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Somehow, I’ve ended up with three copies of this book. They are all being put to
good use: one for the office, one for home, one for, well, collegiate assemblies or im-
pactions on the Schuylkill expressway. (The book is packed with brief, challenging
superveniences that make it a browser’s delight.)

The book testifies to the ongoing preoccupations of the authors. Richard Askey
has had a long-standing interest not just in special functions and related subjects
but also in the history of mathematics. One of the delightful features of this book
is how the sense of history, of mathematics being created and savored, informs
the text. Each chapter has a historical introduction that serves to motivate what
follows. George Andrews has an abiding interest in combinatorial mathematics,
and one of the chapters, devoted to partition theory, clearly has its origin in his
concerns. Ranjan Roy has worked extensively in differential equations, and that
interest, too, has left its mark on the book. Throughout there is a wealth of ref-
erences, references that affirm the catholic interests and experience of the authors.

There are topics you will not find in this book. There is almost nothing on
modular functions, nor on functions satisfying differential equations with more
than three singular points (Heun functions, for example), nor anything on uni-
form asymptotic approximations, nor much on the family of incomplete gamma
functions. The book is mostly silent about the applications of special functions
to the hard physical sciences— diffraction, heat conduction, electromagnetism—
topics that make the book of Lebedev [leb] so rewarding. But the book has an
abundance of material that has been long neglected by the authors of other works
on special functions, material overdue in an exposition aimed at the general reader.
Furthermore, it is virtually the only book on the subject to pay homage to a wide
variety of truly contemporary results and methods. It has a very generous serving
of exercises—exercises that provoke, that illuminate, that encourage one to make
one’s own discoveries in the subject at hand.

The book offers a cornucopia of proofs, often two or three proofs of a single
result. I was charmed and surprised by these proofs, and often I found the proofs
that were historically the earliest were the most imaginative and unexpected. As
the authors must have perceived, proofs in the field of special function occupy a
privileged place. They are more than instruments for discovering new truths; they
often point the way to generalizations of known truths, and may even suggest the
way to extend concepts. Sometimes one proof may generalize, while another does
not.

The book possesses a unity of vision that gives it an intellectual coherence rare
among its fellows and makes the authors more than merely cicerones to a zoo of
the unusual. Overall, the level of writing is unusually high: measured, highly
motivated, lucid. At times the authors make what seem to me to be unfortunate
choices. For instance, the proleptic use of important concepts defined only later

2000 Mathematics Subject Classification. Primary 33Cxx, 33Dxx, 33Exx.

c©2000 American Mathematical Society

499



500 BOOK REVIEWS

in “remarks” is not a good tactic. However, as with any book offering such an
abundance, there will inevitably be things to cavil about. What I consider to be
defects are minor compared to the nature of the achievement. So much in the field
of special functions depends on that unquantifiable but crucial feature called taste.
The material in this book reflects the impeccable taste of its authors.

Askey has remarked that a special function is simply a mathematical function
that has been used often enough to deserve a name. The special functions in this
book are almost exclusively functions of hypergeometric type and their immediate
generalizations. A generalized hypergeometric function is a complex-valued multi-
parameter creature which can be defined several ways: as a Mellin-Barnes contour
integral (my favorite), as a solution of a certain higher order linear differential
equation with polynomial coefficients (sort of unworkable), or, most commonly, as
the Maclaurin series,

pFq

(
a1, a2, ..., ap
b1, b2, ..., bq

; z
)

=
∞∑
n=0

(a1)n (a2)n ... (ap)n
(b1)n (b2)n ... (bq)n

zn

n!
,(A)

where no bj is a negative integer and

(a)n =
{

1, n = 0;
a (a+ 1) (a+ 2) ... (a+ n− 1) , n > 0

}
.

