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ABSTRACT. The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the lo-
cal eigenvalue statistics of large random matrices exhibit universal behavior
depending only on the symmetry class of the matrix ensemble. For invariant
matrix models, the eigenvalue distributions are given by a log-gas with poten-
tial V' and inverse temperature 8 = 1,2,4, corresponding to the orthogonal,
unitary and symplectic ensembles. For 8 ¢ {1, 2,4}, there is no natural random
matrix ensemble behind this model, but the statistical physics interpretation
of the log-gas is still valid for all 8 > 0. The universality conjecture for invari-
ant ensembles asserts that the local eigenvalue statistics are independent of V.
In this article, we review our recent solution to the universality conjecture for
both invariant and non-invariant ensembles. We will also demonstrate that
the local ergodicity of the Dyson Brownian motion is the intrinsic mechanism
behind the universality. Furthermore, we review the solution of Dyson’s con-
jecture on the local relaxation time of the Dyson Brownian motion. Related
questions such as delocalization of eigenvectors and local version of Wigner’s
semicircle law will also be discussed.

Perhaps I am now too courageous when I try to guess the distribution of the
distances between successive levels (of energies of heavy nuclei). Theoretically,
the situation is quite simple if one attacks the problem in a simpleminded fashion.
The question is simply what are the distances of the characteristic values of a
symmetric matriz with random coefficients.

Eugene Wigner on the Wigner surmise, 1956

1. INTRODUCTION

What do the eigenvalues of a typical large matrix look like? Do we expect certain
universal patterns of eigenvalue statistics to emerge? Although random matrices
appeared already in a concrete statistical application by Wishart in 1928 [77], these
natural questions were not raised until the pioneering work [76] of E. Wigner in the
1950s. To make the problem simpler, we restrict ourselves to either real symmetric
or complex Hermitian matrices so that the eigenvalues are real. For definiteness,
we consider N x N square matrices H = HW) = (hij) with matrix elements having
mean zero and variance 1/N, i.e.,

1
(1.1) Eh;; =0, ]E\hij|2:N i,j=1,2,...,N.
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The random variables h;;, 7,7 = 1,..., N are real or complex independent random
variables subject to the symmetry constraint h;; = Eji. These ensembles of random
matrices are called Wigner matrices. We will always consider the limit as the matrix
size goes to infinity, i.e., N — oo.

The first rigorous result about the spectrum of a random matrix of this type
is the famous Wigner semicircle law [76] which states that the empirical densities
of the eigenvalues, A1, Ao, ..., Ay of large symmetric or Hermitian matrices after
proper normalization such as (.I]) are given by

1 & 1
(1.2) on(z) = & D 6@ = A) = osel@) = o V(=)
j=1

in the weak limit as N — oo. The limit density is independent of the details of
the distribution of h;;. The motivation for Wigner was to find a phenomenological
model for the energy gap statistics of large atomic nuclei since the energy levels of
large quantum systems are impossible to compute from first principles. After sev-
eral attempts, Wigner was convinced that random matrices were the right models.
Besides the semicircle law, he also predicted that the eigenvalue gap distribution
in the bulk of the spectrum is given by the Wigner surmise, e.g., in the case of
symmetric matrices,

s s+ds s m
]P’(N—Q <A =A< J—;Q ) ~ 7exp ( — ZSQ)ds,
where g is the local density of eigenvalues (see [51] for an overview).

Wigner’s proof of the semicircle law was a moment method via computing
E Tr H™ for each n. The Wigner surmise was much more difficult to understand. In
the pioneering work by Gaudin [43], the exact gap distributions of random matrices
with Gaussian distribution for matrix elements were computed in terms of a Fred-
holm determinant involving Hermite polynomials. Hermite polynomials were first
introduced in the context of random matrices by Mehta and Gaudin [53] earlier.
Dyson and Mehta [52] 20, 22] later extended this exact calculation to correlation
functions and to other symmetry classes. To keep our presentation simple, we state
the corresponding results in terms of the eigenvalue correlation functions for Her-
mitian N x N matrices. If py (A1, A2, ..., An) denotes the joint probability density
of the (unordered) eigenvalues, then the n-point correlation functions (marginals)
are defined by

(1.3) pg\’;)(Al,AQ,...,An)::/N PN AL - Ay Aty -« 5 AN )dApgr - - dAw.
Rf’!l

In the Gaussian case, the joint probability density of the eigenvalues can be ex-
pressed explicitly as

N
(1.4) PN (A1, Ag, ..., Any) = const. 1_[()\z - \)? H e sV I
i<j Jj=1
The Vandermonde determinant structure allows one to compute the k-point correla-
tion functions in the large IV limit via Hermite polynomials that are the orthogonal
polynomials with respect to the Gaussian weight function.

The result of Dyson, Gaudin, and Mehta asserts that for any fixed energy E in

)

the bulk of the spectrum, i.e., |F| < 2, the small scale behavior of pg\? is given
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explicitly by
-
(1.5) [osc(E)]™

(n)( a1 Q2 Qn )
2™ (E+ E+ B4
N Nos(E) Nosc(E)

— det (K (a; — aj)):,]:l’

where K is the celebrated sine kernel
sinm(z — y)

m(z —y)
Note that the limit in (LH) is independent of the energy E as long as it is in the
bulk of the spectrum. The rescaling by a factor N~! of the correlation functions
in (L) corresponds to the typical distance between consecutive eigenvalues, and
we will refer to the law under such scaling as local statistics. Similar but much
more complicated formulas for symmetric matrices were also obtained. It is well
known that the eigenvalue gap distribution can be computed from the correlation
functions via the inclusion-exclusion principle and thus (L) also yields a precise
asymptotics for eigenvalue gap distributions. In a striking coincidence, the Wigner
surmise, which was based on a 2 X 2 matrix computation, agrees with this sophis-
ticated formula with a typical error of only a few percentage points. Note that the
correlation functions do not factorize, i.e., the eigenvalues are strongly correlated
despite that the matrix elements are independent. Eigenvalues of random matri-
ces thus represent a strongly correlated point process obtained from independent
random variables in a natural way.

The central thesis of Wigner is the belief that the eigenvalue gap distributions for
large complicated quantum systems are universal in the sense that they depend only
on the symmetry class of the physical system but not on other detailed structures.
This thesis has never been proved for any truly interacting system, and there is
even no heuristically convincing argument for its correctness. Despite this, there is
a general belief that the random matrix statistics and Poisson statistics represent
two paradigms of energy level statistics for many-body quantum systems: Poisson
for independent systems and random matrix for highly correlated systems. In fact,
these paradigms extend even to certain one-body systems, such as the quantization
of the geodesic flow in a domain, or on a manifold [7 [@], or random Schrédinger
operators [60].

In retrospect, Wigner’s idea should have received even more attention. For cen-
turies, the primary territory of probability theory was to model uncorrelated or
weakly correlated systems via the law of large numbers or the central limit theo-
rem. Random matrix statistics is essentially the first and only general computable
pattern for complicated correlated systems, and it is conjectured to be ubiquitous.
We only mention here the spectacular result of Montgomery [54] which proves a
special case of the conjecture (under the assumption of the Riemann hypothesis)
that the distribution of zeros of the Riemann zeta function on the critical line is
given by a random matrix statistics.

The simplest class to test Wigner’s universality hypothesis upon is the random
matrix ensemble itself. All calculations by Dyson, Gaudin, and Mehta are for
Gaussian ensembles, i.e., where the matrix elements h;; are real or complex Gauss-
ian random variables. These ensembles are called the Gaussian orthogonal ensemble
(GOE) and Gaussian unitary ensemble (GUE). If Wigner’s universality hypothesis
is correct, then the local eigenvalue statistics should be independent of the law of

(1.6) K(z,y) =
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the matrix elements. This is generally referred to as the universality conjecture of
random matrices, and we will call it the Wigner-Dyson-Gaudin-Mehta conjecture
due to the vision of Wigner and the pioneering work of these authors. It was first
formulated in Mehta’s treatise on random matrices [51] in 1967 and has remained
a key question in the subject ever since. Our goal in this paper is to review the
recent progress in this direction and sketch some of the important ideas.

Random matrices have been intensively studied in the last 15-20 years, and we
will not be able to present all aspects of this research. We refer the reader to recent
comprehensive books [14] 16, [I].

The laws of random matrices can be generally divided into invariant and non-
invariant ensembles. The invariant ensembles are characterized by a probability
measure of the form Z—teNATVH)/2qH  where N is the size of the matrix, V is
a real valued potential, and Z is the normalization constant. The parameter 8 > 0
is determined by the symmetry class of the model and dH is the Lebesgue measure
on matrices in the class. These ensembles are called invariant since the probability
law depends only on the trace of a function of the matrix and thus is invariant
under changes of coordinates. The matrix elements are in general correlated, and
they are independent if only if the model is Gaussian, i.e., V is quadratic.

For invariant ensembles, the probability distribution of the eigenvalues A\ =
(A, .. An) with Ay < <o+ < Ay for the measure e~ NFTV(H)/2 /7 ig given by
the explicit formula (cf. (L4)

(1.7) uG AN ~ e PNI )
Al 1
with Hamiltonian  H(A) := ) 5V Ow) -+ > log(h — ),
k=1 1<i<j<N

where the parameter 8 is determined by the symmetry class: 8 = 1 for symmet-
ric matrices, S = 2 for Hermitian matrices, and 8 = 4 for self-dual quaternion
matrices. The key structural ingredient of this formula, the Vandermonde deter-
minant, is the same as in the Gaussian case ([L4]). Thus all previous computations,
developed for the Gaussian case, can be carried out for § = 1,2,4 provided that
the Gaussian weight function for the orthogonal polynomials is replaced with the
function e #V(*)/2 Thus the analysis of correlation functions depends critically on
asymptotic properties of the corresponding orthogonal polynomials. In the pioneer-
ing work of Dyson, Gaudin, and Mehta, the potential is the quadratic polynomial
V(x) = 22 /2 and the orthogonal polynomials are the Hermite polynomials whose
asymptotic properties are well known.

The extension of this approach to a general potential is a demanding task; im-
portant progress was made since the late 1990s by Fokas, Its, and Kitaev [42],
Bleher and Its [8], Deift et al. [I4] [I7) [18], Pastur and Shcherbina [55, 56], and
more recently by Lubinsky [50]. These results concern the simpler 8 = 2 case. For
B = 1,4, the universality was established only quite recently for analytic V' with
additional assumptions [15] [16] [49, 61] using earlier ideas of Widom [75]. The final
outcome of these sophisticated analyses is that universality holds for the measure
(D) in the sense that the short scale behavior of the correlation functions is inde-
pendent of the potential V' (with appropriate assumptions) provided that f§ is one
of the classical values, i.e., 8 € {1,2,4}, that corresponds to an underlying matrix
ensemble.
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Notwithstanding matrix ensembles or orthogonal polynomials, the measure (7))
is perfectly well defined for any 5 > 0, and it can be interpreted as the Gibbs
measure for a system of particles with a logarithmic interaction (log-gas) at inverse
temperature B. It is therefore a natural question to extend universality to non-
classical 3, but the orthogonal polynomial methods are difficult to apply for this
case. For all B > 0, the local statistics for the Gaussian case V(z) = 22/2 can,
however, be characterized by the “Brownian carousel” [57) [74] which was derived
from a tridiagonal matrix representation [19] of Gaussian random matrices.

