
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 49, Number 3, July 2012, Pages 447–453
S 0273-0979(2012)01378-2
Article electronically published on May 2, 2012

SELECTED MATHEMATICAL REVIEWS

related to the paper in the previous section by

DE LELLIS AND SZÉKELYHIDI
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Around 1970, the world of differential geometry was astounded by the news that
a young Russian by the name of Mikhael Gromov had proved that any noncompact
differential manifold admits a Riemannian metric of positive sectional curvature,
and also one of negative sectional curvature. We were also told that this was
achieved by a “soft” method of topological sheaves. Moreover, in one and the
same setting, Gromov also proved generalizations of both the Hirsch-Smale immer-
sion theorem and the A. Phillips submersion theorems. Many more results were
promised. Slowly, Gromov’s papers (some in collaboration with Ya. M. Èliashberg
and V. A. Rokhlin) filtered to the West in the early seventies. Here are a sample of
those particularly relevant to the present review: the author [in Actes du Congrès
International des Mathématiciens, Tome II (Nice, 1970), 221–225, Gauthier-Villars,
Paris, 1971;MR0420697 (54 #8709); Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969),

707–734;MR0263103 (41 #7708)], the author and Èliashberg [Math. USSR-Izv. 5
(1971), 615–639;MR0301748 (46 #903)], the author [ibid. 7 (1973), no. 2, 329–
343;MR0413206 (54 #1323)] and the author and Rokhlin [Russian Math. Surveys
25 (1970), no. 5, 1–57;MR0290390 (44 #7571)]. After a lapse of some fifteen years,
the author has now presented what would appear to be his valedictory statement
on the subject. Within the covers of the volume under review, he has deepened,
generalized and synthesized the materials from the diverse earlier publications to
arrive at a coherent account starting from first principles. The appearance of this
book is a major event in geometry during the past decade.

The aim and scope of the book are succinctly set forth in the foreword: “The
classical theory of partial differential equations is rooted in physics, where equations
(are assumed to) describe the laws of nature. Law-abiding functions, which satisfy
such an equation, are very rare in the space of all admissible functions. . . .Moreover,
some additional conditions often insure the uniqueness of solutions. . . . We deal in
this book with a completely different class of partial differential equations (and
more general relations) which arise in differential geometry rather than in physics.
Our equations are, for the most part, under-determined (or, at least, behave like
those) and their solutions are rather dense in spaces of functions. We solve and
classify solutions of these equations by means of direct (and not so direct) geometric
constructions. Our exposition is elementary and the proofs of the basic results
are self-contained.” The partial differential relations alluded to above are usually
either equations or inequalities. A typical example of the former is the system
of partial differential equations arising from the isometric imbedding problem for
Riemannian manifolds. Let M be an n-dimensional Riemannian manifold with
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metric g =
∑n

i,j=1 gijdx
idxj . Let f : M → Rq be a C∞ map into a high-dimensional

Euclidean space, and let f = (f1, · · · , fq). We want f to be injective and that its
components {fa} satisfy: (∗)

∑q
a=1(∂f

a/∂xi)(∂fa/∂xj) = gij for all i, j = 1, · · · , n.
This system (∗) expresses of course the fact that the induced metric on f(M) equals
g. Here we have 1

2n(n+ 1) equations in the q unknowns {f1, · · · , fq}. Since q will
be taken to be large, (∗) is grossly under-determined. A typical example of the
kind of partial differential inequalities treated in this book is the following: Given
differential manifolds V , W with dimensions n and q, respectively (n ≤ q), we
ask if there is an immersion f : V → W . In terms of local coordinates, df can be
represented as an n×q matrix. Let {Di} be the

(
q
n

)
submatrices of dimension n×n

in df . Then the property of f ’s being an immersion is expressed by the following
inequality to be satisfied at each point: (#)

∑
i(detDi)

2 > 0.
Technically, the formulation of these problems takes a different form. In Part