The series above converges for all z if p ≤ q and for |z| < 1 if p = q + 1. The
series diverges (unless it terminates) if p > q + 1, although a meaning can then
be assigned to it by means of a contour integral. If a numerator parameter is a
negative integer, say, −n, the series terminates after n + 1 terms. The series is
called hypergeometric since it is an obvious generalization of the geometric series
(q = 0, p = 1, a1 = 1). The emphasis is not misplaced. Hypergeometric functions
are the most ubiquitous and useful mathematical functions, both practically and
theoretically (they are instrumental in the proof of, for instance, the Bieberbach
conjecture and the irrationality of ς (3)). The most recent inquiry I have received
about a function of the form 4F3 with z = 1, one of the most salient hyperge-
ometric functions, was penned by a physicist who had encountered the function
in a study of Feynman diagrams. More recently functions not of hypergeometric
type have become important, for instance, those functions satisfying a Korteweg-
deVries equation, commonly called solitons, [dra], or Heun functions, which occur
as eigenfunctions of certain Schrödinger operators. Often, though, these functions
can be related to functions of hypergeometric type; for instance, certain solutions
of one Korteweg-deVries equation are elliptic functions which are, in turn, inverses
of hypergeometric functions, and the coefficients of the Maclaurin series for Heun
functions are orthogonal polynomials in a parameter, and such polynomials are
commonly functions of hypergeometric type. Thus the book has applications far
beyond its apparent territory.

I wish to examine the book in depth and point out some of its unusual features,
some of its many assets, some of its infrequent faults.

Chapter 1: The Gamma and Beta Functions. The Gamma function, defined
for Re (z) > 0

Γ (z) =

∞∫
0

e−ttz−1dt,
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is arguably the most basic mathematical function, and all special function books put
this function somewhere near the beginning. The Beta function, B (x, y), defined
for Re (x) > 0,Re (y) > 0, by

B (x, y) =

1∫
0

tx−1 (1− t)y−1
dt

is similarly important and can be shown to be expressible in terms of the Gamma
function by means of the formula

B (x, y) = Γ (x) Γ (y) /Γ (x+ y) .(B)

The proof offered was not my favorite— the one found in Lebedev and based on
a change of variable in a double integral. However, browsing through the copious
exercises I found, “Use the change of variables s = ut to show that

Γ (x) Γ (y) =

∞∫
0

∞∫
0

tx−1sy−1e−(s+t)dtds

is Γ (x+ y)B (x, y) .” The exercise attributes this proof to Poisson. The authors
give four proofs of the reflection formula for the Gamma function. They give
a beautiful proof of the equally beautiful Bohr-Mollerup theorem: the Gamma
function is the only positive logarithmically convex function f defined on the positive
reals with f (1) = 1 which satisfies the recurrence relation f (x+ 1) = xf (x). Why
most special functions books fail to include this spectacular result— the proof is
really brief— baffles me. For my special functions course I drew the proof from
Conway’s complex analysis book.

The authors give some intriguing group-theoretic generalizations of the Gamma
function, but unfortunately here the exposition falters. Few in the audience to-
wards which the book is directed will understand what is going on. Briefly, the
authors talk about additive and multiplicative characters of the groups of integers
mod p, p a prime, denoted, respectively, by χ and ψ. The reader, confused by the
talk of isomorphisms and the use of undefined group-theoretic symbols, will prob-
ably assume that the characters for the multiplicative group can be recovered as
effortlessly as those for the additive group, when the construction even for small p
can be tricky; see [apo]. It is untimely to hit the reader with the notation id before
the identity (principal) character is defined. The authors first should have defined
a multiplicative character, then given an example, say, the Legendre symbol

(
n
p

)
,

or the entries in one of the tables in Apostol [apo]. They could then have defined
the Gauss sum as follows:

p−1∑
n=0

χi (n) e2πjn/p,

which is what other books do, [red], and just observed that this provides an analogue
of the Gamma function since, in the integral for the Gamma function, the quantities
tx and e−t are really group characters, i.e., homomorphisms respectively from the
multiplicative group R+ and the additive group R to the complex numbers.

I don’t much care for the demonstration that the two functions e−ct and tc

constitute the only continuous solutions of the functional equations

f(x+ y) = f(x)f(y), f(xy) = f(x)f(y),
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respectively. These statements can be deduced in a straightforward way from the
solutions of Cauchy’s equation,

f (x+ y) = f (x) + f (y) ,(C)

and those solutions can be found assuming only local integrability of f . Integrate
(C) and use the properties of the integral to get

yf (x) =

x+y∫
0

f (t) dt−
x∫
0

f (t) dt−
y∫
0

f (t) dt.

