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Two developments are brought to mind by the book under review. The first is the
so-called Feynman-Kac formula. The second is conditional Brownian motion. The
Feynamn-Kac formula arises naturally when considering the problem of calculating
the distribution of a functional of a sequence of partial sums of a sequence of
random variables. For example, take X,,n > 1 to be independent, identically
distributed random variables with mean zero and variance one. Define S,, = >"| X;
and consider the problem of determining the distribution of the amount of time
this sequence of partial sums spends above 0. Namely, set V(z) = 19 o)(z) and
look for the distribution of L 37 V(S;) which gives the proportion of the first
n sums which are positive. Inserting a scaling factor of \/Lﬁ and summing to nt

rather than to n, one gets % ?t V(\/LHS]-) . By Donsker’s invariance principle, this

converges in distribution to fot V(B(s))ds where B is a one dimensional Brownian
motion. To compute the distribution of fot V(B(s))ds, one tries to compute the
Laplace transform E [exp (—)\ fot V(B(s))ds)] and then invert to get the desired

distribution. Mark Kac [1] showed how to calculate this distribution by solving a
differential equation satisfied by the double Laplace transform of fot V(B(s))ds (the
second Laplace transform is taken with respect to t). The answer, called Levy’s
arcsin law, is stunning for both the fact that the result defies intuition and for the
power behind the technique. By the way,

P (/01 V(B(s))ds < x) - /O %arcsin Jidy.

This says, more or less, that the prospect of Brownian motion being above 0 half
the time is least likely.

The Feynman-Kac formula has a translation into the language of stochastic pro-
cesses. Let B be a d-dimensional Brownian motion under the measure P, on the
space of continuous paths C([0.00), R9) so that P,(B(0) = ) = 1. Given suitable
functions u, V on R?, one might express the Feynman-Kac formula by saying

1) o ([ t V(B(s)ds ) ulB(0)

- /Ot <%A + V) u(B(s)) exp </O V(B(r))dr> ds

is a local martingale (the analog of a fair game in the sense that the P,-average
of this expression is its time 0 value, namely u(z), when evaluated at the right
stopping times). Thus if D C R? and 7 = inf (t > 0: B(t) ¢ D) and if u solves the
equation (%A + V)u = 0 in D, with the boundary condition v = f, then taking
expectations in () at time ¢ = 7 we get another formulation of the Feynman-Kac
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formula, assuming the right hand side is finite:

@) ) = B oo ([ ViBG)as) 180

A key point of the book under review is to determine when this representation
may be valid. This becomes a matter of determining when E, [exp ([, V(B(s))ds)]
is finite. Think of Brownian motion running around the domain D sampling the
values of the function (potential) V' and keeping a score exp ([ V(B(s))ds). This
may conceivably average out to some finite quantity under the measure P, if x
is close to the boundary of D and the singularities of V' are hidden in some part
of the domain far from x and hidden by many parts of 0D far from the probing
eyes of Brownian motion, and it might average out to infinity when x is chosen
near a singularity of V. However, a principal theorem in the book (gauge theorem)
asserts that if V is taken from a class of functions which are well adapted to the
occupation time measure of Brownian motion in the domain D (the Kato class), then
the quantity, called the gauge, g(z) = E, [exp (fOT V(B(s))ds)] is either bounded
in D or it is identically infinite in D. That is, with some control on the size of the
singularities of V, it is impossible to hide them from Brownian motion. When the
gauge is finite, the representation of solutions of (%A + V)u = 0 in D, with the
boundary condition u = f given by (@), is valid.

The second development mentioned above appeared in Doob [2]. Conditional
Brownian motion was introduced in order to get a probabilistic version of Fatou’s
boundary limit theorem for harmonic functions. The Brownian motion is condi-
tioned to exit a domain D in a particular way. This is done by taking the transi-
tion density for Brownian motion killed on exiting D, call it p(t, z,y), and a pos-
itive harmonic function h in D and defining a new transition density p"(t,z,y) =
p(t,z,y)h(y)/h(x). The diffusion process with transition density p"(t, z,y) is called
variously h-Brownian motion or conditional Brownian motion. When & is the
Martin kernel with pole a Martin boundary point £, then the h-Brownian motion
converges to £ in the Martin topology at the path lifetime. For those unfamiliar
with the Martin boundary, consider Lipschitz domains, and then the Martin bound-
ary is the same as the Euclidean boundary and the Martin kernel is the Poisson
kernel. The point £ to which the Brownian motion is conditioned to converge can
also be in D, and then h is taken to be the Green function for D with pole at
¢. For the last two choices of h, the process with transition density p”(t,z,y) is
Brownian motion conditioned to exit D at £. Sometimes the transition density for
the h-Brownian motion with A taken to be the harmonic function with pole at & is
denoted p*(t,x,y). The corresponding measure on path space is denoted P$, and
expectation with respect to this measure is denoted by ES. We return now to (2)
and introduce the notation w,(A) = P,(B(7)eA) for A a Borel subset of 9D. Then
wy is the harmonic measure of analysis or the exit distribution of Brownian motion
from probability. One may write

3) ) = [ ¢ oo ([ visenas)| sierie)

Thus, it is entirely natural to ask about properties of E$ [exp (f; V(B(s))ds)].
This quantity is called the conditional gauge. A second principal result in this book
(the conditional gauge theorem) asserts that under some smoothness assumption on
the domain and assuming the potential is in the Kato class, the conditional gauge
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is either bounded on D x D or it is identically infinite on D x D. Again, one might
think that the conditional gauge could be finite if the starting point x and exiting
point £ are close together and far from the singularities of V' so that the Brownian
motion makes the short = to £ trip without sampling near the singularities, whereas
if these points are taken near the singularities, the resulting conditional gauge would
be infinite. This cannot happen; even the conditional Brownian motion will have
sufficiently many paths moving all around the domain so that such behavior cannot
occur. The finiteness of the conditional gauge has many interesting consequences
which can be found within the text.

The book of Chung and Zhao contains simplified arguments, improvements and
extensions of recent research on the subject described above. It is a very carefully
written account. A graduate student or researcher would gain a good perspec-
tive of the interplay between analysis and probability theory from a reading. The
Feynman-Kac formula is used in so many contexts, it would be difficult to come up
with a comprehensive list. This book represents but one interesting aspect of these
many applications.
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