1 of the book, which comprises four sections, one finds a general discussion of
this formalism together with a survey of the basic problems and results. Thus let
p : X → V be a smooth fibration and let X(r) be the space of germs of r-jets of
smooth sections V → X. Thus each X(r) is a bundle over X whose fibre at each
x ∈ X consists of all linear maps ψ from T r

p(x)V (the tangent space at p(x) of V of

order r) to T r
xX, such that for all 1 ≤ s ≤ r, ψ(T s

p(x)V ) ⊂ T s
xX. By taking the rth

order jet of a smooth section f : V → X, we get a smooth section Jrf : V → X(r).
The set of all such sections {Jrf} as f varies over all sections f : V → X is called the
set of holonomic sections. Clearly Jrf is locally nothing but the string of all partial
derivatives of f up to order r. A differential relation on the sections of p : X → V
is just a subset R ⊂ X(r), and a solution of R is by definition a section f : V → X
such that Jrf(V ) ⊂ R. Thus we may identify the solutions of a differential relation
R with the holonomic sections V → X(r) which map into R. Usually it is easy
to construct a continuous section f : V → R, or else one such is given. Then the
obvious way to obtain a solution of R is to deform by homotopy the section f
into a holonomic one (abbreviation: homotop f into a holonomic section), if this is
possible. We say R satisfies the homotopy principle (h-principle for short) if every
continuous section V → R can be homotoped into a holonomic section. The main
goal of this book is to show, often surprisingly, that in a wide variety of situations,
the h-principle holds for the partial differential relation at hand. For the sake of
simplicity, we take up three examples to give a flavor of this work. (I) Let p : X → V
be a holomorphic fibre bundle with a Stein manifold V as base, with a complex
Lie group G as structure group, and with G/H as fibre where H is a complex Lie
subgroup of G. Define the relation R ⊂ X(1) to consist of complex linear maps
from the tangent space Tp(x)V to TxX for each x ∈ X. The Cauchy-Riemann
equations imply that every holonomic section of R must be holomorphic. The
celebrated Grauert-Oka principle asserts that the h-principle holds for this R [H.
Grauert, Math. Ann. 133 (1957), 450–472;MR0098198 (20 #4660)]. (II) Let V , W
be differential manifolds of dimensions n and q, respectively, n ≤ q. Let X = V ×W
and let p : X → V be the obvious projection. Now a section of X(1) → V is a map
v → ((v, w), ψ), where v ∈ V , w ∈ W and ψ is a linear map TvV → TwW . A
holonomic section is then a map v → ((v, f(v)), df : TvV → Tf(v)W ), where f is a
map from V to W , and hence the holonomic section may be simply identified with
the pair (f, df). Now define the immersion relation R on this X(1) to consist of
only those ((v, w), ψ) where ψ is injective. It follows that the holonomic sections of
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R in this case consist of immersions V → W . The immersion theory of Hirsch and
Smale [M. W. Hirsch, Trans. Amer. Math. Soc. 93 (1959), 242–276;MR0119214 (22
#9980)] guarantees that the h-principle is valid if either n < q or if V is open.
(III) Let V be a Riemannian manifold of dimension n, and let X = V ×Rq, where
q ≥ 1

2 (n + 2)(n + 3). As usual, p : X → V is given by the obvious projection.

Now define R ⊂ X(2) to be the set of all ((v, y), ψ) where v ∈ V , y ∈ Rq and ψ
is a nonsingular linear map T 2

v V → T 2
yR

q such that the restriction of ψ to TvV
is an isometric linear map into TyR

q. With the same reasoning as in (II), we see
immediately that a holonomic section of this R is just an isometric immersion of V
into Rq whose second order differential is everywhere nonsingular. Such immersions
are called free isometric immersions, and they originated with the classical work of
J. F. Nash, Jr. [Ann. of Math. (2) 63 (1956), 20–63;MR0075639 (17,782b)]. Now
a theorem of the author states that this R also obeys the h-principle.