The right hand side is symmetric in x and y, so interchanging them gives

xf (x) = xf (y) or
f (x)
x

=
f (y)
y

= const., or f (x) = cx.

This sly derivation is due to Shapiro [sha]. It is known that (C) has discontinuous
solutions also; the construction of these solutions requires the use of a Hamel basis
for the reals. Any discontinuous solution is truly bizarre: it is unbounded in any
interval, and its graph is dense in R2.

There has for some time been a growing interest in the use of probabilistic
methods for deriving results for special functions. The crucial tool is the central
limit theorem; see [goh], for example. Van Assche’s book [van] provides other
examples, including an astonishing application of the theory of the distribution of
sums of independent random variables to the derivation of the asymptotic properties
of the Jacobi polynomials. In this contemporary mode, the authors give a very
enjoyable probabilistic derivation of the expression (B) for the Beta function.

Tucked away in the splendid bounty of 56 exercises for this chapter, I found the
following suggestion for a generalization of the Bernoulli polynomials. As above,
let χ be a multiplicative character for the reduced residue classes mod p, and write
(I generalize a bit)

text−t
p−1∑
n=1

χ (n) ent

e(p−1)t − 1
=
∞∑
m=0

Bn,χ (x)
tn

n!
.

The Bn,χ (x) are generalizations of the Bernoulli polynomials and reduce to the
latter when χ is the principal character, χ ≡ 1. When one reflects on the many uses
the Bernoulli polynomials are put to in analysis, the mind boggles. Does the above
lead to useful extensions of the Euler-Maclaurin summation formula? Apparently
not, but manifold other questions arise. Where are the zeros of these polynomials,
for instance, and how do they depend on χ?

Chapter 2. Hypergeometric Functions. In this chapter the authors first
demonstrate that many important elementary functions may be obtained as spe-
cial cases of the general hypergeometric function (A). A great deal of attention is
devoted to the function 2F1, called Gauss’ hypergeometric function, and its trans-
formation theory is elaborated by the use of Riemann’s brilliant concept of a P
function. Few other books do this. The authors give most of the traditional
properties and relations for this function. There is an excellent section on the
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dilogarithm function,

Li2 (x) =
∞∑
n=1

xn

n2
= x3F2

(
1, 1, 1
2, 2 ;x

)
, |x| < 1.

This section contains a bestiary of strange results, for instance,

Li2

(√
5− 1
2

)
=
π2

10
−
(

ln

(√
5− 1
2

))2

.

Other topics treated are binomial sums, Dougall’s bilateral sum, i.e.,
∞∑

n=−∞

Γ (a+ n) Γ (b + n)
Γ (c+ n) Γ (d+ n)

,

which can be evaluated in terms of Gamma functions, and fractional integration.
This chapter has 44 meaty exercises.

Chapter 3. Hypergeometric Transformations and Identities. This chapter
talks about quadratic transformations of Gauss’ function and that function’s con-
nection with elliptic integrals and the famous algorithm of the arithmetic-geometric
mean, defined by a0 = a > 0, b0 = b > 0,

an+1 =
an + bn

2
, bn+1 =

√
anbn, n = 0, 1, 2... .

This algorithm converges with startling rapidity (quadratically), and an, bn have a
common limit, call it M (a, b). Recently there have appeared in the literature some
very dramatic algorithms for computing the transcendental number π; see [bor].
The present authors give an example of one:

π =
M2

(√
2, 1
)

1−
∞∑
n=0

2nc2n

where c2n = a2
n − b2n, a0 = 1, b0 = 1/

√
2.

The authors next present some results for higher order hypergeometric series
with argument z = 1, arcane results previously available only in specialized refer-
ences, such as Bailey [bai], or Slater [sla], or the Bateman volumes [erd]. These
results, eponymous for neglected British mathematicians such as Whipple, Dixon
and Dougall, deserve to be far better known than they are. Like many other re-
sults developed at the turn of the century and afterwards consigned to the quaint
or negligible, they are enjoying an appreciable currency nowadays in the world of
physics.

