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The photographs of Recife which are scattered throughout this book reveal an
eclectic mix of old colonial buildings and sleek, modern towers. A clear hot sun
shines alike on sixteenth century churches and glistening yachts riding the tides of
the harbor. The city of 1.5 million inhabitants is the capital of the Pernambuco
state in northeastern Brazil and home of the Federal University of Pernambuco,
where the lectures which comprise the body of the book were delivered. Each
lecturer presented a focused mini-course on some aspect of contemporary classical
mechanics research at a level accessible to graduate students and later provided a
written version for the book. The lectures are as varied as their authors. Taken
together they constitute an album of snapshots of an old but beautiful subject.

Perhaps the mathematical study of mechanics should also be dated to the six-
teenth century, when Galileo discovered the principle of inertia and the laws gov-
erning the motion of falling bodies. It took the genius of Newton to provide a
mathematical formulation of general principles of mechanics valid for systems as
diverse as spinning tops, tidal waves and planets. Subsequently, the attempt to work
out the consequences of these principles in specific examples served as a catalyst
for the development of the modern theory of differential equations and dynamical
systems. Part of the tradition of the subject is that the examples themselves are
given center stage. Each mechanical system has special features which give it its
unique character. Such features are often exceedingly interesting and beautiful,
but can easily be missed if one approaches the system as a mere special case of a
general theory. The Recife lectures reflect this spirit.

For example, Alain Albouy provides a fascinating account of the classical two-
body problem of celestial mechanics. The problem could be treated as a simple case
of reduction of a Hamiltonian system with symmetry [5], [7]. For motion in the
plane, the relative position of the bodies is described by a vector x ∈ R2 \ 0, so it is
a system of two degrees of freedom. Taking into account the corresponding velocity
variables (or rather, from the Hamiltonian viewpoint, the momenta), one finds that
the phase space is the cotangent bundle T ∗(R2 \ 0), a four-dimensional symplectic
manifold. The rotation group SO(2) acts as a symmetry group, and one expects by
general theory that one can use this symmetry to reduce to a system of one degree
of freedom. Using the conservation of energy, it is possible to explicitly solve such a
reduced system and then to recover the solutions on the original four-dimensional
phase space. In a typical problem of this kind, the result is a foliation into two-
dimensional invariant tori which support quasi-periodic motions. But this general
analysis makes no use of the special Newtonian force law; it is equally valid for any
two-body interaction with SO(2) symmetry. For the Newtonian 1/r2 force law, a
miracle occurs — all of the solutions are periodic instead of just quasi-periodic. To
put it another way, the two-dimensional tori are further decomposed into invariant
circles. This highly degenerate situation seems unbelievable from the point of view
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of general theory, yet it is the most interesting feature of the problem. Without
it, the familiar Keplerian ellipses which provide the first approximations for the
motions of the planets around the sun would precess. Albouy describes several
“non-Hamiltonian” explanations for the miracle. Other remarkable but atypical
features of the problem receive a similarly unconventional treatment.

Many of the other lectures also present topics from celestial mechanics. In the
book’s first article, Dieter Schmidt describes some classical and modern results on
central configurations. It turns out that although the n-body problem for n > 2
cannot be solved by reduction, the symmetry of the problem still gives rise to certain
special solutions for which the individual masses move on non-precessing elliptical
orbits as in the two-body case, while the geometrical configuration formed by the n
points always remains similar to the initial configuration. An initial configuration
for which such motions are possible is called a central configuration. For example,
in the rather artificial case where all n masses are equal, it is easy to see that the
regular n-gon is a central configuration. One can also put a not-necessarily-equal
mass at the center to obtain a central configuration of n + 1 bodies. For general
masses, it is not immediately obvious that any central configurations exist. For a
configuration to be central, the positions of the bodies must solve a complicated
system of algebraic equations with the masses appearing as parameters. It can be
shown that the system does indeed have solutions for any choice of masses, but
determining the number of solutions and describing their possible shapes is a diffi-
cult problem which is a topic of current research interest. Lagrange worked out the
three-body case in the eighteenth century [4]. Rather surprisingly, the equilateral
triangle turns out to be central even for non-equal masses, and, in addition, there
are three collinear central configurations whose shape depends on the masses. An
elegant formulation of the algebraic equations using the mutual distances of the
bodies as coordinates was introduced by Otto Dziobek in 1900 [3]. This formula-
tion has proved especially useful for n = 4, 5, and Schmidt uses it to derive several
surprising geometrical constraints on the possible shapes that central configurations
can have. For example, if a convex quadrilateral is a central configuration (for some
choice of four positive masses), then the ratio of the diagonals of the quadrilateral
is bounded by