Of course the book considers a wide range of topics (submersions, C∞ folia-
tions, isometric imbeddings of Riemannian manifolds, contact structures, symplec-
tic structures, etc.), but through these three examples one can already perceive
many of the central features of this work. First, it does not give a proof of (I), i.e.,
the Grauert-Oka principle. This is perhaps due to the fact that this principle is
a theorem in the theory of over-determined systems. But by the same token, the
author does infuse every topic that gets discussed in the book with new results or
a new viewpoint. Second, while the whole book is concerned with only one prob-
lem (when does the h-principle hold?), the consideration of the h-principle provides
only the philosophical backbone to the book. Technically, each topic is treated from
a perspective (sometimes up to three different perspectives, as in the case of the
Hirsch-Smale theorem in (II)) uniquely its own. For example, (III) requires careful
attention to the hard analysis inherent in the Nash imbedding theorem, while (II) is
of course free from such considerations. Third, while some of the results treated in
this book are partly or wholly known ((III) and (II) respectively, for example), the
new ideas and improvements the author brings to these well-known topics are con-
siderable. Thus he not only gives the Hirsch-Smale theorem three different proofs
(recall Atiyah’s dictum: if you only have one proof for a theorem then you cannot
say you understand it very well), but the deeper understanding so achieved immedi-
ately allows him not only to treat submersion, k-mersions, etc. in the same setting,
but also to draw new conclusions as well; for example, the theorem of the author
and Èliashberg that holomorphic immersions of Stein manifolds into complex Eu-
clidean space of strictly higher dimension also obey the h-principle. As another
example, the result in (III) above on free isometric immersions leads immediately
to the smallest known dimension of the receiving Euclidean space for isometric im-
mersions of Riemannian manifolds. Last but not least, the reader will be happily
surprised at every turn that, running through the many seemingly unrelated topics
that show up in this book, there is the common thread of the h-principle (and
sometimes more). The ability to draw together disparate topics under one roof is
in fact a prominent feature of the author’s work.

The heart of the book is Part 2, also comprising four sections. Its concern is
the methods to prove the h-principle, to wit, removal of singularities, continuous
sheaves, inversion of differential operators, and convex integration. These are, ap-
propriately enough, highly technical matters so that a short discussion of these
would make no sense and a sufficiently detailed discussion would be impossibly
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long. Perhaps a few peripheral remarks would suffice. The author’s aim here is of
course to prove theorems that would guarantee the validity of the h-principle in the
most general and in the maximum number of situations. These theorems therefore
tend to be abstract and do not make easy reading. The reviewer feels that reading
the first four of the papers cited at the beginning could be helpful. In these papers,
the intended applications of each method are always stated clearly, and the method
comes through in a more transparent fashion because the machinery is less sophis-
ticated. True, the exposition in these papers is sometimes sketchy in the technical
details, but for the purpose of acquiring a general idea of the arguments this could
even be an advantage. For example, to see how the Hirsch-Smale theorem could be
proved by the method of continuous sheaves or convex integration, reading the 1969
paper [op. cit.;MR0263103 (41 #7708)] or the 1973 paper [op. cit.;MR0413206 (54
#1323)] would seem to yield this information much more readily. Another relevant
remark is that Part 3 of the book contains the most substantive applications of the
method of inversion of differential operators (and therefore to a certain extent, of
the method of continuous sheaves), so perhaps they should be read simultaneously.

Finally, a few words about Part 3 on isometric C∞-immersions. This part oc-
cupies 140 out of the 360 pages of the book, and this fact makes this topic unique
among the many applications of the general theory developed here. Note that
the explicit mention of “C∞” is significant: this is to distinguish it from the C1-
immersion theory of Nash-Kuiper. The latter is of a totally different character; for
example, every n-dimensional Riemannian manifold can be C1 isometrically im-
mersed into R2n. In this book, the C1 theory is taken up in the context of convex
integration in Part 2 (this part of the author’s work seems to be appearing in print
for the first time). What show up in Part 3 are various refinements of, and addi-
tions to the pioneering work of Nash concerning isometric imbedding of Riemannian
manifolds into Euclidean space: improvements on the receiving dimension (alluded
to above), what happens in low dimensions, the role of the second fundamental
form, the case of indefinite metrics, and the case of a symplectic form (replacing
the Riemannian metric). For this part, the paper of Gromov-Rokhlin referred to
at the end of the first paragraph can serve as a good introduction.

As we mentioned above, the author intended this book to be an elementary
exposition. This should not be taken literally. One should rather approach this
as a research monograph where new ideas turn up almost in every page. Many of
these ideas will undoubtedly inspire further developments.

From MathSciNet, May 2012
Hung-Hsi Wu

MR1231007 (94h:35215) 35Q35; 28A80, 76C99

Scheffer, Vladimir

An inviscid flow with compact support in space-time.