One of the most dramatic sections in this chapter is devoted to indefinite hy-
pergeometric summation, a subject treated in no other book on special functions.
The discoveries in this area have, literally, transformed many branches of math-
ematics, and computations formerly intractable and results formerly undreamt of
have, through their applications, become almost routine.

A sequence sn is said to be hypergeometric if its term ratio sn+1/ sn is a rational
function of n. One of the first results is an algorithm due to Gosper, which seeks to
determine whether a finite sum of the form Sn =

∑n
k=0 sk is itself expressible as a

hypergeometric sequence. To the uninitiated reader, this may seem to be a niggling
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concern; that hypothetical reader will just have to accept my assurance that the
issue is of monumental importance in many areas of mathematics and science.

Later, Doron Zeilberger and Herbert Wilf developed a set of algorithms that
generalize the Gosper method, algorithms in which the sequence sn = sn,k depends
on both the variables n and k and is hypergeometric in both. The algorithm
code named {zeil} finds a linear difference equation for Sn whose coefficients are
polynomials in n. The algorithm {hyper} determines whether this recurrence has
solutions which are hypergeometric in nature. Both algorithms are explained in
the idiosyncratic and fascinating book A = B [pet]. Their implementation as
MAPLE or MATHEMATICA programs may be downloaded from the creators’
websites. I have used these algorithms profusely, most recently to obtain a simple
explicit construction for the so-called associated Legendre polynomials, which are
useful in numerical quadrature and Padé approximation.

Chapter 4. Bessel Functions and Confluent Hypergeometric Functions.
This chapter, by and large, treats material that is available in many other sources,
but it has unusual features that really held my interest, for instance, the detailed
examination of the zeros and the monotonicity properties of the functions. One
very welcome result is a theorem due to Saff and Varga concerning zero-free regions
of polynomials satisfying 3-term recurrence relations. Historically, one of the first
applications of this theorem was to describe the zero-free regions of the partial sums
of the Maclaurin series for ez.

Chapter 5. Orthogonal Polynomials. Let φ (x) be a distribution, i.e., a non-
decreasing function with an infinite number of points of increase all of whose mo-
ments, which are the integrals (1, tn) (see below) exist. We may define a set of
polynomials {pn (x)}∞n=0 , where pn (x) is a polynomial in x of exact degree n, by
requiring∫ b

a

pm (x) pn (x) dφ (x) = hnδm,n, hn 6= 0, m, n = 0, 1, 2, ... .

This set of polynomials is said to be orthogonal (with respect to the above distribu-
tion). One of the most general polynomials is a terminating series of hypergeometric
type, the Jacobi polynomial:

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1

α+ 1 ;
1− x

2

)
, α > −1, β > −1.

For these polynomials, dφ (x) = (1− x)α (1 + x)β dx and [a, b] = [−1, 1].
This chapter treats general orthogonal polynomials and topics such as Gaussian

quadrature, zeroes of the polynomials, recurrence relations, continued fractions. A
useful result concerns the moment generating function

H (x) =
∑∞

n=0
(1, tn)xn

where

(1, tn) =

b∫
a

tndφ (t) .
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The authors show how a continued fraction representation of H (x) may be con-
structed from the coefficients in the recurrence relation for the corresponding set
of orthogonal polynomials.

Chapter 6. Special Orthogonal Polynomials. For example, Laguerre and
Hermite polynomials. We have here a description of Jacobi polynomials based on
the use of Gram determinants, i.e., determinants of the form |ci+j |i,j=0..n, where
cn = (1, tn). I have found Gram determinants to be an invaluable and under-
appreciated tool for treating not only polynomials orthogonal with respect to a
distribution but polynomials orthogonal with respect to more complicated inner
products, such as Sobolev polynomials. I am happy to see their abundant deploy-
ment here. A tasty morsel is the evaluation of the special determinant

∆k = |1/(a+ i)j | 0≤i≤n−1
0≤j≤n,j 6=k

.

