ideas. It could also be used as a starting reference for
mathematicians interested in learning about mirror symmetry. It is especially very
helpful for the reader that the authors have summarized in Appendix B some of
the key points of physical theories mentioned in the book.
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