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In a first course in complex analysis, students learn a theorem that states that
if an analytic function is zero on a non-discrete set inside a region in the complex
plane, then the function must be identically zero. In particular, the values that an
analytic function takes in the neighborhood of a single point completely determine
the function in the whole region. This, of course, is very useful for proving many
other theorems about analytic functions. However, it also presents a challenge when
one is trying to construct examples with certain required properties. Unlike in a
real analysis setting, one cannot just cut the region up into smaller pieces, construct
examples locally, and hope to be able to glue everything back together. Over time
many ingenious ways have been developed to deal with this problem. It is a large
branch of modern complex analysis that tries to devise means to construct certain
classes of analytic functions from real variable type parameters.

If the region is the open unit disc D and one is interested in bounded analytic
functions, then a fully developed theory is available. In fact, this theory extends
to cover the Hardy spaces H? for 0 < p < oo. On the other hand, for the larger
Bergman spaces AP of the unit disc many new phenomena occur, new theorems and
proofs had to be developed, and some basic questions are still not completely settled.
Nevertheless, the past ten years have seen a remarkable number of breakthroughs
in this area: perhaps most notably the geometric characterization of sequences of
interpolation and sampling; a near closing of the gap between necessary and suf-
ficient conditions for zero sequences of AP-functions; characterizations of bounded
Hankel operators, of compact Hankel operators, and of compact Toeplitz operators;
the discovery of contractive zero divisors and an AP-inner-outer factorization; the
relationship between Bergman-inner functions and the biharmonic Green function;
and other results concerning the invariant subspace structure of AP.

In the book under review the authors present certain aspects of these new devel-
opments. The main focus is on questions concerning the function theory and the
invariant subspace structure of the spaces AP. Hankel and Toeplitz operators are
not discussed.

For 0 < p < oo the Bergman space AP is defined to be the set of all analytic
functions f on the open unit disc D such that || f|[%, = [p |f(z)|p%(z) < oo. Here
dA has been used to denote two-dimensional Lebesgue measure. For p > 1 AP is a
Banach space, while for 0 < p < 1 AP is a complete space with translation invariant
metric given by d(f.9) = ||f — g%

The reader should note that in this review we shall discuss only unweighted
Bergman spaces. In the book, the authors consider the standard weighted Bergman
spaces AP, a > —1 and the growth spaces A™%, whenever this is feasible. Further-
more, to get maximum benefit out of reading either the book or this review, the
reader should have at least a superficial familiarity with the HP-function theory;
see for example [D], [G], [K].
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One easily checks that for each 0 < p < co, HP C AP. But the “gap” between H?
and AP is significant: Whereas for every p > 0 all HP-functions have nontangential
limits a.e. on JD), there are nonzero functions f in AP such that each Stolz angle
with vertex in the unit circle contains infinitely many points z such that f(z) = 0.
It follows then from Plessner’s theorem that the image under f of almost every Stolz
angle must be dense in the complex plane. This observation makes it apparent that
at least part of the subtlety of the AP-function theory will be in determining how to
measure growth and oscillations of functions near dD. This problem is magnified
once one realizes that for many basic questions about AP, the answer must depend
on the index p.

In the first chapter of the book results about analytic projections and duality are
presented. Chapter 2 contains a nice discussion of the Berezin transform, Bergman
Carleson measures, and Bergman BMO-VMO.

The cornerstone of the HP-function theory is the classical inner-outer factor-
ization. It is a parametrization of all HP-functions in terms of real variable type
parameters: Blaschke sequences, nonnegative singular measures, and certain L!-
functions. Furthermore, variations of these parameters lead to fairly predictable
changes of the HP-norms or the values of the function on or near 9. One of the
goals of a function theory of Bergman spaces would be to obtain a similarly precise
and flexible decomposition for Bergman space functions. Thus, in order to start
a further investigation of the function theory of Bergman spaces it is natural to
consider the invariant subspace structure of AP. After all, one of the major appli-
cations of the classical inner-outer factorization is in Beurling’s characterization of
the invariant subspaces of H2.

It came as a real surprise when Apostol, Bercovici, Foias, and Pearcy showed in
the mid 1980s that the Bergman shift M : A2 — A2, f— (f, ((z) = z is in the
class Ay, of universal dilations. The consequences of this fact are numerous, and
they are all bad news for those who were hoping for a Beurling-type theorem for
AP, In fact, it turns out that the invariant subspace problem for Hilbert spaces is
equivalent to the following question: if M and N are two invariant subspaces of A2
with M C N and dim N/ M > 1, is there a third invariant subspace lying properly
between M and A/?