Apart from the invariant ensembles, there are many natural non-invariant ensem-
bles; the simplest and most important one being the Wigner ensemble for which the
matrix elements are independent subject to a symmetry requirement, e.g., h;; = Bji
in the Hermitian case. For non-invariant ensembles there is no explicit formula anal-
ogous to () for the joint distribution of the eigenvalues. Hence the methods for
the invariant ensembles described above are not applicable. Until very recently,
most rigorous results have been on the density of eigenvalues, i.e., the convergence
to the the Wigner semicircle law (2] was established with certain error estimates;
see, e.g., the works by Bai et al. [4] and Guionnet and Zeitouni [44]. The universal-
ity of the local statistics could only be established for Hermitian Wigner matrices
with a substantial Gaussian component by Johansson [46] and Ben Arous and Péché
[6]. All previous results on local universality have relied on explicitly computable
algebraic formulae. These were provided by orthogonal polynomials in case of the
invariant ensembles, and by a modification of the Harish-Chandra/Itzykson/Zuber
integral in the case of [46]. Nevertheless, following Wigner’s thesis, universality is
expected to hold for general Wigner matrices as well.

Having summarized the existing rigorous results that were available until 2008,
we set the two main problems we wish to address in this article:

Problem 1. Prove the Wigner-Dyson-Gaudin-Mehta conjecture, i.e., the univer-
sality for Wigner matrices with a general distribution for the matrix elements.

Problem 2. Prove the universality of the local statistics for the log-gas (1) for
all B> 0.

We were able to solve Problem 1 for a very general class of distributions. As for
Problem 2, we solved it for the case of real analytic potentials V' assuming that the
equilibrium measure is supported on a single interval, which, in particular, holds
for any convex potential. We now state our results precisely.

Theorem 1.1 (Wigner-Dyson-Gaudin-Mehta conjecture [26], Theorem 7.2]). Sup-
pose that H = (h;;) is a Hermitian (respectively, symmetric) Wigner matriz. Sup-
pose that for some € > 0

4+¢

(1.8) E ‘\/Nhij

SC;

for some constant C. Let n € N and O : R™ — R be compactly supported and
continuous. Let E satisfy —2 < E < 2 and let £ > 0. Then for any sequence by
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satisfying N~ < by < ||E| — 2| /2, we have

Etby qF 1
I day -+ dan O(an, - - ., ) ————
i T /Rn o1 an Oy an)QSC(E)”
(1.9) ( ) (n) ( , a; , ay,
x (py’ —p >>< Ft—— F+—"=
NoTGN Nos.(E) Nos.(E)

= 0.

Here gs. is the semicircle law defined in (I2)), pg\?) is the n-point correlation func-
(n)

tion of the eigenvalue distribution of H, and pg; 'y 1s the n-point correlation function
of an N x N GUE (respectively, GOE) matriz.

We remark that the convergence in this theorem is in a weak sense, and it also
involves averaging over a small energy interval £/ € [E — by, E + by]. Stronger
types of convergence may also be considered and we will comment on one possible
such extension in Section We believe that the issue of convergence types is
of a technical nature and it is dwarfed by the challenge to prove universality for
the largest possible family of matrix ensembles. The fundamental challenge in
random matriz theory remains in answering the question of why random matriz
law is ubiquitous for seemingly disparate ensembles and physical systems. We will
present a few extensions in this direction in Sections [l and [0

In the case of invariant ensembles, it is well known that for V satisfying certain
mild conditions the sequence of one-point correlation functions, or densities, asso-
ciated with (V) has a limit as N — oo and the limiting equilibrium density o(s)
can be obtained as the unique minimizer of the functional

I(I/):/RV(t)V(t)dt—/R/Rlogﬁ—s\y(s)u(t)dtds.

Moreover, for convex V the support of ¢ is a single interval [A, B], and p satisfies
the equation

(1.10) %V’(t) _ /R ols)ds

t—s

for any t € (A, B). For the Gaussian case, V(x) = 22/2, the equilibrium density is
given by the semicircle law o = gg.; see (2.

Theorem 1.2 (Bulk universality of 8-ensemble [10, Corollary 2.2]). Assume V is a
real analytic function with inf,eg V" (x) > 0. Let 8 > 0. Consider the 5-ensemble
w= M%N‘z given in (L), and let pgf;) denote the n-point correlation functions of 1,
defined analogously to ([L3). For the Gaussian case, V(x) = 2%/2, the correlation
functions are denoted by pgl)N Let E € (A, B) lie in the interior of the support of
o and similarly let E' € (—2,2) be inside the support of gsc. Let O : R™ — R be a
smooth, compactly supported function. Then for by = N1 with any 0 < € < 1/2,
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we have
(1.11)
J\}i_r)noo dag -+ -day, O(ag, . .., o)
E+by g 1 (n) oy o,
" [/Eb o 2N (7 By W)

_ /E'“’N LD S R P S
E’'—bn 2bN QSC(E/)” G.N N(QSC(E/), ’ NQSC(E/)
= O7
i.e., the appropriately normalized correlation functions of the measure ugN& at the

level E in the bulk of the limiting density asymptotically coincide with those of the
Gaussian case, and they are independent of the value of E in the bulk.

We close this introduction with some short remarks concerning these two theo-
rems. Theorem [[.T] holds for a much larger class of matrix ensembles with indepen-
dent entries, and we will review some of them in Sections 8 and [[0] Although The-
orem [[T] in its current form was proved in [26], the key ideas have been developed
through several important steps in [27] [33] B6] [37, [38]. In particular, the Wigner-
Dyson-Gaudin-Mehta (WDGM) conjecture for Hermitian matrices was first solved
in [27] in a joint work with the current authors and Péché, Ramirez, and Schlein.
This result holds whenever the distributions of matrix elements are smooth. The
smoothness requirement was partially removed in [67] and completely removed in
a joint paper with Ramirez, Schlein, Tao, and Vu in [28]. The WDGM conjecture
for symmetric matrices was resolved in [33]. In this paper, a novel idea based on
Dyson Brownian motion was discovered. The most difficult case, the real symmet-
ric Bernoulli matrices, was solved in [37] where a “Fluctuation Averaging Lemma”
(Lemma [B4] of the current paper) exploiting cancellation of matrix elements of the
Green function was first introduced. We will give a more detailed historical review
in Section [Tl

The proof of Theorem [[I] consists of the following three steps, discussed in
Sections Bl 2 and Ml respectively. Our three-step strategy was first introduced in
[21].

Step 1. Local semicircle law and delocalization of eigenvectors. It states that the
density of eigenvalues is given by the semicircle law not only as a weak limit on
macroscopic scales (LZ), but also in a strong sense and down to short scales con-
taining only N¢ eigenvalues for all € > 0. This will imply the rigidity of eigenvalues,
i.e., that the eigenvalues are near their classical location in the sense to be made
clear in Section 2l We also obtain precise estimates on the matrix elements of the
Green function which in particular imply complete delocalization of eigenvectors.

Step 2. Universality for Gaussian divisible ensembles. The Gaussian divisible en-
sembles are matrices of the form H;, = e */2Hy++/1 — e~tU, where Hy is a Wigner
matrix and U is an independent GUE matrix. The parametrization of H; reflects
that it is most conveniently obtained by an Ornstein-Uhlenbeck process. There are
two methods, and both methods imply the bulk universality of H; for t = N~7 for
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the entire range of 0 < 7 < 1 with different estimates:

2a. Proposition 3.1 of [21] which uses an extension of Johansson’s formula [46];
2b. Local ergodicity of the Dyson Brownian motion (DBM).

The approach in 2a yields a slightly stronger estimate than the approach in 2b,
but it works only in the Hermitian case. In this review, we will focus on the Dyson
Brownian approach.

Step 3. Approximation by Gaussian divisible ensembles. It is a simple density ar-
gument in the space of matrix ensembles which shows that for any probability dis-
tribution of the matrix elements there exists a Gaussian divisible distribution with
a small Gaussian component, as in Step 2, such that the two associated Wigner
ensembles have asymptotically identical local eigenvalue statistics. The first imple-
mentation of this approximation scheme was via a reverse heat flow argument [27];
it was later replaced by the Green function comparison theorem [36].

The proof of Theorem consists of the following two steps that will be pre-
sented in Sections [G] and [7

Step 1. Rigidity of eigenvalues. This establishes that the location of the eigenvalues
are not too far from their classical locations determined by the equilibrium density

o(s).

Step 2. Uniqueness of local Gibbs measures with logarithmic interactions. With the
precision of eigenvalue location estimates from Step 1 as an input, the eigenvalue
spacing distributions are shown to be given by the corresponding Gaussian ones.
(We will take the uniqueness of the spacing distributions as our definition of the
uniqueness of Gibbs state.)

There are several similarities and differences between these two methods. Both
start with rigidity estimates on eigenvalues and then establish that the local spacing
distributions are the same as in the Gaussian cases. The Gaussian divisible ensem-
bles, which play a key role in our theory for noninvariant ensembles, are completely
absent for invariant ensembles. The key connection between the two methods, how-
ever, is the usage of DBM (or its analogue) in the Steps 2. In Section Bl we will
first present this idea.

The method for the proof of Theorem [[T] is extremely general. As of this writ-
ing, it has been applied to the generalized Wigner ensembles, the sample covariance
ensembles and the Erdés-Rényi matrices for certain range of the sparseness param-
eter. It can also be extended to the edges of the spectrum, and it yields edge
universality under more general conditions than were previously known. This will
be reviewed in Section Extensions to generalized Wigner matrices and Erd&s-
Rényi matrices will also be discussed in Sections 8 and As the proof of Theorem
.2l was just completed, we do not know how far this method can reach; currently
we can generalize the result to the nonconvex case under the assumption that the
equilibrium measure p is supported on a single interval [I1I]. The theory we have
developed to prove Theorems [I.1] and is purely analytic, and we believe that
it unveils the genuine mechanism of the Wigner-Dyson-Gaudin-Mehta universality.
Finally, a short summary concerning the recent history of universality is given in
Section [IT
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2. DYSON BROWNIAN MOTION AND THE LOCAL RELAXATION FLOW

1. Concept and results. The Dyson Brownian motion (DBM) describes the
evolution of the eigenvalues of a Wigner matrix as an interacting point process if
each matrix element h;; evolves according to independent (up to symmetry restric-
tion) Brownian motions. We will slightly alter this definition by generating the
dynamics of the matrix elements by an Ornstein-Uhlenbeck (OU) process which
leaves the standard Gaussian distribution invariant. In the Hermitian case, the OU
process for the rescaled matrix elements v;; := N 1 Zhij is given by the stochastic
differential equation

1
(21) dvij = dBZ] — ivijdt’ ’L,j = 1, 2, ey N,

where 3;;, i < j, are independent complex Brownian motions with variance one
and (;; are real Brownian motions of the same variance. Denote the distribution
of the eigenvalues A = (A1, g, ..., An) of Hy at time ¢t by fi(A)ua(dA), where ug
is given by (7)) with the potential V(x) = 22 /2.

