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“Euler systems” – a term coined by Kolyvagin in his seminal articles [Ko88a],
[Ko88b], and [Ko90] – is the topic of this monograph based on the Hermann Weyl
Lectures delivered by the author at the Institute for Advanced Study in 1995. The
origins of the Euler system concept can be traced to two independent but almost
simultaneous developments:

1. Thaine’s “purely cyclotomic” method [Th88] for bounding the exponents of
the ideal class groups of cyclotomic fields. The bounds that Thaine obtained
were already known thanks to the proof of the Main Conjecture by Mazur
and Wiles, in which unramified abelian extensions of cyclotomic fields were
constructed from reducible two-dimensional Galois representations occurring
in the Jacobians of modular curves. Thaine’s method did not rely on mod-
ular curves, exploiting instead a norm-compatible system of units in abelian
extensions of Q, the so-called cyclotomic or circular units which had already
played a key role in Kummer’s investigations of the arithmetic of cyclotomic
fields. Thaine’s ideas were transposed to great effect by the author of the
monograph under review to the context of abelian extensions of imaginary
quadratic fields, with the role of the circular units being played by the elliptic
units of Siegel and Robert-Ramachandra. In [Ru87], the methods of Coates
and Wiles were thus strengthened to give a proof of the finiteness of the
Shafarevich-Tate group for complex multiplication elliptic curves with non-
vanishing L-series at s = 1. This yielded the first examples of elliptic curves
whose Shafarevich-Tate groups could be proved to be finite, a breakthrough
which dramatically illustrated the power of Thaine’s point of view.

2. Kolyvagin’s fundamental articles [Ko88a] and [Ko88b], in which circular and
elliptic units are replaced by certain norm-compatible points on a modular el-
liptic curve E, the so-called Heegner points arising from the theory of complex
multiplication. These points are the image under the modular parametrisa-
tion X0(N) −→ E of points in X0(N) attached to moduli of elliptic curves
with endomorphism ring equal to an order in a quadratic imaginary field K.
By the theory of complex multiplication, the Heegner points attached toK are
thus defined over certain ring class fields of K. Because of the norm compat-
ibilities that they satisfy, their traces to E(K) generate a subgroup HP (K)
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of E(K) of rank at most one. (In fact, this rank is 0 unless K satisfies the
Heegner hypothesis that all primes dividing N are either split or ramified in
K/Q.) Kolyvagin shows that if HP (K) is of rank one and L(E/Q, 1) 6= 0,
then E(Q) is finite. He also obtains (under the hypothesis of non-triviality of
HP (K)) bounds on the exponent of the Shafarevich-Tate groups of E/Q in
terms of the index of HP (K) in E(K). In a further article [Ko90], Kolyvagin
introduced a remarkable strengthening of his method in which control could
be given for the full Mordell-Weil and Shafarevich-Tate groups of E/K, and
in which the the order - not just the exponent - of the Shafarevich-Tate group
of E could be bounded in terms of the index of HP (K) in E(K). When com-
bined with the important result of Gross and Zagier [GZ] relating the height
of a generator of HP (K) to the first derivative of the L-series L(E/K, s) at
s = 1, this leads to a proof of essentially the entire Birch and Swinnerton-
Dyer conjecture for all (modular) elliptic curves E/Q whose L-function has
at most a simple zero at s = 1.

It is immediately apparent that the methods of Thaine and Kolyvagin, while ap-
plied to different situations, exhibit many formal similarities. The article [Ko90]
pointed out the desirability of fitting these arguments into a common axiomatic
framework. The monograph under review presents an attempt at formulating such
an axiomatisation.

Initially, the idea of an Euler system is perhaps more readily conveyed through
an informal discussion covering the range of mathematical phenomena one wishes
to axiomatise.