Now, perhaps, it is unlikely that somebody will find a proof for the invariant
subspace problem based on results about the Bergman shift, but this result stresses
very clearly that there are interesting structural properties of the Bergman shift
(and many related operators) that are still awaiting discovery.

As far as analogues of Beurling’s theorem go, it turns out that not all invariant
subspaces of AP are singly generated. Nevertheless, one has the following contrac-
tive divisor theorem.

Theorem 1. Let 0 < p < oo, let f be a nonzero function in AP, let n be the
smallest integer with f™(0) # 0, and let [f] denote the closure of the polynomial
multiples of fin AP. [f] is called a singly generated invariant subspace.

Then there is a unique solution ¢ to the extremal problem

sup{Re ¢ (0) : g € [f].llgl[%, <1}

We have [f] = [¢] and H? C % C AP with contractive inclusions. In particular,
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for all g € [f].

As stated, this theorem is from [ARSI]|. Special cases were proved in [HT] and
[DKSST], [DKSS?]. In particular, Hedenmalm discovered the contractive divisor
property (*) in the context of zero-based invariant subspaces of AZ%.

The functions ¢ occurring in this theorem are the analogues of the classical inner
functions. Because of the inequality (*) they also have been called contractive

divisors. They are characterized by ||¢[|, =1 and [} z”|<p(z)|p%(z) =0forn=
1,2, .... As a corollary to this theorem one obtains an AP-inner-outer factorization.

The proof of the theorem is based on a beautiful connection of the Bergman inner
functions and the biharmonic Green function for the unit disc. This and related
results are proved in Chapter 3 of the book. For example, there is Shimorin’s
analogue of Schur’s theorem for A2: every A%-inner function can be approximated
uniformly on compact subsets of D by zero divisors corresponding to finite zero sets
(the analogues of the finite Blaschke products). In fact, the projections onto the
corresponding invariant subspaces converge in the strong operator topology.

What is still lacking is a more transparent description of the AP-inner and outer
functions. What exactly are the analogues of Blaschke products? One says that a
sequence A = {an}n>0 C D is a zero sequence for AP if there is a function f € AP
such that f(z) = 0 if and only if z is one of the points in A. Here and in the
following we shall always mean that f has a zero of multiplicity m at z if z is
repeated exactly m times in the sequence A. It is known that Theorem 1 applies
to all zero-based invariant subspaces, i.e. subspaces of the form I(A4) = {f € AP :
f(a) =0 for all a € A} for some zero sequence A of AP. However, it is still an open
question to give computable necessary and sufficient conditions for a sequence A to
be an AP-zero sequence.

The first substantial results about Bergman zero sequences are from the 1970s.
Horowitz showed that unlike the HP situation the conditions for AP zero sequences
depend on p, and for each p there are two zero sequences A and B such that
the union A U B is not an AP zero sequence. Furthermore, for every p > 0, any
subsequence of a zero sequence is a zero sequence for AP.

Of course, every Blaschke sequence is a zero sequence for each AP. In a certain
sense not too many more sequences are allowed.

Theorem 2. Let 0 < p < oo, and let {an}n>0 be a zero sequence for AP.
(a) If € > 0, then

ool

1 14¢
n>0 (log m)

(b) Any subset of all points of {an}n>0 that lies on a single radius or in a single
nontangential approach region (a Stolz angle) must satisfy the Blaschke condition.

Like the Blaschke condition, this theorem follows from Jensen’s formula. Part
(b) together with the fact that Blaschke sequences are not the only zero sequences
shows that any necessary and sufficient condition for AP zero sequences must take
the angular distribution of the zeros into account.

(b) is based on the following observation: if f € AP, then the function h, h(z) =
(1—2)*?f(z) has the same zeros as f and is bounded in a disc centered at 1/2 and
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tangent to the unit circle at 1. Thus, the zeros of h will satisfy a Blaschke condition
with respect to this disc, and this easily leads to the statement about the zeros of
f-

Of course, the conclusion of this last observation holds for unions of finitely many
Stolz regions, and a very careful quantitative analysis of the previous argument leads
to a necessary condition for a sequence {a, }n>0 to be an AP-zero set that is almost
sufficient.