There is a discussion of completeness of sets of orthogonal polynomials. The
authors derive the asymptotic behavior of the Jacobi polynomials for large n by
the use of Darboux’s method. This method is crucial in asymptotic analysis, and
I dislike the fact that the authors bury the method in text rather than stating it
explicitly as a theorem. There is a detailed study of the problem of linearization
of a set of orthogonal polynomials, i.e., finding the coefficients a (k,m, n) in the
expansion

pm (x) pn (x) =
m+n∑
k=0

a (k,m, n) pk (x) .

An explicit representation of the coefficients can be obtained for certain classes of
polynomials, for instance, the Gegenbauer polynomials.

One section deals with some applications of orthogonal polynomials to problems
in combinatorics. Combinatorial methods have proved unusually effective in deduc-
ing properties of special functions, and this chapter gives the reader an introduction
to their use by establishing a combinatorial interpretation of the integral

∞∫
−∞

k∏
r=1

Hnr (x)e−x
2
dx,

which produces its evaluation. (The Hnr (x) are Hermite polynomials.)
In the field of orthogonal polynomials there is a rising hierarchy of polynomial

families, each being a generalization of the ones below it. For instance, the Cheby-
shev polynomials are specializations of the Gegenbauer polynomials, which are
specializations of the Jacobi polynomials. How far into the empyrean can one
go? The most comprehensive system to date is described by the array called the
Askey-Wilson tableau (now even available as a wall poster) presided over by the
most general polynomials of hypergeometric type: the Wilson polynomials. These
polynomials are a four parameter family of polynomials orthogonal on [0,∞) with
respect to a very sophisticated distribution

dφ (x) =
∣∣∣∣Γ (a+ ix) Γ (b+ ix) Γ (c+ ix) Γ (d+ ix)

Γ (2ix)

∣∣∣∣ dx.
By taking appropriate limits, one can obtain from the Wilson polynomials dozens

of important classes of orthogonal polynomials, including the Jacobi polynomials as
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well as many whose distributions have discrete support (points of increase) that are
of great value in statistics and numerical analysis. The construction of the Wilson
polynomials was a major achievement in the field of orthogonal polynomials, and
their treatment is a unique feature of this book.

Chapter 7. Topics in Orthogonal Polynomials. The connection coefficient
problem is to express a set of basis polynomials as a linear combination of polynomi-
als from some other basis. When the polynomials are orthogonal, especially if they
are of hypergeometric type, this can often be done. For instance, the coefficients
in the expansion

P (γ,δ)
n (x) =

n∑
k=0

cn,kP
(α,β)
k (x)

can be found explicitly (in terms of hypergeometric functions of the form 3F2 with
argument z = 1). It is important to know when these coefficients are positive, and
this leads the authors to consider a plethora of positivity results. The subject of
positivity is one of great current activity. Fejér conjectured that

n∑
k=0

sin (k + 1) θ
k + 1

> 0, 0 < θ < π,

a fact subsequently established by Jackson in 1911. The above equation can be
written

n∑
k=0

P
(1/2,1/2)
k (cos θ)

P
(1/2,1/2)
k (1)

> 0, 0 < θ < π,

and this clamors for generalization. The authors do just that, considering the
positivity in a number of instances of the sum

n∑
k=0

P
(α,β)
k (cos θ)

P
(β,α)
k (1)

.

(The superscripts in the denominator are not in error.) The positivity of this sum
for β = 0 and α = 0, 1, 2, ... was required in deBranges’s celebrated proof of the
Bieberbach conjecture.

Another arresting result is Vietoris’s inequality. Define

c2k = c2k+1 =
1

22k

(
2k
k

)
, k ≥ 0.

Then
n∑
k=1

ck sin kx > 0,
n∑
k=1

ck sinkx > 0, 0 < x < π.

Plotting the curves of the sums above using, say, MAPLE leads to all sorts of
speculations.

A section on the irrationality of ζ (3) ,

ζ (3) =
∞∑
n=1

1
n3
,

is breathtaking, one of the high points of the book. By anyone’s standards, this
is beautiful mathematics. Apery (in 1978) proved that ζ (3) is irrational. The
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authors present another simpler proof due to Beuker (1979) that uses Legendre
polynomials. The arguments produce a lemma from which the assertion follows:
There exist two sequences of integers, {An} , {Bn} , with the property

0 < |An +Bnζ (3)| < 3
(

9
10

)n
.