Adopting some of the notations and point of view of Rubin’s monograph, let
K be a number field, and denote by GK its absolute Galois group endowed with
the Krull topology. Let V be a finite-dimensional Qp vector space endowed with a
continuous action of GK . It is natural to require that V arise “from geometry”, say,
that it occur in the p-adic étale cohomology of a smooth projective variety over K
- a property that is easily checked in all the examples discussed in the monograph
under review. This property implies that the action of GK on V is unramified at
almost all primes `, and that the action of the inertia groups at the primes dividing
p are potentially semistable in the sense of Fontaine-Mazur.

To such a representation V are attached two types of object: the analytically
defined L-function L(V, s), and a Selmer group defined via Galois cohomology. It
is the goal of the theory of Euler systems to provide a bridge between these two
different types of invariants.

The L-function L(V, s) is defined as a product over the non-archimedean places
of K of certain local Euler factors

L(V, s) =
∏
v

Lv(V, s).

If v does not divide p, then the local factor Lv(V, s) is given by

Lv(V, s) =
dimV Iv∏
i=1

(1− αv,iNv−s)−1,

where the αv,i are the eigenvalues of the Frobenius element at v acting on the
subspace V Iv ⊂ V of elements fixed by the inertia group at v, and Nv ∈ Z is the
norm of v from K to Q. The recipe for defining Lv(V, s) at the primes v dividing p
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is more subtle, but well understood, at least conjecturally. Known bounds on the
eigenvalues αv,i imply that the Euler product defining L(V, s) converges absolutely
in a right half-plane; for extremely few V are the analytic properties of L(V, s)
outside this half-plane of convergence understood to any extent. However, it is
widely believed that L(V, s) has a meromorphic (and even analytic, if V does not
contain the trivial representation as a constituent) continuation to all of C, given by
a functional equation whose shape is determined, conjecturally, by the behaviour of
the geometric object (“motive”) giving rise to V . Even more, it is expected that the
special values of L(V, s) at special integer arguments can be expressed as products
of complex (typically transcendental) periods attached to V by certain “algebraic
parts” which encode interesting arithmetic information about V . Needless to say,
this is far beyond the range of what can be proved for all but the most simple
classes of V .

To define the Selmer group attached to V over K, first note that the compact
group GK preserves a lattice T in V . Choose such a T , let A = V/T be the
torsion group attached to V , and let Vn = A[pn]. It is a free module of rank dim V
over Z/pnZ whose isomorphism type as a GK -module depends only on V if V1 is
irreducible, an assumption that will be made from now on. The pn-Selmer group
Sel(K,Vn) is a subgroup of H1(K,Vn) defined by certain local conditions. More
precisely, for each place v of K, a subgroup H1

f (Kv, Vn) ⊂ H1(Kv, Vn) is defined,
called the finite part of the local cohomology group H1(Kv, Vn). The definition of
H1
f (Kv, Vn) for the primes v dividing p, like that of the local Euler factors in the

definition of L(V, s), is somewhat involved; for the purposes of this discussion it will
suffice to mention that for the (all but finitely many) places v not dividing p for
which Iv acts trivially on V , the group H1

f (Kv, Vn) is simply made up of unramified
cohomology classes, which become trivial when restricted to an inertia group at v.
The Selmer group Sel(K,Vn) is the subgroup of classes in the global cohomology
group H1(K,Vn) whose restrictions to H1(Kv, Vn) belong to H1

f (Kv, Vn), for all v.
In practice, it is useful to give oneself extra flexibility by allowing the subgroups

H1
f (Kv, Vn) to be defined arbitrarily, subject only to the constraint that, for al-

most all v, they be equal to the group of unramified cohomology classes. The
resulting Selmer group Sel(K,Vn) of course depends on this choice of subgroups
H1
f (Kv, Vn) ⊂ H1(Kv, Vn), even though this choice is customarily suppressed from

the notation.
The finiteness of Sel(K,Vn), for any choice of subgroups H1

f (Kv, Vn), is an im-
mediate consequence of the theorem of Hermite-Minkowski. Much deeper are the
conjectures relating the cardinality of Sel(K,Vn), and its asymptotic behaviour as
n −→ ∞, to the conjectural algebraic parts of special values of L(V, s). Relations
of this sort constitute far-reaching generalisations of the analytic class number for-
mula and provide a conceptual framework in which many important conjectures
of number theory (most notably: the Birch and Swinnerton-Dyer conjecture, but
also the more general conjectures of Deligne, Beilinson, and Bloch-Kato) can be
formulated in a unified setting.