Let F be a finite subset of the unit circle 9D with complementary arcs {1y, },; then
the Beurling-Carleson characteristic of F' is defined to be #(F') = >, |I,,|s log T
Here |I|; was used to denote the normalized arclength of the arc I. The upper
asymptotic k-density of a sequence A is defined by

DT (A) = limsup M
Here rg denotes the union of radii with endpoints in F', and Y (A, rp) is a Blaschke-
type counting function defined by > (A,rr) = %ZaeAmrp (1 — |a|?). Tt is notable
that the quantity D+ (A) remains unchanged if instead of using r, one counted all
zeros in a “Stolz-star” sp with vertices in F.

Theorem 3. Let 0 < p < oo and let A be a sequence in D.
If D (A) < %, then A is an AP-zero sequence. If DT (A) > %, then A is not a
AP-zero sequence.

Zero sets are discussed in Chapter 4 of the book. The original proofs of the
necessary conditions in Theorem 3 were based on the idea as in the proof of
Theorem 2(b) and some precise knowledge about conformal mappings on almost
circular domains [KT], [S]. For the current book, this part of the proof has been
modified and involves elegant estimates for the growth of harmonic functions and
a very general maximum principle which applies to a situation where the functions
have a finite number of singularities on the boundary of the region in question.
This is a subtle point of which the authors were undoubtedly aware. However, in
the exposition it is glossed over, and some care needs to be taken when reading the
proof of Theorem 4.23.

The sufficiency of the conditions of Theorem 3 is established with a normal
families argument, and the construction does not provide an expression for the
limit. Each element of the approximating sequence depends on a set of parameters.
These parameters are the solutions to certain linear programming-type extremal
problems.

Although Theorem 3 does not succeed in completely describing the AP-zero sets,
the estimates one obtains are good enough to lead to a description of the AP-
interpolation and sampling sequences. These concepts are useful for a discretization
of AP. Their geometric characterizations were found by Seip.

Every function f € AP satisfies the growth estimate (1 — |2|2)%/?|f(2)| = o(1) as
|z] — 1. Thus, if A = {a,}n>0 is a sequence of points in D, then for each 0 < p < o0
the linear map T}, : f + {(1 — |an|?)?/? f(an)}n>0 maps AP into cy. The sequence
A is called interpolating for AP if T), takes AP into and onto [P. Actually, if one just
requires that T}, is onto, then the boundedness follows automatically.

One quickly checks that the class of AP-interpolating sequences is invariant under
Moebius transformations of the unit disc and that interpolating sequences must be
zero sequences, although the converse is not true.



BOOK REVIEWS 125

One is thus led to define the Moebius invariant uniform upper asymptotic k-
density of a sequence A = {an}n>0 by

. A(An TF)
Df{ A) = limsup sup ————>
( ) R(F)—oo n K(F)

Here A,, denotes the image of A\{a, } under the Moebius transformation that sends
an to 0, and A(A,7r) is a counting function defined by A(A,7r) = >, 4n,.,. log ﬁ
Note the close relationship between the counting functions Y (A, rr) and A(4, rg).
In fact, if 0 ¢ A, then one could have used A(A,7r) in the definition of Dt (A)

without changing its value.

Theorem 4. Let 0 < p < co. A sequence A in D is interpolating for AP if and
only if D (A) < %.

The Moebius-invariance and the zero set results quickly imply that any AP-
interpolating sequence A must satisfy D} (A) < %. To get strict inequality, one
must also observe that sufficiently small perturbations (in the pseudohyperbolic
Hausdorff metric) of interpolating sequences are interpolating and that one can
change the quantity D;I with such perturbations.

Theorem 4 and the characterization of sampling sequences are done in Chapter 5
of the book. Sampling is a concept that has no analogue in the HP-theory, except for
the dominating sequences in the H°-context. A sequence A is a sampling sequence
for AP if the operator T, maps AP into [? and is bounded below. Thus, with a
sampling sequence, one obtains a discretely supported norm that is equivalent to
the AP-norm. It is notable that apparently current knowledge permits only the
characterization of sampling sequences for p > 1.