Note that if ζ (3) = p/q, then the sequence of positive numbers |An +Bnζ (3)| must
be ≥ 1/q. But the right hand side of the above equation goes to zero as n→∞.

Chapter 8. The Selberg Integral and Its Applications. I am delighted to
see this fascinating topic covered in a book. The Selberg integral is a generalization
of the Beta integral,

1∫
0

...

1∫
0

n∏
i=1

xα−1
i (1− xi)β−1 |∆ (x)|2γ dx1dx2...dxn,

where

∆ (x) =
n∏

1≤i<j≤n
(xi − xj) .

The authors give Aomoto’s evaluation of a more general integral, as well as a
proof due to Anderson. This integral has many applications, including one to a
problem in electrostatics posed by Stieltjes. Place charges of size p at 0 and of
size q at 1 and unit charges at x1, x2, ..., xn, 0 < xj < 1. What is the equilibrium
position of the n charges? It turns out that the xi will be the zeros of the Jacobi
polynomial P (2p−1,2q−1)

n (1− 2x) . Selberg’s integral can be used to obtain the
equilibrium energy of the system.

A section is devoted to constant term identities, which are being much discussed
nowadays. A typical problem, whose solution the authors present, is to find the
constant term in the expression ∏

j 6=l

(
1− zj

zl

)aj
,

where the aj are integers.

Chapter 9. Spherical Harmonics. Harmonic polynomials are homogeneous
polynomial solutions of Laplace’s equation

n∑
i=1

∂2u

∂x2
i

= 0.

The functions which are restrictions of harmonic polynomials to the sphere in Rn

are called spherical harmonics. The authors treat these functions in depth: addi-
tion theorems, orthonormality, Fourier transforms. This chapter offers the authors
an opportunity to introduce one of the most powerful methods for obtaining results
in special functions, namely, group representation theory. It turns out that spher-
ical harmonics are irreducible representations of SU (2) , the group of all complex
matrices of the form (

b d
−d̄ b̄

)
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with determinant 1. Anyone who wants a relatively painless introduction to the
subject need look no further. These sections are a model of clarity and are equaled
in their effectiveness only by the little Dieudonné pamphlet published by the AMS,
[die].

Chapter 10. Introduction to q-Series. q-Series are a generalization of hy-
pergeometric series. In the latter, the term ratio is a rational function on the
summation variable n. In q-series, the term ratio is a rational function of qn

where, usually, 0 ≤ q < 1. The q-analog of the symbol (a)n is

(a; q)n = (1− a) (1− aq)
(
1− aq2

)
...
(
1− aqn−1

)
.

The computations can be arranged so that in the limit as q → 1 the term
ratio becomes a rational function of n and the series becomes a hypergeometric
series. There is a very nice little introduction that motivates the subject using
a combinatorial setting based on lattice paths in R2. This study leads to a q-
extension of the binomial theorem. The q-integral is a creation with an august
mathematical history: Fermat (and even earlier, Archimedes, for a special case)
used essentially this tool to compute

∫ a
0 x

αdx. The q-integral is

a∫
0

f (x) dqx = a (1− q)
∞∑
n=0

f (aqn) qn.

Note the limit as q → 1− the integral becomes
∫ a

0
f (x) dx. For f (x) = xa the

series on the right is a geometric series and so can be evaluated.
q-Series are of crucial importance in combinatorics and number theory and

are increasingly welcome in the abstruse world of particle physics. One result of
supreme utility in number theory is the triple product identity:

(x; q)∞ (q/x; q)∞ (q; q)∞ =
∞∑

k=−∞
(−1)k qk(k−1)/2xk.

There is a q-Gamma function which satisfies the functional equation

fq (x+ 1) =
(1− qx)
(1− q) fq (x) , fq (1) = 1,

and an analog of the Bohr-Mollerup theorem, too. q-Hypergeometric series are
called basic hypergeometric series, and their theory is quite well developed, [gas].