We now describe a general approach for bounding the orders of Selmer groups,
which is the starting point for all known types of Euler system arguments. Following
a suggestive terminology due to Mazur, H1

s (Kv, Vn) := H1(Kv, Vn)/H1
f (Kv, Vn) is

sometimes called the singular part or the singular quotient of the local cohomology
group H1(Kv, Vn). If c ∈ H1(K,Vn) is a global cohomology class, its natural image
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in H1
s (Kv, Vn) is called the residue of c at v and is denoted ∂v(c). If c has 0 residue

at v, then the image of c in H1(Kv, Vn) belongs to H1
f (Kv, Vn) and is then called

the value of c at v.
Of crucial importance is the notion of a dual Selmer group attached to Sel(K,Vn).

To begin, let V ∗n := hom(Vn, µpn) denote the Kummer dual of Vn, equipped with
its natural GK-action. Tate showed that the cup-product pairing composed with
the identification of local class field theory:

H1(Kv, Vn)×H1(Kv, V
∗
n ) −→ H2(Kv, µpn) = Z/pnZ

is non-degenerate. Also, if Iv acts trivially on Vn and v does not divide p, then
the groups of unramified cohomology classes in H1(Kv, Vn) and H1(Kv, V

∗
n ) are

exact annihilators of each other. Defining H1
f (Kv, V

∗
n ) to be the annihilator of

H1
f (Kv, Vn) under the local Tate pairing yields the definition of the dual Selmer

group Sel(K,V ∗n ) ⊂ H1(K,V ∗n ) attached to Sel(K,Vn).
The global duality theorem for Selmer groups states that, while the orders of

Sel(K,Vn) and Sel(K,V ∗n ) are subtle invariants about which one knows very little a
priori, the ratio of these orders is equal to the product of simple local terms which
in practice can be calculated without much difficulty. More precisely, one has (cf.
for example [DDT], thm. 2.19)

#Sel(K,Vn)
#Sel(K,V ∗n )

=
#H0(K,Vn)
#H0(K,V ∗n )

∏
v

#H1
f (Kv, Vn)

#H0(Kv, Vn)
=: χ(K,Vn).(1)

Motivated by the analogy between equation (1) and the Riemann-Roch formula, let
us call the easily computable number χ(K,Vn) the Euler characteristic attached to
Sel(K,Vn).

Let S be any finite set of primes of K. The relaxed Selmer group Sel(K,Vn)(S) is
defined by suppressing the local conditions at the primes of S: namely, Sel(K,Vn)(S)

is the set of classes in H1(K,Vn) which belong to H1
f (Kv, Vn) for all places v /∈ S

and satisfy no further conditions at the places v ∈ S. The restricted Selmer group
Sel(K,V ∗n )[S] is defined to be the set of classes in Sel(K,V ∗n ) whose value at v is 0,
for all v ∈ S. It is clear that Sel(K,Vn)(S) and Sel(K,V ∗n )[S] are dual Selmer groups
in the sense described above, so that applying the duality theorem once more and
comparing it with formula (1) yields the useful identity:

#Sel(K,Vn)(S)

#Sel(K,V ∗n )[S]
= χ(K,Vn)

∏
v∈S

#H1
s (Kv, Vn).(2)

This identity is exploited in conjunction with the tautological exact sequence

0 −→ Sel(K,Vn) −→ Sel(K,Vn)(S)
∂S−→ ⊕v∈SH1

s (Kv, Vn).(3)

More precisely, a set of primes S as above is said to control the Selmer group
Sel(K,V ∗n ) if Sel(K,V ∗n )[S] is trivial, i.e., if the natural map obtained by restriction