√
3 and each diagonal is longer than all four exterior edges. In a later

lecture he studies the problem of bifurcation of the n-gon with a central mass, m.
As m is varied, families of central configurations with less symmetry bifurcate from
the “centered n-gon”. Calculating the bifurcation values and studying the nature
of the bifurcations require some symbolic computation.

The lectures of Hildeberto Cabral treat the problem of stability of Lagrange’s
equilateral triangle solutions as an application of KAM theory and the Birkhoff nor-
mal form. The planar circular restricted three-body problem (one mass is assumed
to be zero and the other two move on circular orbits of the two-body problem) is
a Hamiltonian system of two degrees of freedom. In a rotating coordinate system,
the two non-zero masses are fixed, and one tries to study the motion of the third
mass in the plane. No further reductions are possible and the problem is highly
non-trivial. The positions for which the three masses form an equilateral triangle
are equilibria in the rotating coordinate system — the net gravitational attraction
of the third mass by the two non-zero masses is exactly balanced by the centrifu-
gal force of the rotation. The problem is to determine the behavior of solutions
near the equilibrium. Cabral uses this question as the motivation for a general
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discussion of the stability problem for equilibria in Hamiltonian systems. After
giving a brief introduction to Hamiltonian formalism, he discusses linear stability
and develops the Birkhoff normal form theory using the method of Lie series. The
problem of non-linear stability for Hamiltonian systems is notoriously difficult, but
in the two-degree of freedom case, one can attack the problem using KAM theory
or, more precisely, the invariant curve theorem [8], [9]. Although the phase spaces
of such systems are four-dimensional, the manifolds of constant energy have dimen-
sion three, and a Poincaré section to the flow on such a manifold has dimension
two. The existence of invariant curves in an appropriately constructed section pre-
vents orbits from drifting away from the equilibrium, thereby proving stability. In
addition to presenting the necessary theoretical background, Cabral describes how
to carry out this program for the equilateral triangle points. The Birkhoff normal
form near the equilibrium is needed to check the hypotheses of the invariant curve
theorem for the Poincaré section. Cabral, by the way, is also one of the editors of
the book and the initiator of the lecture series in Recife.

Of course not all mechanics is celestial, and several lectures in the book are
devoted to other kinds of systems. Mark Levi’s lectures cover a number of geomet-
rically oriented themes. First he describes the optical-mechanical analogy [2, Ch.9].
Light rays and particle trajectories both obey variational principles: Fermat’s prin-
ciple of least time and the principle of least action, respectively. In both cases,
there is an alternative description in terms of wave fronts, leading to first-order
PDE’s. Levi shows how to go back and forth between the wave and ray viewpoints
and also explains the underlying unity of the optical and mechanical worlds. In a
later section he turns to the problem of geometric phase. A familiar example occurs
in the rotation of the free rigid body. Imagine a football in flight. The motion of
the ball relative to its center of mass can be understood as a combination spinning
around the symmetry axis and a precession of this axis in space. The total angular
momentum vector is constant throughout the motion and so determines a direction
of reference in space; this is the axis around which the symmetry axis precesses.
To study the relation between these two motions one can ask how much precession
around the angular momentum vector takes place during one complete rotation of
the ball around the symmetry axis. The formula for the change in precession angle
turns out to have a “dynamical” term involving the component of angular velocity
along the direction of the angular momentum and another less obvious “geomet-
rical” term which can be interpreted in several intriguing ways. One approach is
to view the motion from the point of view of an observer rotating along with the
football. Then the angular momentum vector appears to move around the axis of
symmetry. It always maintains the same length, however, so as the ball spins once
the angular momentum vector sweeps out a closed curve on a sphere. Using some
elementary differential geometry, Levi shows that the second term in the formula
for the change of precession angle is just the area on the sphere enclosed by this
curve. He also gives amusing, intuitive explanations for other geometric phase prob-
lems. Among other things, the reader will find out how to use old bicycle wheels
to measure the area of spherical regions and to prove the Gauss-Bonnet theorem!