One might complain that for given sequences A the density D} (A) is not very
easy to compute. Thus, considerable effort goes into showing that for separated
sequences (in the pseudohyperbolic metric), the density D;(A) equals yet another
density, which in the book is called the upper Seip density D (A). Since interpolat-
ing sequences must be separated, this gives another characterization of interpolating
sequences. The lower Seip density D, (A) is used in the description of sampling se-
quences. In the final section of Chapter 5, these densities are computed for certain
regularly distributed sequences.

Chapter 6 is a short discussion of some further topics about invariant subspaces
in AP. By use of sampling and interpolating sequences, examples of nonsingly
generated invariant subspaces are given; see [H2]. Such subspaces are difficult to
exhibit, because all nonzero functions in such a subspace must be irregular near
almost every point of 9D; see [ARS2]. Furthermore, Shimorin’s recent new proof of
the wandering subspace theorem for A? is presented. This theorem is an analogue
of Theorem 1, which is valid for arbitrary invariant subspaces of A%; see [ARST] or
IMR] for yet another new proof.

A function f € AP is called cyclic if the polynomial multiples of f are dense in
AP, Tt follows from Theorem 1 that the cyclic functions are the AP-outer functions,
but it still is an open problem to describe cyclic functions in terms of their size near
OD. The gap in the current knowledge here is comparable to the gap between the
conditions in Theorem 3. The following theorem is proved in Chapter 7, and it has
been known since the 1970s [K2], [BK]. By use of the contractive divisor property
of Theorem 1, one can now give a shorter proof of one part of it.
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Theorem 5. Let 0 < p < oo, and let f € A4, q > p. Then f is cyclic in AP
if and only if f has no zeros in D and if the “premeasure” associated with f is
“k-absolutely continuous”.

The concepts “premeasure” and “k-absolutely continuous” have their origins in
Korenblum’s “Bergman-appropriate” generalization of the classical Herglotz theo-
rem. For example, absolutely continuous (w.r.t. Lebesgue measure) measures are
k-absolutely continuous. Singular measures are x-absolutely continuous if and only
if they place no mass on closed sets F' C JD of Lebesgue measure zero and with
finite Beurling-Carleson characteristic A#(F'). This leads to a characterization of
which classical singular inner functions are cyclic in AP.

Chapter 8 is based entirely on a paper by Borichev and Hedenmalm in which
it is shown that Theorem 5 becomes false if the hypothesis ¢ > p is replaced with
q=p.

Chapter 9 on logarithmically subharmonic weighted Bergman spaces contains
results that were announced in [HJS|. The authors obtain a strengthening of the
contractive divisor property of Theorem 1. In particular, if A C B are two finite
sequences in D, and if ¢4 and g are the contractive divisors associated with I(A)
and I(B), then |[¢af|/% < |lppfl[fs for all f € AP. Tt follows that

o 1B (I

¥B YA

Also, a special case of the results here implies that if ¢ is any A%-inner function,

then the Hilbert space of analytic functions H = [—i] has a reproducing kernel of

the form ky, (z) = 1(_1?27%;)(22) where l,,(2) is a positive definite kernel in D. These are
beautiful results and they have their place in this book. However, for the first of
these, the authors had to break the “self-containment” promise which is made on
the backcover of the book. Without proof, they quoted and used a theorem from
[HS].

At the end of each chapter the book has a short section with notes and then some
exercises. Typically, the notes contain a brief listing of the sources for theorems
and proofs, and occasionally there is a mention of related results not covered in the
book. Also, many of the exercises are really theorems whose proofs did not make
it into the book and whose references are provided.

This is a rough overview of the topics covered in the book. After Chapter 2 it
would have been natural to include some material on Hankel and Toeplitz operators,
but one can understand the authors’ choice of topics. In the first two chapters there
is some overlap with Zhu’s book [Z], and some results about Bergman zero sets
also appear in Djrbashian and Shamoian’s book [DS], but the current treatment is
either more general or more complete. In fact, most of the material covered has
never appeared in book form before. Given the choice of topics, the authors have
made a considerable effort to include most state-of-the-art theorems with complete
proofs. The material is extremely well-organized, and although the explanations
for particular details are sometimes brief, the flow of ideas becomes very clear in
the presentation. It was pointed out by Rachel Weir that there is a problem with
the case p = 1 in Proposition 3.5 (existence), but this reviewer is not aware of any
other mistakes. Researchers in the field will be glad to have a reliable reference
book available.
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The book should be accessible to mid- to upper-level graduate students, and it
would be suitable as a resource for a topics course.
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