Sel(K,V ∗n ) −→ ⊕v∈SH1(Kv, V
∗
n )

is injective. The Chebotarev density theorem can often be used to produce an
abundance of finite sets S which control Sel(K,V ∗n ). Suppose now that S is a set
of primes which controls Sel(K,V ∗n ), and, for simplicity, that χ(K,Vn) = 1. Then
the identity (2) shows that the two groups appearing on the right of the exact
sequence (3) have the same cardinality. Hence, the problem of bounding the size
of Sel(K,Vn) - the kernel of the residue map ∂S - becomes equivalent to that of
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bounding the size of the cokernel of ∂S . Thus is the main problem transformed into
one of constructing a sufficiently large supply of classes in the relaxed Selmer group
Sel(K,Vn)(S) whose residues can be controlled explicitly and related to L-function
behaviour. This simple idea is at the root of all Euler system arguments and leads
to the following tentative “working definition” of an Euler system.

Informal definition. An Euler system attached to (K,Vn) is the data of
1. A system of finite collections of primes of K which control the Selmer group

Sel(K,V ∗n );
2. For each set S in this system, an explicitly constructible subgroup

XS ⊂ Sel(K,Vn)(S);

3. A relationship between the index of ∂S(XS) in ⊕v∈SH1
s (Kv, Vn) and algebraic

parts of special values of L(V, s).

This informal definition is of course too vague to be made into a precise math-
ematical one and thus falls far short of the goals set for himself by the author of
the monograph under review. But it is worth pointing out that Euler systems (in
the above vaguely defined sense) have cropped up in a rich variety of guises and
played key roles in many of the important number theoretic breakthroughs of the
last decades. To mention only the most salient examples:

1. The Euler systems of Gauss sums and of circular units used [Ko90], [Ru89],
[Ru90] to control the minus and plus parts respectively of ideal class groups
of cyclotomic fields. In this setting, one may take K = Q, and V a twist
by a Dirichlet character of the p-adic representation Qp(1) describing the
action of GQ on the p-power roots of unity. The subgroup XS ⊂ H1(Q, Vn)
is constructed from the images of certain Gauss sums or circular units under
the Kummer map.

2. The Euler system of elliptic units, exploited (as mentioned earlier) by
Rubin to prove the finiteness of the Shafarevich-Tate group of elliptic curves
with complex multiplication with non-vanishing L-series at s = 1. This Euler
system, which controls the size of ideal class groups of abelian extensions of
imaginary quadratic fields, also allowed the proof of the two-variable main
conjecture for imaginary quadratic fields [Ru91], which in the cyclotomic set-
ting had been established earlier by Mazur and Wiles.

3. In Kolyvagin’s Euler system of Heegner points, the field K is a quadratic
imaginary field, and the representation V is equal to Tp(E) ⊗ Qp, where
Tp(E) is the p-adic Tate module of a (modular) elliptic curve over Q. The
classes in Sel(K,Vn)(S) are constructed by taking the image under the Kum-
mer map of suitable combinations of Heegner points (the so-called “Kolyvagin
derivatives”, which also appear in the constructions of examples 1 and 2) de-
fined over the ring class field KS of K of conductor equal to the product of the
primes in S. A priori, these classes belong only to H1(KS , Vn), but are invari-
ant under the action of Gal(KS/K), so that they “descend” to classes defined
over K, once suitable technical conditions are imposed. For p large enough,
Kolyvagin is able to produce a set S of primes which controls Sel(K,Vn) (note
that in this setting Vn = V ∗n , because of the Weil pairing) and for which the
index of ∂S(XS) in ⊕v∈SH1

f (Kv, Vn) is equal to pn+t, where pt is the maximal
power of p which divides the basic Heegner point PK ∈ E(K) (the generator
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of HP (K)). The relation between this index and special values of L-series
is supplied by the analytic formula of Gross and Zagier [GZ]. Kolyvagin’s
Euler system of Heegner points can be generalised to the setting of elliptic
curves over totally real fields [KL]. The role of modular curves is played in
this context by Shimura curves which are equipped with a similar supply of
Heegner points. The Gross-Zagier formula has been extended to this setting
in [Zh01].