The theme of geometric phase is taken up again in several lectures by Jair Koiller
(and collaborators). First he considers the problem of adiabatic phases, that is,
changes in the angles for systems with slowly varying parameters. A good example
is the Foucault pendulum, which can be viewed as a spherical pendulum under
the influence of a slowly changing gravitational force. One can ask how much the
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pendulum rotates around the axis determined by gravity in one period of its natural
oscillation. In this case the dynamical term in the answer is zero — if the earth
were not rotating, the pendulum would oscillate in a fixed vertical plane. The
small geometrical phase term is what causes the gradual evolution of the plane
of oscillation. One can abstract this example to get a general setting for which
geometric phase is the dominant effect. Suppose a certain system has a symmetry
axis, like the axis of the gravitational field for the Foucault pendulum. There
will be an associated angular momentum around the axis which is a constant of
motion. After fixing a value of this constant, one can form a reduced system on a
quotient space of the original phase space. Given that the reduced system exhibits
a periodic motion (one oscillation of the pendulum), one can try to reconstruct the
corresponding change in the angle around the symmetry axis. Normally there will
be two contributions to this change: a dynamical one involving the value of the
angular momentum constant and another contribution reflecting the geometry of
the quotient map. If the angular momentum term happens to vanish, as in the
Foucault case, the angle will be determined by the geometric contribution. This
setup can be generalized to more complex symmetry groups [6]. The quotient
map will determine a fiber bundle with the symmetry group as the fiber. Given a
periodic motion in the quotient space (the base space of the bundle), one finds that
the problem is to reconstruct what is happening in the fiber. One can generalize
the idea of angular momentum to this setting, and in the zero momentum case,
the geometry of the bundle will determine the behavior. Koiller describes several
interesting problems which fit into this scheme. A familiar example is the falling
cat problem. The cat is released upside down with zero angular momentum and
as it falls, the angular momentum remains zero. Yet the cat is able to rotate itself
by changing shape (perhaps in a periodic way). Similarly a bacterium initially at
rest in a fluid medium is able to translate itself through the medium by changing
shape periodically. Koiller describes an ongoing research program to explain such
“microswimming” using the theory of geometric phase.

The rest of the lectures will just be briefly noted. Florin Diacu, the book’s
other editor, contributes an accessible survey on singularities of the n–body prob-
lem which includes proofs of many of the classical results, some simple examples of
McGehee’s technique for “blowing-up” collisions and references to the recent work
on non-collision singularities. Ernesto Pérez-Chavela describes Poincaré’s compact-
ification method and uses it to study motion near infinity in the Kepler and Hill
problems. There is a second article by Dieter Schmidt, this time on the calculations
involved in approximating the motion of the moon. Finally, Jack Hale and Plácido
Táboas present a functional analytic approach to some problems in bifurcation
theory.

To summarize, this is a nice guidebook to some of the interesting sights in con-
temporary mechanics research. It would be a rewarding book for browsing, but
a typical reader will probably be looking for an introduction to one of the chosen
topics. So it is especially recommended as a reference. The Recife lecture series
continues; as more Recife lectures are delivered and written up, perhaps further
volumes of this kind will appear.
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