Then f; = fi,. v satisfies ([21])

(2.2) Oufr = 2L fu,
where
N B 1 B)
_ Nt a2 _Pr PN )y _
(23) L =%n 72; % + Z( Ai +2N#i Ai_Aj)al, o v

The parameter g is chosen as follows: § = 2 for complex Hermitian matrices and
B = 1 for symmetric real matrices. Our formulation of the problem has already
taken into account Dyson’s observation that the invariant measure for this dynamics
is pe. A natural question regarding the DBM is how fast the dynamics reaches
equilibrium. Dyson had already posed this question in 1962:

Dyson’s conjecture ([2I]). The global equilibrium of DBM is reached in time of
order one and the local equilibrium (in the bulk) is reached in time of order 1/N.
Dyson further remarked,

The picture of the gas coming into equilibrium in two well-separated
stages, with microscopic and macroscopic time scales, is suggested
with the help of physical intuition. A rigorous proof that this picture
is accurate would require a much deeper mathematical analysis.

We will prove that Dyson’s conjecture is correct if the initial data of the flow is
a Wigner ensemble, which was Dyson’s original interest. Our result in fact is valid
for DBM with much more general initial data that we now survey. Briefly, it will
turn out that the global equilibrium is indeed reached within a time of order one,
but local equilibrium is achieved much faster if an a priori estimate on the location
of the eigenvalues (also called points) is satisfied. To formulate this estimate, let
v; = 7vj,~ denote the location of the j-th point under the semicircle law, i.e., v; is
defined by

Vi
(2.4) N/ osc(x)dz = 7, 1<j<N.

We will call y; the classical location of the j-th point.
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A priori estimate. There exists an a > 0 such that

N

1 .

25)  @=Qui= s [ Y049 hNua(@n < ON 1
t2N72u N j:l

with a constant C' uniformly in N. (This a priori estimate was referred to as

Assumption IIT in [33] [34].)

The main result on the local ergodicity of Dyson Brownian motion states that
if the a priori estimate (Z3]) is satisfied, then the local correlation functions of the
measure fiug are the same as the corresponding ones for the Gaussian measure,
1a = fsotq, provided that ¢ is larger than N 2%, The n-point correlation functions
of the probability measure fidug are defined, similarly to (L3), by
(2.6)

N B B e )
]RN_"

Due to the convention that one can view the locations of eigenvalues as the coordi-
nates of particles, we have used x, instead of A, in the last equation. From now on,
we will use both conventions depending on which viewpoint we wish to emphasize.
Notice that the probability distribution of the eigenvalues at the time ¢, fiug, is
the same as that of the Gaussian divisible matrix

(2.7) Hy=e "?Hy+ (1 —-e Y20,

where Hy is the initial Wigner matrix and U is an independent standard GUE (or
GOE) matrix. This establishes the universality of the Gaussian divisible ensembles.
The precise statement is the following theorem.

Theorem 2.1 ([34, Theorem 2.1)). Suppose that the a priori estimate ([2H) holds
for the solution f; of the forward equation ([2Z2) with some exponent a > 0. Let
E € (-2,2) and b > 0 be such that [E —b,E +b] C (—2,2). Then for any s > 0,
for any integer n > 1, and for any compactly supported continuous test function
O :R"™ — R, we have

E+b /
lim sup / dE / dag -+ -da,O(aq, ..., ap) L

(28) N—oo t>N—2a+s E—b 2b QSC(E)n
(n) _ (n) / a1 / An
() (B e Y
LN &N NQsc(E) NQSC(E)

We can choose b = by depending on N. In [34] explicit bounds on the speed of
convergence and the optimal range of b were also established. In particular, thanks
to the optimal rigidity estimate [38], i.e., (Z.0) with a = 1/2, the range of the energy
averaging in ([Z38) was improved to by > N~'*¢ ¢ > 0, but only for t > N—¢/8
(Theorem 2.3 of [38]).

Theorem 2.1l is a consequence of the following theorem, which identifies the gap
distribution of the eigenvalues.

Theorem 2.2 (Universality of the Dyson Brownian motion for short time [34, The-
orem 4.1]). Suppose § > 1, and let G : R — R be a smooth function with compact
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support. Then for any sufficiently small € > 0, independent of N, there exist con-
stants C,c > 0, depending only on & and G such that for any J C {1,2,...,N —1}
we have

1 1
‘ /m Y G(N(zi = zis1)) fedpe — / 7l Y G(N(zi — zig1))dpc
icJ ieJ
(2.9) © : ©
N Q €

< CONe [ =2 + Ce N,

= 7]t + Ce
In particular, if the a priori estimate [2.8) holds with some a > 0 and |J| is of order
N, then for any t > N 293¢ the right-hand side converges to zero as N — oo, i.e.,

the gap distributions for fidug and dug coincide.

The test functions can be generalized to
(2.10) G<N($i — 1), N(Tip1 — 2ig2), .o, N(@ign—1 — $z+n))

for any n fixed, which is needed to identify higher order correlation functions.
In applications, J is chosen to be the indices of the eigenvalues in the interval
[E—b, E+0b] and thus |J| ~ Nb. This identifies the gap distributions of eigenvalues
completely, and thus also identifies the correlation functions and concludes Theorem
211 Note that the input of this theorem, the a priori estimate (21, identifies the
location of the eigenvalues only on a scale N~1/2-¢ which is much weaker than the
1/N precision for the eigenvalue differences in ([29]).

By the rigidity estimates (see Corollary below), the a priori estimate (2.5))
holds for any a < 1/2 if the initial data of the DBM is a Wigner ensemble. Therefore,
Theorem holds for any ¢t > N~17¢ for any ¢ > 0, and this establishes Dyson’s
conjecture.

2.2. Main ideas behind the proof of Theorem The key method is to
analyze the relaxation to equilibrium of the dynamics ([Z2]). This approach was
first introduced in Section 5.1 of [33]; the presentation here follows [34].

We start with a short review of the logarithmic Sobolev inequality for a general
measure. Let the probability measure 1 on RY be given by a general Hamiltonian
:H:a
efNﬂ'C(x)

VA

and let .Z be the generator, symmetric with respect to the measure du, defined by
the associated Dirichlet form

@12) D)= D) =~ [125aui= 53 [@rran 0= 0.,

(2.11) du(x) = dx,

Recall the relative entropy of two probability measures:

dv dv
Sv|p) = /@log <@> dp.

If dv = fdp, then we will sometimes use the notation S, (f) := S(fu|n). The
entropy can be used to control the total variation norm via the well known inequality

(2.13) 17 =11 < /25,0
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Let f; be the solution to the evolution equation
(214) 8tft = Dg/ﬂft, t> 0,

with a given initial condition fo. The evolution of the entropy S, (f:) = S(fep|p)
satisfies

(2.15) 0:Su(fr) = =4Du(V/ o).

By Bakry and Emery [5], the evolution of the Dirichlet form satisfies the inequality

(2.16) 8tDu(\/?) < -5 V[t V2K )V\/?tdﬂ-
If the Hamiltonian is convex, i.e.,
(2.17) V2H(x) = Hess H(x) > ¥ for all x € RV

with some constant 1 > 0, then we have

(2.18) 0 Du(V/f1) < —0Du(V/ Fo)-

Integrating (ZI5) and (2I8) back from infinity to 0, we obtain the logarithmic
Sobolev inequality (LSI)

(2.19) Su(H) < 5DUT) = o

and the exponential relaxation of the entropy and Dirichlet form on time scale
t~1/9

(2.20) Su(fe) < eiwsu(fO)’ Du(\/ﬁ) < eiwDu(\/JTO)

As a consequence of the LSI, we also have the concentration inequality for any k
and a > 0

2
(2.21) /1 (Jzg — Eu(zr)] > a)dp < 279N /2,

We will not use this inequality in this section, but it will become important in
Section [6

Returning to the classical ensembles, we assume from now on that H is given by
) with V(z) = 2%/2 and the equilibrium measure is the Gaussian one, u = ug-.
We then have the convexity inequality

(222 (v.V*H(v) > 5 v + NZ 2 _2Hv||2 veRY.

This guarantees that p satisfies the LSI with ¢ = 1/2 and the relaxation time to
equilibrium is of order one.

The key idea is that the relaxation time is in fact much shorter than order one for
local observables that depend only on the eigenvalue differences. Equation (2.22))
shows that the relaxation in the direction v; — v; is much faster than order one
provided that x; — z; are close. However, this effect is hard to exploit directly
due to that all modes of different wavelengths are coupled. Our idea is to add an
auxiliary strongly convex potential W (x) to the Hamiltonian to “speed up” the
convergence to local equilibrium. On the other hand, we will also show that the
cost of this speeding up can be effectively controlled if the a priori estimate (2.5))
holds.
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The auxiliary potential W (x) is defined by
1

N
(2.23) W(x):=> Wjx;),  Wil):= o (5 = V)2,

j=1
i.e., it is a quadratic confinement on scale /7 for each eigenvalue near its classical
location, where the parameter 7 > 0 will be chosen later. The total Hamiltonian is
given by
(2.24) H=H+W,

where H is the Gaussian Hamiltonian given by (I7). The measure with Hamilton-
ian th,

dw = w(x)dx, w:= e*N}Nf/Z,
will be called the local relazation measure. This measure was named the pseudo-

equilibrium measure in our previous papers.
The local relazation flowis defined to be the flow with the generator characterized

by the natural Dirichlet form w.r.t. w, explicitly, .Z:
(2.25) L =23 b0, by = Wiay) = =00,
J

T

We will typically choose 7 < 1 so that the additional term W substantially increases
the lower bound (2I7)) on the Hessian, hence speeding up the dynamics so that the
relaxation time is at most 7.

The idea of adding an artificial potential W to speed up the convergence ap-
pears to be unnatural here. The current formulation is a streamlined version of
a much more complicated approach that appeared in [33] and which took ideas
from the earlier work [29]. Roughly speaking, in hydrodynamical limit, the short
wavelength modes always have shorter relaxation times than the long wavelength
modes. A direct implementation of this idea is extremely complicated due to the
logarithmic interaction that couples short and long wavelength modes. Adding a
strongly convex auxiliary potential W (x) shortens the relaxation time of the long
wavelength modes, but it does not affect the short modes, i.e., the local statistics,
which are our main interest. The analysis of the new system is much simpler since
now the relaxation is faster, uniform for all modes. Finally, we need to compare
the local statistics of the original system with those of the modified one. It turns
out that the difference is governed by (VW)?, which can be directly controlled by
the a priori estimate (2.35]).