The Journal of Geometric Analysis 3 (1993), no. 4, 343–401.

The purpose of this paper is to construct a nontrivial weak solution of the in-
compressible Euler equations in two space dimensions with compact support in
space-time. This solution satisfies the usual definition of weak solution, obtained
by multiplying the equations by divergence-free test functions and integrating by
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parts, though the test functions do not need to have compact support. The solution
has bounded kinetic energy almost everywhere in time.

The author introduces the notion of froth, a 4-tuple consisting of a bounded,
open, nonempty set in space-time X, a countable set of indices P , a collection of
disjoint open sets contained in X, indexed by P , such that the Lebesgue measure
of the complement of their union relative to X is zero, and a collection of ordered
pairs of complex numbers, also indexed by P . These numbers are such that the
piecewise constant function defined on X, taking values in the set of ordered pairs
of complex numbers C2, satisfies certain conditions. The author shows that if the
collection of pairs of complex numbers in the definition of the froth all lie on a
specific parabola E in C2 then they give rise to a weak solution of the 2D Euler
equations. The proof amounts to the construction of a nontrivial E-froth. The
author defines simple froths and develops a calculus of froths, to show how to
construct a complicated froth from simple ones.

The resulting weak solution has the appearance of a fractal and is very irregular.
The image of space-time is a countable set.

This paper shows nonuniqueness of weak solutions to the inviscid incompressible
fluid flow equations if no further regularity is assumed other than bounded kinetic
energy, a landmark result. The paper is very technical.

From MathSciNet, May 2012
Helena J. Nussenzveig Lopes

MR1476315 (98j:35149) 35Q30; 35D05, 76C99

Shnirelman, A.

On the nonuniqueness of weak solution of the Euler equation.

Communications on Pure and Applied Mathematics 50 (1997), no. 12, 1261–1286.

The aim of this paper is the analysis of weak solutions of the Euler equations
for nonviscous incompressible flows. The author studies flows on the 2-dimensional
torus and constructs a weak solution of the Euler equations that belongs to L2 and
has compact support in time. This construction is the main result of the paper.
The existence of such a weak solution which is identically zero outside a finite time
interval means, in particular, that the weak solution with zero initial velocity is
not unique. The corresponding result for flows on the plane was obtained by V.
Scheffer [J. Geom. Anal. 3 (1993), no. 4, 343–401;MR1231007 (94h:35215)], but the
author in the paper under review presents a simpler construction of a nonzero weak
solution so that the nature of these solutions becomes clearer. The main tool is the
construction of a sequence of solutions of nonhomogeneous Euler equations with
right-hand sides that become more and more oscillatory and a proof that the limit
is a weak solution of the homogeneous equations.

From MathSciNet, May 2012
Alexander Yurjevich Chebotarev
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MR1777341 (2002g:76009) 76B03; 35D05, 35Q30, 76F99

Shnirelman, A.

Weak solutions with decreasing energy of incompressible Euler
equations.

Communications in Mathematical Physics 210 (2000), no. 3, 541–603.

In this paper A. Shnirelman proves the existence of a weak solution of 3D in-
compressible Euler equations which has a decreasing kinetic energy. More precisely
there exists a weak solution u(t, x) of the equation ∂tu+(u ·∇)u+∇p = 0, ∇·u = 0
such that

∫
|u|2 is decreasing with time. This is a major result and a great achieve-

ment in fluid mechanics; it provides a new insight into the complex structure of
weak solutions.

Of course if u is sufficiently smooth (say C1, sufficiently rapidly decreasing at
infinity), the kinetic energy is conserved (just multiply the equation by u and inte-
grate by parts). This is physically natural: if the flow is smooth, since the Euler
equations model an inviscid fluid, there is no dissipative mechanism, and it is phys-
ically expected that the kinetic energy is preserved.

If u is only L2, the former integration by parts cannot be justified. The author
conjectures that this is linked with the behavior of turbulent flows for vanishing
viscosities. Even if the viscosity is very small (or the Reynolds number very high),
physically the kinetic energy decreases. It is therefore interesting to investigate the
existence of weak solutions of Euler equations with a decreasing energy.