This chapter is unique. No other book on special functions (with the exception
of specialized treatises) discusses so extensively the topic of q-series. Many of
the results quoted are due to Ramanujan, but many other great mathematicians—
Gauss, Cauchy, Jacobi— have had a hand in the development of the subject. There
is a close connection with theta functions, and hence with elliptic functions, so the
authors’ subsequent treatment of those functions has great logical coherence. For
me this chapter alone justifies the cost of the book.

Chapter 11. Partitions. One of the authors, George Andrews, is an authority on
this subject; see [and]. The material on q-series segues effortlessly into partition
theory, and a typical result illustrates the connection: Let Qm (n) denote the
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number of partitions of n into exactly m distinct parts. Then

∞∑
n=0

Qm (n) qn =
qm(m+1)/2

(1− q) (1− q2) ... (1− qm)
.

The authors discuss graphical methods, many q-series identities, and the congruence
properties of partitions.

Chapter 12. Bailey chains. There is a class of q-identities called Rogers-
Ramanujan identities, named after the great Ramanujan and the underrated British
mathematician L. J. Rogers, who published his seminal work in 1917. The Rogers-
Ramanujan identities are quite pretty, but too technical to reproduce in a review.
The English mathematician W. N. Bailey discovered in the 1940’s a method for
obtaining results on hypergeometric series, and the method can be adapted to q-
series, and hence to the proof of the above identities. The result, Bailey’s lemma,
is as powerful (intelligently applied) as it is easy to prove: Subject to convergence,
if

βn =
n∑
r=0

αrUn−rVn+r, γn =
∞∑
r=n

δrUr−nVr+n,

then
∞∑
n=0

αnγn=
∞∑
n=0

βnδn.

(Slater [sla] states that this result is implicit in the work of Abel, more than one
hundred years earlier.) The pair (αn, βn) is called a Bailey pair if they are related
as in Bailey’s lemma. Given a Bailey pair, a new Bailey pair can be produced,
so by successive application of the lemma, one can produce a sequence of pairs,
(αn, βn) → (α′n, β

′
n) → (α′′n, β

′′
n) → (α′′′n , β

′′′
n ) ..., and thus a sequence of special

function series identities. Bailey’s lemma has proved to be a philosopher’s stone of
q-series. It takes great experience to apply it productively, but the results can be
dramatic.

The book closes with 6 appendices: infinite products, summability and fractional
integration, asymptotic expansions, the Euler-Maclaurin summation formula, the
Lagrange inversion formula, and series solutions of differential equations.

The book is gorgeously composed and typeset, but there are loads of mistakes,
everything from the mislabelling of equations to the assertion that the elliptic func-
tion nc(u, k) is its own reciprocal. This serves to confirm my suspicions that math-
ematical text has a life of its own and at night, in the solitude of the publisher’s
drawers, morphs into the unrecognizable. (I want to assure the nervous reader,
however, that there are no mistakes in this review.) Richard Askey has told me
that a paperback edition of the book is in the offing. No doubt, mistakes will
be expunged from future editions, and there will certainly be future editions. One
measure of the success of a mathematical book is: does it give the reader ideas,
ideas as lush and provocative as those one gets from a stimulating conference? By
that criterion alone, this book is way over the top. This is a splendid work, and I
predict that it will be a bestseller as well.



510 BOOK REVIEWS

References

[and] Andrews, George E., The theory of partitions, Encyclopedia of Mathematics and its Appli-
cations, Vol. 2, Addison-Wesley Publishing Co., Reading, MA (1976). MR 58:27738

[apo] Apostol, Tom M., Introduction to analytic number theory, Undergraduate Texts in Mathe-
matics, Springer-Verlag, New York (1976). MR 55:7892

[bai] Bailey, W. N., Generalized hypergeometric series, Cambridge University Press, Cambridge
(1935). MR 32:2625

[bor] Borwein, Jonathan M., and Borwein, Peter B., Pi and the AGM, A study in analytic number
theory and computational complexity, Canadian Mathematical Society Series of Monographs
and Advanced Texts, John Wiley & Sons, Inc., New York (1987).
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