Our method for enhancing the convexity of H is reminiscent of a standard con-
vexification idea concerning metastable states. To explain the similarity, consider
a particle near one of the local minima of a double well potential separated by a
local maximum, or energy barrier. Although the potential is not convex globally,
one may still study a reference problem defined by convexifying the potential along
with the well in which the particle initially resides. Before the particle reaches the
energy barrier, there is no difference between these two problems. Thus questions
concerning time scales shorter than the typical escape time can be conveniently
answered by considering the convexified problem; in particular the escape time in
the metastability problem itself can be estimated by using convex analysis. Our
DBM problem is already convex, but not sufficiently convex. The modification by
adding W enhances convexity without altering the local statistics. This is similar
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to the convexification in the metastability problem, which does not alter events
before the escape time.

2.3. Some details on the proof of Theorem The core of the proof is

divided into three theorems. For the flow with generator .:?7, we have the following
estimates on the entropy and Dirichlet form.

Theorem 2.3. Consider the forward equation
(2.26) dar=La,  t20,

with initial condition qo = q and with the reversible measure w. Assume that
fqodw = 1. Then we have the estimates

(2.27) atDw(\/q_t)<__D N zNz/Z 8\/3? N .

ij=1 i)
(2.28) 2N2/ ds/gjl 3\/;15_1\/(1?) dw < Do (v/2),
and the logarithmic Sobolev inequality
(2.29) S.(q) < CTD, (V1)
with a universal constant C. Thus the relaxation time to equilibrium is of order T:
(2.30) Sul@r) < e 75,(q).

Proof. Denote by h = ,/q, and we have the equation
1 2 —NX 1 / 247 —N¥
. w =5y < N :
(2.31) 0D, (hy) 8,52 /(Vh) e dx 3 Vh(VZH)Vhe dx

In our case, (Z22) and ([Z23) imply that the Hessian of H is bounded from below
as

(2.32) Vh(V2H)Vh > ¢ %:(a :h)? + ;V Z ﬁ(&-h — d;h)?

with some positive constant C. This proves (M) and (Z28). The rest can be
proved by straightforward arguments given in the earlier part of this section. [

The estimate ([2.28) plays a key role in the next theorem.

Theorem 2.4 (Dirichlet form inequality). Let ¢ be a probability density [ gdw =1,
and let G : R — R be a smooth function with compact support. Then for any
Jc{1,2,...,N —1} and any t > 0, we have

‘/U‘ ZG —2i41))qdw — / 7] ZG :Ci“))dw‘

(233) ieJ icJ

<(” 3{ ) e

Proof. For simplicity, we assume that J = {1,2,..., N — 1}. Let ¢; satisfy

atqt = %tu t 2 07
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with an initial condition qg = q. We write

/ {ﬁ > G(N(w ~ $i+1))} (g —1)dw

ieJ

(231 - [ [ Z 60 = i) 0= s

ieJ
1
+ / [m > GIN (s = 2i1) | (@0 — 1)deo.
icJ
The second term can be estimated by (2I3]), the decay of the entropy ([2.30) and
the boundedness of G; this gives the second term in ([233).

To estimate the first term in (234, by the evolution equation dg; = .,%t and
the definition of .Z,

/ ﬁ > G(N (i = wi1) e / ﬁ 2 GG = 1) Jaod
7 ieJ

- /o ds / ﬁ Z G/(N(l‘z‘ — 441))[05qs — Oi+1qs]dw.

ied
From the Schwarz inequality and dq = 2,/q0,/q, the last term is bounded by

2 [/Ot ds /]RN % ; {G’(N(xi - xiH))r(:ci —zi41)? qsdw]

1/2
(2.35) /t / 1 1 )
X ds — ——10iv4gs — O; 5] dw
ds [ Nz;(m_xm)g[ Vs = 0i41/5)

< oDy

1/2

2
where we have used ([Z:28) and that {G’(N(:z:i — xi+1))} (x; —2441)? < CN~2 due
to G being smooth and compactly supported. O

Alternatively, we could have directly estimated the left-hand side of ([Z.33)) by us-
ing the total variation norm between qw and w, which in turn could be estimated by
the entropy (2.I3) and the Dirichlet form using the logarithmic Sobolev inequality,
i.e., by

(2.36) C/ lg — 1jdw < Cv/Su(q) < Cy/TDy,(\/q).

However, compared with this simple bound, the estimate (Z33]) gains an extra
factor |J| ~ N in the denominator, i.e., it is in terms of Dirichlet form per particle.
The improvement is due to the observable in (233]) being of special form and we
exploit the term (2:28§]).

The final ingredient in proving Theorem 2.2is the following entropy and Dirichlet
form estimates.

Theorem 2.5. Suppose that [222) holds. Let a > 0 be fized, and recall the def-
inition of Q = Qq from ZH). Fiz a constant T > N~2% and consider the local
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relazation measure w with this 7. Set ¥ := w/u, and let g, := fi /1. Suppose there
is a constant m such that

(2.37) S(frw|lw) < CN™.
Then for any t > TN the entropy and the Dirichlet form satisfy the estimates,
(2.38) S(gwlw) < ON?Q77%,  Du(vg)) < ON?Q772,

where the constants depend on € and m.

Proof. The evolution of the entropy S(f:p|w) = S.(g+) can be computed explicitly
by the formula ([78])

2
oS(fule) == 3 [@varvdu+ [gzvan
J
Hence by using (2.28) we have

LS (feplw) = Z/ 0i\/9t) dw—l—/,,i”gtdw—l—Z/b 0,9t dw.

Since w is .#-invariant and time independent, the middle term on the right-hand
side vanishes, and from the Schwarz inequality

(2.39) 9:S(fru|lw) < —Dy( +C’NZ/b2gt dw < =D, (/9:) + CN?*Qr 2.

Together with the logarithmic Sobolev inequality ([2:29]), we have
(240)  9,S(fiplw) < —Du(y/g) + CN?Q772 < —C77 ' S(fiplw) + CN?Qr 2.

Integrating the last inequality from 7 to ¢ and using the assumption ([237) and
t > 7N¢, we have proved the first inequality of (238)). Using this result and
integrating (2.39), we have

/t D,(/gs)ds < CN?Qr~ 1.

By the convexity of the Hamiltonian, D, (v/f;) is decreasing in t. Since Dy, (1/gs) <
D, (\/fs) + CN?Q7~2, this proves the second inequality of (Z38). O

Finally, we complete the proof of Theorem For any given ¢t > 0, we now
choose 7 := tN~¢, and we construct the local relaxation measure w with this 7. Set
Y =w/p, and let ¢ := g = fi/¢ be the density ¢ in Theorem [Z4l Then Theorem
238 Theorem [24] and an easy bound on the entropy S, (¢) < CN™ imply that

(2.41)

| [ % E o = )i - ao)| < (12 X0) o g
i€J

N20\1/2 v N2Q Ve
< —eNT < ON° | 4 Ce©
c( ‘J|7—2) +Ce N < T+ Ce

i.e., the local statistics of fiu and w are the same for any initial data f, for which
[237) is satisfied. Applying the same argument to the Gaussian initial data, fo =
fr =1, we can also compare p and w. We have thus proved (2Z.9) and hence the
universality. (Il
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3. LOCAL SEMICIRCLE LAW VIA GREEN FUNCTION

The Wigner semicircle law asserts that ([L2)) is valid in a weak limit, i.e., for any
smooth test function O with compact support, we have

(3.1) E/RO(:&) [on(z) — 0sc(x)] da — 0.

This means that the density of eigenvalues in a window independent of N is given
by the semicircle law. Our goal is to prove a local version of this result for windows
slightly larger than 1/N and in a large deviation sense. The main object to study
is the Green function of the matrix G(z) = [H — 2]7', 2 = E+in, E € R, n > 0,
which is related to the Stieltjes transform of the empirical measure,

(3.2)
1 N do N
N
= = —Tr = eV
m(z) = mx(2) = 1T = z; - [l N;
We will compare it with mg.(z) == [p(x — 2) " osc(x)dz, the Stieltjes transform

of the semicircle law. This is the content of the local semicircle law, Theorem [B1]
below. The key parameter is n = Jm z which determines the resolution, i.e., the
scale on which the local semicircle law holds.

For the rest of this paper, we will assume that the probability distribution of the
matrix elements satisfy the subexponential condition,

(3.3) P(|vi;| > x) < Coexp (—27), x>0,

with some positive constants Cy, ¥, where we set v;; = v Nh;;. This condition can
be relaxed to (L)) via a cutoff argument, but we will not discuss such technical
details here.

Theorem 3.1 (Local semicircle law [38, Theorem 2.1]). Let H = (h;j) be a Her-
mitian or symmetric N x N random matriz with Eh;; =0, 1 <4,5 < N. Suppose
that the distributions of the matriz elements have a uniformly subexponential decay
B3). Then there exist positive constants Ag > 1, C,c and ¢ < 1 such that with

(3.4) L := Agloglog N
the following estimates hold for any sufficiently large N > Ny(Co, ).

(i) The Stieltjes transform of the empirical eigenvalue distribution of H satis-

fies
4L
(3.5) IP’( U {\m(z) — mse(2)] > %}) < Cexp [ — c(logN)?*],
zZ€SL
where
(3.6) Sy = {z = E+in: |[E|<5 N '(logN)"L <p< 10}.

(ii) The indvidual matriz elements of the Green function satisfy
(3.7)

P( U {HQE}X |Gij(2) = diymsc(2)| > (log N)** Jmmse(z) | (log N)H })

z€S|, N?] N?]

< Cexp [ — c(log N)¢L].
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Theorem [B.1]is the strongest form of the local semicircle law that gives optimal
error estimates (modulo logarithmic factors) on the smallest possible scale, which
is valid uniformly in the spectrum including the edge, and which controls not only
the Stieltjes transform but also individual matrix elements of the resolvent. This
theorem is the final result of subsequent improvements in [31] [32], 36}, 37, B8] of our
first local semicirle law in [30].

The local semicircle estimates imply that the j-th eigenvalue, A;, is very close
to its classical location ~;, defined in (Z4):

Corollary 3.2 (Rigidity of eigenvalues [38, Theorem 2.2]). Under the assumptions
of Theorem Bl we have

—1/3
58) P{ﬂj:|Aj—yj|2(1ogN)L[min(j,N—j+1)} N—2/3}

< Cexp [ —c(log N)‘j’L]
for any sufficiently large N > Ny.

This corollary in particular proves the a priori estimate (2.1 for any a < 1/2.

Corollary is a simple consequence of the Helffer-Sjostrand formula which
translates information on the Stieltjes transform of the empirical measure first to
the counting function and then to the locations of eigenvalues. The formula yields
the representation

oy L [ ot
T Jrz A—x — iy

_ i/ iy f" (@) x(y) +i(f (=) + iy f'(2)x'(v)
27 Jge A—x—1y
for any real valued C? function f on R, where x(y) is any smooth cutoff function
with bounded derivatives and supported in [—1,1] with x(y) = 1 for |y| < 1/2.
In the applications, f will be a smoothed version of the characteristic functions of
spectral intervals so that >, f();) counts eigenvalues in that interval. The details
of the argument can be found in [29].