The construction of the weak solution is very intricate. The starting point is the
notion of generalized flows, introduced by Y. Brenier, and that of sticky particles.
The construction relies on a “fractal type” combination of multiphase flows, sticky
behavior and deep understanding of mass exchange between phases of a multiphase
flow.

This paper introduces many new ideas in the field and deserves careful study.

From MathSciNet, May 2012
Emmanuel Grenier

MR2600877 (2011e:35287) 35Q31; 34A60, 35D30, 76B03

De Lellis, Camillo; Székelyhidi, László, Jr.

The Euler equations as a differential inclusion.

Annals of Mathematics. Second Series 170 (20009), no. 3, 1417–1436.

The authors consider the Euler equations in R
n:

(1) ∂tv+div(v⊗v)+∇p−f = 0, div v = 0.

They are interested in weak solutions of (1) and reformulate this system as a dif-
ferential inclusion. In the introduction they survey many works; among them they
cite results of V. Scheffer [J. Geom. Anal. 3 (1993), no. 4, 343–401;MR1231007
(94h:35215)] and of A. I. Shnirelman [Comm. Pure Appl. Math. 50 (1997), no. 12,
1261–1286;MR1476315 (98j:35149); Comm. Math. Phys. 210 (2000), no. 3, 541–
603;MR1777341 (2002g:76009)]. These results follow from the main result of the
present paper. In particular, the authors show that if f = 0, there exist a v ∈
L∞(Rn

x ×Rt;R
n) and a p ∈ L∞(Rn

x ×Rt,R), solving system (1) in the sense of dis-
tributions, such that v is not identically zero, and v and p are compactly supported
in spacetime R

n
x × Rt.
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The second section is devoted to giving a plane-wave analysis of the Euler equa-
tions in the spirit of L. C. Tartar [in Nonlinear analysis and mechanics: Heriot-
Watt Symposium, Vol. IV, 136–212, Res. Notes in Math., 39 Pitman, Boston, MA,
1979;MR0584398 (81m:35014)]. After a brief presentation of the work of Tartar,
the authors give the adaptation to the Euler equations and the new variables to
consider. As an exact plane-wave solution won’t be compactly supported unless
it is zero, they introduce plane-wave-like solutions of the system, called localized
plane waves. In Section 3 they provide a proof of existence of such solutions. One
of the ideas is to introduce oscillations in order to control the error.

The main theorem of the paper is stated and proved in Section 4. Another proof
of this theorem using convex integration [see S. Müller and M. A. Sychev, J. Funct.
Anal. 181 (2001), no. 2, 447–475;MR1821703 (2002c:35281)] is given in Section 5.

From MathSciNet, May 2012
Frédéric Charve

MR2564474 (2011d:35386) 35Q31; 35A02, 35L65, 76N15

De Lellis, Camillo; Székelyhidi, László, Jr.

On admissibility criteria for weak solutions of the Euler equations.

Archive for Rational Mechanics and Analysis 195 (2010), no. 1, 225–260.

This paper concerns the uniqueness problem for weak solutions to incompressible
and compressible Euler equations.

In a previous paper [Ann. of Math. (2) 170 (2009), no. 3, 1417–1436;
MR2011e:35287] the authors introduced a framework for constructing weak solu-
tions to Euler equations by means of convex integration and analysis of oscillations
in conservation laws. By means of the Baire category principle, they proved the
existence of time-space compactly supported weak solutions.

A remaining question is whether some suitable dissipative estimates on the so-
lution would force the uniqueness. The answer to this question is contained in the
paper under review. The natural quantity to consider is the energy.

The authors consider two types of inequalities:

(1) the weak energy inequality is satisfied if the energy at any positive time is
less than the energy at t = 0;

(2) the strong energy inequality is the requirement that the energy decreases
as a function of t > 0.

The main result of the paper is that by suitable adaptation of the method in-
troduced in [op. cit.], it is possible to construct infinitely many weak solutions such
that

(1) both energy inequalities are satisfied;
(2) the strong is satisfied but not the weak;
(3) the weak is satisfied but not the strong.

The paper is particularly well written and clear, despite the difficulty of the
subject and the importance of the results obtained.

From MathSciNet, May 2012
Stefano Bianchini