4. Closely related to Kolyvagin’s Euler system is the Euler system attached
to Heegner cycles on the Chow groups of Kuga-Sato varieties, exploited by
Nekovar to control the Selmer groups attached to modular forms of higher
even weight. (See [Ne92] and [Zh97].)

5. Flach’s Euler system [Fl], where K = Q and V = Sym2(Tp(E)) ⊗ Qp, the
symmetric square representation attached to a modular elliptic curve (or a
modular form of weight 2, more generally). Flach’s cohomology classes in
XS are constructed using algebraic K-theory from cycles in the product of
two modular curves: the key geometric ingredient in this delicate and beau-
tiful construction are certain remarkable units in the field of functions of
the (affine) modular curves, the so-called modular units. The groups of ex-
plicit cohomology classes XS that Flach constructs enable him to bound the
exponent (but not the order) of the Selmer group of the symmetric square
representation attached to E, in terms of the associated L-value.

6. In [W] and [TW], a different approach is followed to bound the size of the
Selmer group of the symmetric square. In some sense, the approach is dual
to Flach’s, since here the representation V is the adjoint of Tp(E), which is
the Kummer dual of the symmetric square representation. The group XS

in the Taylor-Wiles argument is constructed from p-adic deformations of the
representation Tp(E) arising from modular forms. The method actually pro-
duces an upper bound on the order, and not merely the exponent of the
Selmer group attached to V . In addition to providing more evidence for the
general Bloch-Kato conjectures, the method of Taylor-Wiles (suitably gen-
eralised to two-dimensional Galois representations arising from weight two
modular forms) has a striking application to proving the isomorphism be-
tween certain Hecke rings and deformation rings, and thereby establishing the
Shimura-Taniyama-Weil conjecture for all (semistable, a technical condition
that has subsequently been removed) elliptic curves over Q. The Taylor-Wiles
approach enjoys another advantage over Flach’s Euler system: since it does
not rely on modular units it generalises more readily to elliptic curves (or
modular forms) over totally real fields, where the role of modular curves must
now be played by Shimura curves which are not equipped with a collection of
cusps.

7. Returning to the case where V = Tp(E)⊗Qp, but where nowK = Q, Kato has
introduced [Sch] a novel method for constructing an Euler system of classes in
H1(Q, Vn)(S). These classes are constructed from the so-called Beilinson ele-
ments in the K2 of the modular function field constructed from modular units
and are in fact obtained by twisting this construction of Beilinson. Kato’s
method yields information about the arithmetic of Mordell-Weil groups over
cyclotomic fields that is not accessible through Kolyvagin’s method; on the
other hand, it reveals less about elliptic curves over Q of analytic rank one.
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Like Flach’s Euler system, the Euler system of Kato makes crucial use of mod-
ular units and hence does not generalise in any obvious way to other number
fields such as totally real fields.

The motivation for abstracting the common features of all the examples discussed
above should be apparent. To arrive at such a mathematically rigourous yet suf-
ficiently malleable definition of Euler system is the main goal of the monograph
under review. The author proposes a definite set of axioms for an Euler system
and is able to prove a result bounding the order of a Selmer group in terms of the
behaviour of this object. The gain in precision, allowing the formulation and proof
of a precise theorem, is offset by a certain loss of generality: the axioms in the
monograph are sufficient to capture the Euler systems of Gauss sums and circular
units, as well as Kato’s Euler system, but none of the others. The author explains
how his axioms can be amended or relaxed to include some of the other examples
of Euler systems, such as the important Euler system of Heegner points.

Written by one of the major contributors to the subject, Rubin’s monograph
is recommended as a companion to the more elementary and thus more accessible
texts such as [Gr] for those who wish to learn about this fascinating and still poorly
understood area of number theory which is sure to remain a focus of intense research
activity in the years to come.
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