We also mention that Theorem [3.I] immediately implies complete delocalization
of each eigenvector of the Wigner matrix:

dzdy
(3.9)

dzdy

Corollary 3.3 (Complete delocalization). Let uy, us, ... be the £2-normalized eigen-
vectors of H. Under the assumptions of Theorem B.Il we have

(3.10) IP{H,B g% > W} < Cexp [ — c(logN)*"]

for any sufficiently large N > Ny.

For the proof, notice that ([B.7) implies the bound |G};(z)| = O(1) with very
high probability for any z € Sp. Therefore,
~ : nlus(5)? |ua (5) [
C >TJmG (A = > .
= I zﬂ: As—Aa)>+7> = 7
The original proof of delocalization of eigenvectors was derived from the Stieltjes
transform of the empirical measure [30} 2], motivated by a question posed by T.

Spencer.
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Sketch of the proof of Theorem 31l For simplicity, we will assume here that E =
Re z is away from the spectral edges. The starting point is the following well known
formula. Let A, B, C be n X n, m x n and m X m matrices, and set

A B*
(3.11) D := <B C)'
Then for any 1 <4, j < n, we have
(3.12) (D) =[(A-B*C™'B)™']. ..

ij
Applying this formula to the resolvent matrix G = (H — z) !, we have
1 1

(3.13) Gy = O @ ,
hii — 2 =3 g1z hikGi hai - hii — 2 =i 305 1 hin Gy hui — Z;
where

ki kI
Here G denotes the resolvent of the (N — 1) x (N — 1) minor of H after removing

the i-th row and column and E; denotes the expectation with respect to the entries
in the i-th row and column. Since G is independent of h;; and E;h;,hy; = %(5;”,

we have . ) )

oy L (G _ - -

> EihaGiilhi = 5 3 Gl = 5 32 G+ 0(57)-
k,l#i k#i k

Here we used the interlacing property of eigenvalues between a matrix and its

minors, which implies that

z\m(z)—m(i)(z)\<£ n=DJmz>0.

1 1 .
Tre Lraw
(3.15) ‘Nﬁa NG S

Defining v; := G;; — mg., we thus have
1

(316) V; = G“ — Mge =
—Z — Mge — (% Zj v; + Zi — hy + O(N*l))

— Mse-

Expanding the denominator, using the identity ms.(z) + [mse(2) + 2]71 = 0 and
neglecting the error terms hy + O(N~') = O(N~1/2), we have

(3.17) vi:mic(%Z%A—Zi)+m§c(%zvj+zi)2+...

Summing up ¢ and dividing by N, we obtain, modulo negligible errors,
(3.18)

o] = 2 3 0s ~ mlle] b 2 [2)40 (% > w) =Y

3
To estimate Z;, we compute its second moment
(3.19)

E|ZP=EY Y

ki k! Ui

x E; ( (Rix G i = Bahin G ] [Baws G s — Eiﬁik’agf)[/ﬁl’i}> .
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Since Eh = 0, the non-zero contributions to this sum come from index combinations
when all h and h are paired. For pedagogical simplicity, assume that Eh? = 0, this
can be achieved, for example, if the distribution of the real and imaginary parts are
the same. Then the h factors in the above expression have to be paired in such a
way that h;, = hyr and hy = hyp, ie., k = k', I = 1’. Note that pairing h;, = hy
would give zero because the expectation is subtracted. The result is

1 i myq — 1 1
(3.20) il Zi* = 55 ST IGPR + e S IG,
ki ki

where my = E[v/Nh|* is the fourth moment of the single entry distribution. The
first term can be computed

1 (i)y2 _ 1 (i)}2 _ 11 (1) ._ 1 (1)
(3.21) N2 kzl;i|sz " = N2 gﬁ;ﬂG 1)k = Ny N zk:ijkk: = N—nﬂmm :

The second term in ([B:20) can be estimated by a similar bound. These estimates
confirm that the size of Z;, at least in the second moment sense, is roughly

C

< 2
(3.22) |Zi] < NGk
Neglecting the [v]* term in (BIR) and using that |1 — m2,| > ¢ away from the
spectral edge for some positive ¢, we thus have |m(z) — ms.(2)] < C(Nn)~/2.
A similar but more involved argument gives the same bound for individual v;’s,
showing the estimate ([B.7) for the diagonal elements G;;. The estimate for the off-
diagonal terms, G;j, i # j, is obtained from the identity G;; = ijGz(-f) [Zij — hij]
which can be proved using (B.12). Here Z;; is defined analogously to (3.14) as

Zig=3 haG\Phy— 3 EyhaGy hy,
k1,5 K l#£i,5

where G is the resolvent of the (N —2) x (N —2) minor of H after removing the
i-th and j-th row and column. The bound ([3.22)) holds for Z;; as well.

The estimate for [v] = m — my,, the average of v;’s, is of order (Nn)~! in (B.5),
i.e., it is better than the (N7)~'/? estimate for the individual matrix elements in
B7). The key mechanism for this improvement is the cancellation of the Z;’s
in their average [Z]. If Z;’s were independent, we would gain a factor N —1/2 1y
the central limit theorem. But Z;’s are correlated and the cancellation takes the
following form:

Lemma 3.4 (Fluctuation Averaging Lemma). With the notations of Theorem B,
for any € > 0 we have

1
(3.23) P(N

for sufficiently large N.

N

D%

i=1

g

N
> Nn) < Cexp [ — c(log N)?*]

Using this lemma and (318]), we have proved the stronger estimate for [v]. This
completes the sketch of the proof of the local semicircle law, Theorem [3.11 O
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4. THE GREEN FUNCTION COMPARISON THEOREMS

We now state the Green function comparison theorem, Theorem Il It will
quickly lead to Theorem stating that the correlation functions of eigenvalues
of two matrix ensembles are identical on a scale smaller than 1/N provided that
the first four moments of all matrix elements of these two ensembles are almost
the same. We will state a limited version for real Wigner matrices for simplicity of
presentation.

Theorem 4.1 (Green function comparison [36, Theorem 2.3]). Suppose that we
have two N x N Wigner matrices, H®) and H™), with matriz elements hij given
by the random variables N_l/zvij and N_1/2wij, respectively, with vy; and wg;
satisfying the uniform subexponential decay condition B3). We assume that the
first four moments of v;; and w;; are close to each other in the sense that

(4.1) |Evf; — Ewfj| < N~072+e/2, 1<s<4,

holds for some § > 0. Then there are positive constants Cy and e, depending on v
and Cy from B3) such that for any n with N~17¢ <n < N~ and for any z1, 2
with Jmz; = +n, j = 1,2, we have

(42)  lim []ETrG(”)(zl)TrG(”)(zz)—ETrG(w)(zl)TrG(w)(zg) =0,

N—o00

where G and G denote the Green functions of H®) and H™).

The matching condition in (fI]) is essentially the same as the one that appeared
in [67]. Here we formulated Theorem 1] for a product of two traces of the Green
function, but the result holds for a large class of smooth functions depending on
several individual matrix elements of the Green functions as well; see [36] for the
precise statement. (The matching condition (&) is slightly weaker than in [36],
but the proof in [36] without any change yields this slightly stronger version.)
This general version of Theorem ET] implies the correlation functions of the two
ensembles at the scale 1/N are identical:

Theorem 4.2 (Correlation function comparison [36, Theorem 6.4]). Suppose the
assumptions of Theorem 1] hold. Let pf)n])\, and pl(:)N be the n-point functions of

the eigenvalues w.r.t. the probability law of the matriz H) and H™), respectively.
Then for any |E| < 2, any n > 1, and any compactly supported continuous test
function O : R" — R, we have

(4.3) 1\}51100 . dag -+ -day, O(ay, ..., ap) (pfjn])v—pgl%v> (E—l—%7 ce E—i—%) =0.

The basic idea for proving Theorem F] is similar to Lindeberg’s proof of the
central limit theorem, where the random variables are replaced one by one with
a Gaussian one. We will replace the matrix elements v;; with w;; one by one
and estimate the effect of this change on the resolvent by a resolvent expansion.
The idea of applying Lindeberg’s method in random matrices was recently used
by Chatterjee [I3] for comparing the traces of the Green functions; the idea was
also used by Tao and Vu [67] in the context of comparing individual eigenvalue
distributions. There are two main differences between our method and the one
that appeared in [67]:
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(i) We compare the statistics of eigenvalues of two different ensembles near
fixed energies, while [67] compared the statistics of the ji, ja, ..., jr-th
eigenvalues for fixed labels ji,ja, ..., Jk-

(ii) There is a serious difficulty in the approach [67] concerning possible reso-
nances of neighboring eigenvalues that may render the expansion unstable.

The Green function method eliminates this difficulty completely and Theorem [£.1]
is a simple corollary of the Green function estimate Theorem 311

For a sketch of the proof, fix a bijective ordering map on the index set of the
independent matrix elements,

N(N +1)

0:{(1):1<i<i <N = {LaN), (V) = k)

and denote by H, the Wigner matrix whose matrix elements h;; follow the v-
distribution if ¢ (4, j) < v and they follow the w-distribution otherwise; in particular
H® = Hy and H®) = H,(y.

Consider the telescopic sum of differences of expectations (we present only one
resolvent for simplicity of presentation):

1 1 1 1
(4.4) ()

-2l (r=) = (ran=))

y=1

Let E(9) denote the matrix whose matrix elements are zero everywhere except at
the (¢, 7) position, where it is 1, i.e., E,(CZJ) = d;x0j0. Fix ay > 1, and let (4,5) be
determined by ¢(i,7) = 7. We will compare H,_; with H,. Note that these two
matrices differ only in the (7, ) and (j,7) matrix elements and they can be written
as
1
vIN
1 . ..
H’Y :Q—I_\/—NVV’ W .= wijE(”) +’U}jiE(ﬂ), Wj; = Wiy,
with a matrix @ that has zero matrix element at the (¢, j) and (j,¢) positions.
By the resolvent expansion,

Hy, 1 =Q+—=V, V:=v ;B 1o, B0 ;=7

Sy 1 =R—N""Y2RVR+...+ N"2(RV)'R— N"%%(RV)S,
1 1
= -, S -1 = 5,
Q-2 77 ! H, -2

and a similar expression holds for the resolvent S, of by H,. From the local
semicircle law for individual matrix elements (B.7]), the matrix elements of all Green
functions R, S,_1, Sy are bounded by C'N*¢ for any ¢ > 0. By assumption (41)), the
difference between the expectation of matrix elements of S,_; and S, is of order
N—279+C%_ Since the number of steps, (V) is of order N2, the difference in (&34) is
of order N2N—2-9+C¢ « 1 and this proves Theorem @Il for a single resolvent. It is
very simple to turn this heuristic argument into a rigorous proof and to generalize
it to the product of several resolvents. The real difficulty is the input that the local
semicircle law holds for a general class of Wigner matrices.

R:
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5. UNIVERSALITY FOR WIGNER MATRICES: PUTTING IT TOGETHER

In this short section we put the previous information together to prove Theorem
[[Il1 We first focus on the case when by is independent of N. Recall that Theo-
rem [2.]] states that the correlation functions of the Gaussian divisible ensemble,

(5.1) Hy=e 2Hy+ (1 - e Y20,

where Hy is the initial Wigner matrix and U is an independent standard GUE (or
GOE) matrix, are given by the corresponding GUE (or GOE) for ¢ > N~29%¢ pro-
vided that the a priori estimate (2.35]) holds for the solution f; of the forward equation
[22) with some exponent a > 0. Since the rigidity of eigenvalues, Corollary B.2]
holds uniformly for all Wigner matrices, we have proved (23 for a = 1/2 — ¢ with
any € > 0.

From the evolution of the OU process 1)) for v;; = N'/2h;;, we have

(5.2) |Evg;(t) — Evj;(0)] < Ct = CN 1+

for s = 3,4 and with the choice of ¢ = N~13¢, Furthermore, Ehfj(t) are indepen-
dent of ¢ for s = 1,2 due to Ev;;(0) = 0 and Ev;(t) = 1. Hence (@I)) is satisfied for
the matrix elements of H; and Hy and we can thus use Theorem to conclude
that the correlation functions of H; and Hy are identical at the scale 1/N. Since
the correlation functions of H; are given by the corresponding Gaussian case, we
have proved Theorem [[T] under the condition that the probability distribution of
the matrix elements decay subexponentially. Finally, we need a technical cutoff
argument to relax the decay condition, which we omit here (see Section 7 in [26]).

The argument for N-dependent b = by in the range by > N~!*¢ ¢ > 0, is
slightly different. For such a small by, ([28)) could be established only for relatively
large times, t > N~¢/8. We cannot therefore compare Hy with H; directly, since
the deviation of the third moments of v;;(0) and v;;(¢) in (5.2) would not satisfy
(@1). Instead, we construct an auxiliary Wigner matrix ﬁo such that up to the
third moment its time evolution H; under the OU flow (1) matches exactly the
original matrix Hy, and the fourth moments are close even for t of order N—¢/8
(see Lemma 3.4 of [37]). Theorem 1] will then be applied for H,, and Theorem A.I]
can be used to compare f[t and Hy.

We finally discuss the extension of Theorem [[I] without averaging in E’. For
Hermitian matrices, with the notations of Theorem [T}, for any fixed |E| < 2 we
have that

1
/ndal dOAn O(O[l,...,OLH)W
>3 ) _ () @ «
x (p —pW NV (E+ -2 By ) —o.
<pN pG’N) ( Nos(E) NQSC(E)>

This convergence was first proved in Theorem 1.1 of [27] for matrices with dis-
tribution which is Cn-times differentiable for some universal constant C. For a
general distribution it was stated as Theorem 5 in [7I]. Although the proof in [71]
took a slightly different path, this generalization is an immediate corollary of our
previous results [35]. Recall our three step approach reviewed in the introduction.
If we substitute Step 2b with Step 2a, then all our results in the Hermitian case
would need no time average. More precisely, Proposition 3.1 of [27] asserts that
the bulk universality in the Hermitian case holds at a fixed energy for the Gaussian
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convolution matrix H; with t ~ N~119. The first four moments of H; and Hy are
sufficiently close to apply directly the Green function comparison theorem for corre-
lation functions (Theorem in this article). This concludes the bulk universality
of the original matrix Hy at a fixed energy, which is the Theorem 5 in [71]. In fact,
our theory implies the same result for generalized Hermitian matrices (defined in
Section 8) with finite 4 4+ ¢ moments.

6. BETA ENSEMBLE: RIGIDITY ESTIMATES

The general S-ensemble with a potential V' is defined by the probability measure
w = ,u(ﬂN‘} (C@) on N ordered real points Ay < --- < Ay. We let P, and E,
denote the probability and the expectation with respect to p. For simplicity of
presentation, we assume that the potential V' is convex, i.e.,

L 1. "

(6.1) 9= B ;Ielﬂv (z) >0,
the equilibrium density o(s) is supported on a single interval [A, B] C R and satisfies
(CI0) (for the general case, see [11]). The Gaussian case corresponds to V(z) =
22/2, in which case the equilibrium density is the semicircle law, gs., given by ([L2).
Our main result concerning the universality is Theorem and similar statement
holds for the universality of the gap distributions directly. In fact, the proof of
Theorem goes via the gap distribution as we now explain.

Similarly to ([2:4) we again denote by ~y, the classical location of the k-th point
w.r.t. the limiting equilibrium density o(s), i.e., i is defined by

(6.2) /% o(s)ds = %

The first step in proving Theorem is the following theorem which provides a
rigidity estimate on the location of each individual point in the bulk almost down
to the optimal scale 1/N. In the following, we will denote [z,y] = NN [z, y].

Theorem 6.1 ([I0, Theorem 3.1]). Fiz any a,e > 0, and assume that (6]
holds. Then there are constants §,c1,co > 0 such that for any N > 1 and k €
[aN, (1 —«a)N],

]P),J (‘)\k - ’7]@' > N_1+€) S 016_02N6.

The first ingredient in proving Theorem is an analysis of the loop equation
following Johansson [47] and Shcherbina [6I]. The equilibrium density o, for a
convex potential V', is given by

(63) ot) = ~r(t)y/ (= 4B~ 1)1 1a,5(0),

where 7 is a real function that can be extended to an analytic function in C and r
has no zero in R. Denote by s(z) := —2r(z)y/(A — z)(B — z) where the square root
is defined such that its asymptotic value is z as z — co. Recall that the density is
the one point correlation function which is characterized by

(6.4) /dA1O(A1)P§$)(A1) = O(Al)du(gz,v (A), A= (A1, A2, 5 AN).
R RN

Let mpy and m be the Stieltjes transforms of the density pg\}) and the equilibrium

density p, respectively. Notice that in Section[3we have used m = my to denote the
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Stieltjes transform of the empirical measure ([B.2)); here my denotes the ensemble
average of the analogous quantity.
Define the analytic functions

()= [ VIR =V () _ gy ) ar

z—1

and cn(2) = §zkn(2) + & (% - 1) My (2), where kn(z) = var, (Z,ivzl ﬁ) .
Here for complex random variables X we use the definition that var(X) = E(X?) —
E(X)2.

The equation used by Johansson (which can be obtained by a change of variables
in (4), [47], or by integration by parts [61]), is a variation of the loop equation
(see, e.g., [M1]) used in the physics literature and it takes the form

(65) (mN—m)2+s(mN—m)+bN=cN.

Equation (6.5) expresses the difference my — m in terms of (my —m)?, by and
cn. In the regime where |my —m| is small, we can neglect the quadratic term. The
term by is of the same order as |7y — m| and is difficult to treat. As observed in
[2, [61], for analytic V, this term vanishes when we perform a contour integration.
So we have roughly the relation

_ 1 A
(6.6) (my —m) ~ 2 Vs (Z o /\k> ,

k=1

where we dropped the less important error involving m/y(z)/N due to the extra
1/N factor. In the convex setting, the variance can be estimated by the logarithmic
Sobolev inequality and we immediately obtain an estimate on my —m. We then use
the Helffer-Sjostrand formula, see ([B.3]), to estimate the locations of the particles.
This will provide us with an accuracy of order N~1/2 for E Ak —7%. This argument
gives only an estimate on the expectation of the locations of the particles since we
only have information on the averaged quantity, my. Although it is tempting to
use this new accuracy information on the particles to estimate the variance again
in ([G.6]), the information on the expectation on A alone is very difficult to use in
a bootstrap argument. To estimate the variance of a non-trivial function of \g, we
need high probability estimates on Ag.

The key idea in this section is the observation that the accuracy information on
the A’s can be used to improve the local convexity of the measure p in the direction
involving the differences of X’s. To explain this idea, we compute the Hessian of
the Hamiltonian of u:

1 (v; —v;j)?
2 > 2, 1 i Y5
<v,v J{()\)v> > 9|Iv|? + ~ Zj e
The naive lower bound on V2H is 9, but for a typical A = (A1, Aa,..., Ay) it

is in fact much better in most directions. To see this effect, suppose we know
A — Aj| £ M/N with some M for any 4,5 € IM, where I} = [k — M,k + M].

Then for v = (vg_ns, ..., Vgtar) with Zj vj = 0, we have
N N
(6.7) <v, V29'C()\)v> > e Z (v; — v)% > CM ZUJQ
i,jeIM J
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This improves the convexity of the Hessian to N/M on the hyperplane > ;v =0.

Let
M _
A= 13
jerM

denote the block average of the locations of particles, and rewrite

= AT = 3T (-l

J

as a telescopic sum with an appropriate sequence of My = 0, Ms,.... We can
now use the improved concentration on the hyperplane > ;v =0to the variables

AN

/\LMj] — )\LMHI] to control the fluctuation of A\, — A}, 1 Since the fluctuation of

AN

1—¢
lis very small for small €, we finally arrive at the estimate

(6.8) P, (|Ak — Eu(Ae)| > @) < CemON"e?/M,

From (6.8) we thus have that |\, — E,\x| < /M /N with high probability. This
improves the starting accuracy [\, — \;| < M/N for i, j € IM to |\, — \j| S M'/N
with some M’ < M, provided we can prove that [E,(\; — A;)| < M’/N. But the
last inequality involves only expectations, and it will follow from the analysis of the
loop equation (G.5]) we just mentioned above. Starting from M = N, this procedure
can be repeated by decreasing M step by step until we get the optimal accuracy,
M ~ O(1). The implementation of this argument in [10] is somewhat different from
this sketch due to various technical issues, but it follows the same basic idea.

7. BETA ENSEMBLE: THE LOCAL EQUILIBRIUM MEASURE

Having completed the first step, the rigidity estimate, we now focus on the second
step, i.e., on the uniqueness of the local Gibbs measure. Let 0 < x < 1/2. Choose
q € [k,1 — k] and set L = [Ng] (the integer part). Fix an integer K = N* with
k < 1. We will study the local spacing statistics of K consecutive particles

{N\;j : jel}, I=1I,:=[L+1,L+K].
These particles are typically located near F, determined by the relation

/Eq o(t)dt =q.

Note that |y, — E,| < C/N.
We will distinguish the inside and outside particles by renaming them as

(V)

)

(1]

(7.1) (A, A2, AN) 2= Y1y s YLy L1y - o s TL4 K YL+ K415+ -5 YN) €

but note that they keep their original indices. The notation Z() refers to the
simplex {z : 21 < 23 < --- < zy} in RV, In short we will write

X=(Tr41s- - TL+K) and Y =1, YL, YL+ E+1s- - YN)s

E(N-K),

all in increasing order, i.e., x € Z5) and y € We will refer to the y’s as

external points and to the x’s as internal points.
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We will fix the external points (also called as boundary conditions) and study
conditional measures on the internal points. We define the local equilibrium measure
on x with fixed boundary condition y by

(7.2) py(dx) = py(x)dx,  py(x) = p(y,x) Uu(y,X)dX]_l-

Note that for any fixed y € Z(N=K) | the measure Ity is supported on configurations
of K points x = {x;}es located in the interval [yr,yr4x+1]-
The Hamiltonian Jy of the measure iy (dx) ~ exp(—NH, (x))dx is given by

Hy (x) := Z gVy(xi) — % Z log |x; — ;]

iel tiel
(7.3) “
with Vy(z) =V (z) - N Zg;lo% |z — yj].
j

We now define the set of good boundary configurations with a parameter § = 6(N) >
0:

Gs=G:= {y eENTE) 1y — 5 <6,

74
(4 Vje[[NR/Z,L]]U[[L+K+1,N(1—n/2)]]},

where x is a small constant to cutoff points near the spectral edges. Some rather
weak additional conditions for y near the spectral edges will also be needed, but
we will neglect this issue here.

Let o and p be two measures of the form (7)) with potentials W and V and
densities ¢ = ow and gy, respectively. For our purposes W (z) = x2/2, i.e., o is
the Gaussian -ensemble and ow () = 5=(4 — 152)3/2 is the Wigner semicircle law.
Let the sequence «y; be the classical locations for u, and let the sequence 6; be the
classical locations for ¢. Similarly to the construction of the measure u,,, for any
positive integer L’ € [1, N — K], we can construct the measure og conditioned that
the particles outside are given by the classical locations §; for j ¢ [L’, L'+ K]. More
precisely, we define a reference local Gaussian measure oy on the set [0, 01/ 1 k1]

via the Hamiltonian

(7.5) Ho(x) = Z [gxf — % Z log |z; — 0]” — % Z log |z; — 4],

iel’ ST iger
1<j
where I’ := [L' + 1, L’ + K]. Since L’ will not play an active role, we will abuse
the notation and set L' = L.

The measure p, lives on the interval [yr,yr+x+1] while the measure og lives
on the interval [0r,054+ k1], and it is difficult to compare them. But after an
appropriate translation and dilation, they will live on the same interval, and from
now on we assume that [yr,yr+x+1] = [0r,004+Kx+1]. The parameter K = N*
has to be sufficiently small since gy and g are not constant functions and we
have to match these two densities quite precisely in the whole interval. There are
some other subtle issues related to the rescaling, but we will neglect them here to
concentrate on the main ideas. Our main result is the following theorem, which is
essentially a combination of Proposition 4.2 and Theorem 4.4 from [10].
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Theorem 7.1. Let 0 < ¢ < %. Fiz K = N¥, 6 = N~% with d = 1 — ¢ and

k= %(p. Then fory € G, we have

]Euy% Z G(N(xi — Ii+1)) — ]Eae% ; G(N(a:i — xi+1))| —0

el

(7.6)

as N — oo for any smooth and compactly supported test function G. A similar
formula holds for more complicated observables of the form ([2I0).

The basic idea for proving Theorem [7.1] is to use the Dirichlet form inequality
(233). Although (Z33)) was stated for an infinite volume measure, it holds for
any measure with repulsive logarithmic interactions in a finite volume and with
the parameter 7~ ! being the lower bound on the Hessian of the Hamiltonian. In
our setting, we denote by 7, ! the lower bound for V2H,, and the Dirichlet form
inequality becomes

[Epy — Eoq KZG( —$¢+1))|

i€l

(7.7)
T4 NE

1/2 ;
< C(=D(ylon) )+ Ce™ Ny /S(uyloo),

where

1 dpy |2
(7.8) Diny | 0) = 5 [ [T/ S22 oo

Thus our task is to prove that

D(py | 76)

. N¢©
(7.9) Ty I

— 0.

By definition,

- N
POl < [ S Zau,

L+1<j<L+K
where Z; is defined as
B B 1 B B 1
7.10 Zi ==V (x;) — = — =W'(x; — .
( ) J 5 (5) N kz: T — g 2 ($J)+N Z z; — O
<L k<L

k>L+K k>L+K

Using the equilibrium relation (I.I0) between the potentials V', W and the densities
ov, ow, we have

Zi B/x]—y N KZL / d +N Z :cj—ﬁk

k<L
k>L+K E>L+K

Hence Z; is the sum of the error terms,

1 1
(7.11) A, :/ ov(y) 4, Ly |
y€lyr.yr+rt1] Ti — Y = Tj— Yk
k>L+K
YL+K+1 _
(7.12) B, = / ) —ewl)
yL Tj—Y

and there is a term similar to A; with y; replaced by 6; and oy replaced by ow .
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With our convention, the total numbers of particles in the interval [y + k11, Y1)

are equal, and thus
YL+ K+1 YL+ K+1
[ wwa= [T v
yL yL

Since the densities py and py are C' functions away from the endpoints A and
B and yr+x+1 — yr is small, |py — pw| is small in the interval [yr+x+1,yr] and

thus B; is small. For estimating A;, we can replace the integral fgo ;‘;—g}dy by

% D ok<L ﬁ with negligible errors, at least for j’s away from the edges, j €
[L+ N&,L + K — N¢]. Thus

C 1 1
7.13 Al < —‘ Tk, Tk .— _ ,
( ) | ]| N KZL 7 7 Ij — Yk «Ij — Ve
kE>L+K

and Tf can be estimated by the assumption |y — | < § from y € G. The
same argument works if j is close to the edge, but k is away from the edges, i.e.,
k< L—-N¢ork>L+ K+ N°. The edge terms, Tjk for |j — k| < N°¢, are
difficult to estimate due to the singularity in the denominator and the event that
many yx’s with & < L may pile up near y;. To resolve this difficulty, we show
that the averaged local statistics of the measure i, are insensitive to the change of
the boundary conditions for y near the edges. This can be achieved by the simple
inequality

(7.14)

’% Z/G(N(JjZ - Ii+1>)[d“3" - dﬂy]’ < C/ |dﬂy/ - dﬂy‘ < C\/ S(/Ly'my)

for any two boundary conditions y and y’. Although we still have to estimate the
entropy that includes a logarithmic singularity, this can be done much more easily.
Therefore, we can replace the boundary condition y;, with y;, = 0 for |j — k| < N¢,
and then the most singular edge terms in (TI0) cancel out.

We note that we can perform this replacement only for a small number of index
pairs (j, k), since estimating the gap distribution by the total entropy, as noted
in (230) in Section 2] is not as efficient as the estimate using the Dirichlet form
per particle. Thus we can afford to use this argument only for the edge terms,
|7 — k| < N¢. For all other index pairs (j,k) we still have to estimate Tf by
exploiting that y is a good configuration, i.e., yx — v is small.

Unfortunately, even with the optimal accuracy § ~ N —1+e" i ([T4) as an input,
the relation (Z9]) still cannot be satisfied for any choice of N ce! < K<N 1—ce’
We do not know whether this is due to our handling of the edge terms or some
other intrinsic reasons. To understand why this might occur, we remark that while
the edge terms become a smaller percentage of the total terms in ([CI4]) as K gets
bigger, the relaxation time to equilibrium for og, determined by the convexity of

b, increases at the same time. At the end of our calculation, there is no good
regime for the choice of K. Fortunately, this can be resolved by using the idea
of the local relaxation measure [34], i.e., we add a quadratic term 5 (z; — 7;)? to
the measure p, and ﬁ(z] — 0;)? to the measure og. With these ideas, we can
complete the proof of Theorem [Tl
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8. MORE GENERAL CLASSES OF RANDOM MATRICES

All our results concerning Wigner matrices hold for a broader class of ensembles
where the matrix elements h;; still have mean zero, E h;; = 0, but their variances
are allowed to vary. More precisely, we assume that the variances o?j = E|hy;|?
satisfy the normalization condition

N
(8.1) doh=1, i=12...,N,
j=1

and they are comparable, i.e.,
(8.2) 0 < Cing < Noj; < Cayp < 00, i,j=1,2,...,N,

for some fixed positive constants Cins and Cgyp. These ensembles are called gen-
eralized Wigner ensembles. In the special case U?j = 1/N, we recover the original
Wigner ensemble. All our results concerning the bulk universality, delocalization
of eigenvectors, and local semicircle laws hold for generalized Wigner matrices as
well.

There is another important class of random matrices, the band matrices, which
are characterized by the property that afj is a function of |i — j| on scale W, which
is called the bandwidth, i.e.,

i —

(8.3) oz = w (L),

where f : R — R, is a bounded non-negative symmetric function with [ f = 1
and [¢ — j]y =i — j mod N. For this class, the local semicircle law is known to
hold at least down to scale 7 ~ W' and all eigenvectors are delocalized at least
on scale W. Moreover, most eigenvectors are known to be delocalized on a much
larger scale W7/ [23] [24], but smaller than W?® [58], and it is expected that the
correct localization length is 2. So far no bulk universality result is known.

The significance of the random band matrices stems from the fact that they
interpolate between discrete random Schrédinger operators with short range hop-
pings (Anderson model) and the Wigner matrices. In particular, random matrix
spectral statistics are expected to hold in the presumed delocalization regime of the
Anderson model in three or higher dimensions. For more details on this exciting
connection, see [66].

Finally we mention the ensemble of sample covariance matrices that play a fun-
damental role in statistics. These are matrices of the form H = A* A, where A is an
M x N matrix with independent identically distributed entries. The semicircle law
is replaced with the Marchenko-Pastur law, but most results listed in this review
remain valid. For more details, see [34] [69].

9. EDGE UNIVERSALITY

Denote by Ay is the largest eigenvalue of a generalized Wigner matrix. The
probability distribution functions of Ay for the classical Gaussian ensembles are
identified by Tracy and Widom [72] [73] to be

(9.1) lim P(N*3(\y —2) < s) = Fj(s),

N—o0
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where the functions Fg(s) can be computed in terms of Painlevé equations and
B =1,2,4 corresponds to the standard classical ensembles. The distribution of Ay
is believed to be universal and independent of the Gaussian structure.

The local semicircle law, Theorem [B.Il combined with a modification of the
Green function comparison theorem, Theorem ] implies the following version of
universality of the extreme eigenvalues. Although it holds for correlation functions
of finite number of eigenvalues, for simplicity we state it for the largest one and for
the case of symmetric matrices only.

Theorem 9.1 (Universality of the largest eigenvalue [38, Theorem 2.4]). Suppose
that we have two N x N symmetric generalized Wigner matrices, H®) and H™),
with matriz elements hy; given by the random variables N=?v;; and N~ ?w,;,
respectively, with v;; and w;; satisfying the uniform suberponential decay condi-
tion B3). Let PV and P¥ denote the probability, and let EV and EW denote the
expectation with respect to these collections of random variables. Suppose that
(9.2) EYv}; = EV ).
Then there is an € > 0 depending on ¥ in B3) such that for any real parameter s
(may depend on N ) we have
PY(N?3(A\y —2) <s—N°)—N—*

<PY(N?3(A\y —2) <s) <P (N} Ay —2) < s+ N )+ N*
for N > Ny sufficiently large, where Ny is independent of s.

(9.3)

Note that although Theorem states that the edge distribution is universal
for a fixed choice of the variances o7;, it does not identify this distribution. In
particular, we do not know if it coincides with the Tracy-Widom distribution apart
from the Hermitian case, when the method of [47] can be applied. The extension
of Theorem [0T] to eigenvectors was recently obtained by Knowles and Yin [48], i.e.,
under the assumption (@.2)), the distributions for the largest eigenvectors coincide.
Similar results hold for the joint distribution of eigenvectors near the edges.

10. ERDOS-RENYI MATRIX

The Erd6s-Rényi matrix is the adjacency matrix of the Erdés-Rényi random
graph [39, [40]. Its entries are independent (up to the constraint that the matrix
be symmetric) and are equal to 1 with probability p and 0 with probability 1 — p.
We rescale the matrix in such a way that its bulk eigenvalues typically lie in an
interval of size of order one. Thus we have a symmetric N x N matrix A = (a;;)
whose entries a;; are independent (up to the symmetry constraint a;; = a;;) and
each element is distributed according to

(10.1) 0y = 71 with probability %, . = \/p_
q |0 with probability 1 — %,

Here v := (1 — ¢*/N)~/? is a scaling introduced for convenience to compare with
Wigner matrices. We also assume that ¢ = \/pN > (log N)¢1°81°¢ N in particular
the Erd6s-Rényi graph is connected.

Theorem 10.1 (Local semicircle law for Erdés-Rényi matrix [25] Theorem 2.9]).
Let m(z) denote the Stieltjes transform of the empirical eigenvalue distribution of
the matriz A, and let G(z) = (A — 2)71 be its resolvent. Assume that the spectral
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parameter z = E+in satisfies |E| < 5 and (log N)* N~ < n < 3 with a sufficiently
large constant L. Then we have the following two estimates:

(i) The Stieltjes transform of the empirical eigenvalue distribution of A satisfies
1 1
: — > Cl— 4|t < - °].
(10.2) P{|m(2’) mse(2)] > (log N) {NT} + q}} < Cexp [ — c(log N)°]

(ii) The individual matriz elements of the Green function satisfy that

(10.3)

.. — 5. C jmmsc(z) L 1
P{%MG”(Z) Sigma(2)] 2 (log N)° | oy +N77+q}

< Cexp[—c(logN)].

Compared with the local semicircle law, Theorem B there is an extra factor
1/q appearing in the error estimates of Theorem [0l This extra error term affects
the rigidity estimate of eigenvalues, and ([B.2]) becomes

(104) =l < Qog N[N g72) G N2,

for ¢ = v/pN > N'/3. We also have an estimate for the regime ¢ < N'/3, but
that is weaker. Moreover, under the assumption ¢ > N'/3, both bulk and edge
universality are proved (see Theorem 2.5 and 2.7 in [25]). It is well known that the
largest eigenvalue Ay of A satisfies

1
10.5 AN = v+ — +0o(1),
(10.5) N o=t (1)

hence it is located far away from the bulk spectrum. Therefore, the edge universality
for Erdos-Rényi matrices refers to the second largest eigenvalue instead of the largest
one. Since the matrix elements of A have non-zero means, both the edge and bulk
universality require substantial new ideas in addition to those we have sketched.
We refer the interested readers to the original papers [25, [26] for more detailed
explanations.

11. HISTORICAL REMARKS

Finally, we summarize the recent history related to the universality of local eigen-
value statistics of Wigner matrices. The three-step approach was first introduced in
[27] in the context of Hermitian Wigner matrices, and it led to the first proof of the
Wigner-Dyson-Gaudin-Mehta conjecture for Hermitian Wigner matrices. It works
whenever the distributions of the matrix elements are smooth. This approach was
followed by all later works on the bulk universalities. We now review the history of
Steps 1-3 separately, and we start with the history of Step 1, the local semicircle
law.

The semicircle law was proved by Wigner for energy windows of order one.
Various improvements were made to shrink the spectral windows; in particular,
results down to scale N~'/2 were obtained by [4] and [44]. The result at the
optimal scale, N~!, referred to as the local semicircle law, was established for
Wigner matrices in a series of papers [30, BI, B2]. The method was based on a
self-consistent equation for the Stieltjes transform of the eigenvalues, m(z), and the
continuity in the imaginary part of the spectral parameter z. As a byproduct, the
optimal eigenvector delocalization estimate was proved. In order to deal with the
generalized Wigner matrices, we needed to consider the self-consistent equation of
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Gi;(z), the matrix elements of the Green function, since there is no closed equation
for m(z) = N='TrG(z) [36, 37]. In particular, this method implied the optimal
rigidity estimate of eigenvalues in the bulk in [37] and up to the edges in [38]. The
estimate on G;; provided a simple alternative proof of the eigenvector delocalization
estimate. The extension of the local semicircle law to the Erdds-Rényi matrices was
recently made in [25].

We now review the history of Step 2. Recall that Hermitian Gaussian divisible
ensembles are matrices of the form e~*/2Hy + (1 — e7*)'/2U, where U is the GUE
and Hy is a Wigner ensemble. The universality of this ensemble for a large class of
H, and for parameters ¢ of order one was proved by Johansson [46]. It was extended
to complex sample covariance matrices by Ben Arous and Péché [6]. There were
two major restrictions of this method:

1. The Gaussian component was fairly large and it was required to be of order
one independent of V.

2. The method relies on an explicit formula by Brézin and Hikami [I2] for the
correlation functions of eigenvalues.

This formula originates in the Harish-Chandra/Itzykson/Zuber integral [45] and
it is valid only for Gaussian divisible ensembles with unitary invariant Gaussian
component. The size of the Gaussian component was reduced to N~1*¢ in [27] by
using an improved formula for correlation functions and the local semicircle law
from [30] BT, 32].

To eliminate the usage of an explicit formula, a conceptual approach for Step
2 via the local ergodicity of Dyson Brownian motion was initiated in [33]. In
this paper, the first version of the local relaxation flow was introduced, but it
was rather complicated. In [34] we found a much simpler way to enhance the
convexity of the Dyson Brownian motion, and we proved a general theorem for
local ergodicity of DBM and related flow, i.e., Theorem 2.1l This theorem applies
to all classical ensembles,; i.e., real and complex Wigner matrices, real and complex
sample covariance matrices, and quaternion Wigner matrices. The local relaxation
flow in the simple form (Z25]) first appeared in [34]. The relaxation time to local
equilibrium proved in these two papers was not optimal; the optimal relaxation
time, conjectured by Dyson, was obtained later in [38].

The third and final step is to approximate the local eigenvalue distribution of a
general Wigner matrix by that of a Gaussian divisible one. The first approximation
result was obtained via the reversal heat flow in [27] which required some smooth-
ness of the distribution of matrix elements. Shortly after, Tao and Vu [67], proved
a comparison theorem with a four moment matching condition. Instead of using a
Gaussian divisible ensemble with a small (N~!'7¢) Gaussian component, they re-
lied on Johansson’s result [46] to provide Hermitian Gaussian divisible ensembles
for comparison. This proved the universality of Hermitian Wigner matrices, pro-
vided that the distributions of matrix elements have vanishing third moment and
are supported on at least three points. These conditions were removed in [28] by
combining the arguments of [27] and [67].

Due to the lack of a Brézin-Hikami type formula for the symmetric matrices,
there was no extension of Johansson’s result [46] to this case, and the universality for
symmetric Wigner ensembles was much more difficult to prove. However, the result
of [67] implies that the local eigenvalue statistics of symmetric Wigner matrices
and GOE are the same, but under the restriction that the first four moments of
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the matrix elements exactly match those of GOE. The resolution of the Wigner-
Dyson-Gaudin-Mehta conjecture for symmetric matrices, i.e., Theorem 21 for real
symmetric matrices, was obtained in [33, B6]. In these papers, two new ideas
were introduced: the local relaxation flow [33] and the Green function comparison
theorem [36]. Starting from the paper [36], the variances were allowed to vary and
the universality was extended to generalized Wigner matrices. The real Bernoulli
random matrices required a more refined argument [37]. Finally, the technical
condition assumed in all these papers, i.e., that the probability distributions of
the matrix elements decay subexponentially, was reduced to the (4 4+ £)-moment
assumption ([8) by using the universality of Erdds-Rényi matrices [26].

The Green function comparison theorem, Theorem EI] uses the same four mo-
ment conditions which appeared earlier in [67], but it compares matrix elements
of Green functions at a fixed energy and not just traces of Green functions which
carry information on eigenvalues near a fixed energy. The result of [67], on the other
hand, concerns individual eigenvalues with fixed labels. Both proofs used the local
semicircle law and Lindeberg’s idea (introduced in his proof of the central limit
theorem). Lindeberg’s idea in the context of random matrices appeared earlier in
a proof of the Wigner semicircle law by Chatterjee [I3]. The approach [67] requires
additional difficult estimates due to singularities from neighboring eigenvalues, but
the Green function comparison theorem follows directly from the local semicircle
law in Step 1, i.e., Theorem B.I] via standard resolvent expansions. The difficulties
associated with the singularities of eigenvalue resonances are completely absent in
the Green function comparison theorem. Finally, we mention that Green function
comparison can also yield comparison of eigenvalues with fixed labels; see the recent
work by Knowles and Yin [48].

The edge universality for Wigner matrices was first proved via the moment
method by Soshnikov [65] (see also the earlier work [62]) for Hermitian and symmet-
ric ensembles with symmetric distributions. By combining the moment method and
Chebyshev polynomials, Sodin [63] [64] proved edge universality of certain band ma-
trices and some special class of sparse matrices with symmetric distribution. The
symmetry assumption was partially removed in [59, [60]. The edge universality
without any symmetry assumption was proved in [68] under the condition that
the distribution of matrix elements is subexponential decay and the first three mo-
ments match those of a Gaussian distribution. The subexponential decay condition
is not optimal for edge universality, in fact the finiteness of the fourth moment was
conjectured to be sufficient. For Gaussian divisible Hermitian ensembles this was
proved in [47]. This is optimal, since on the other hand, the result by Auffinger,
Ben Arous, and Péché [3] showed that the distribution of the largest eigenvalues
converges to a Poisson process if the entries have at most 4 — ¢ moments. For
Wigner matrices with arbitrary symmetry class, the edge universality was proved
under the sole assumption that the matrix entries have 12 4+ ¢ moments [26]. Fi-
nally, we mention that extension of universality to eigenvectors near the edge was
obtained by Knowles and Yin [48] under the two moment matching condition and
with four moment matching condition in [70].

Although we have focused only on Wigner matrices and S-ensembles, the ideas
summarized in this review should be applicable to a wide class of matrix ensem-
bles. We have already mentioned some natural open questions related to possible
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improvements of our results. These concern removing some technical conditions
such as

(i) the restriction ¢ > N/ in the bulk universality of the Erdés-Rényi matrix;
(ii) the 12 + £ moment condition for edge universality.

A more ambitious goal would be to prove universality for systems with some spa-
tial structure, such as band matrices or related models that may open up a path
towards universality for random Schrodinger operators and other realistic models
of quantum chaos.
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