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The theory of large deviations deals with the estimation of small probabilities,
particularly those that are exponentially small in some natural parameter. The
general goal is to identify the constant in the exponent that dictates the exponential
rate of decay. In many situations the constant can be “explicitly” calculated and
turns out often to be characterized by a variational formula. It is not surprising
because, if {Pn(·)} is a sequence of probability measures, for any two sets A,B even
if they are not disjoint,

(0.1) lim
n→∞

1

n
logPn(A ∪B) = max{ lim

n→∞

1

n
logPn(A), lim

n→∞

1

n
logPn(B)}.

The following is a mathematically precise formulation. Let X be a complete sep-
arable metric space and {Pn} a sequence of probability measures defined on the
Borel subsets of X. We say that Pn satisfies the large deviation principle with a
rate function I(x) : X → [0,∞] if the following is valid:

• The function I(x) is lower semi-continuous and the level sets

(0.2) K� = {x : I(x) ≤ �} are compact for every � < ∞.

• For every closed set C ∈ X

(0.3) lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x).

• For every open set G ∈ X

(0.4) lim inf
n→∞

1

n
logPn[G] ≥ − inf

x∈G
I(x).

Together they imply that for any set A for which

inf
x∈Ao

I(x) = inf
x∈Ā

I(x)

we have

(0.5) lim
n→∞

1

n
logPn[A] = − inf

x∈A
I(x).

One can think of I(x) as the local rate of decay of Pn near x, and it can be recovered
by

I(x) = lim
ε→0

lim sup
n→∞

1

n
logPn[B(x, ε)],

where B(x, ε) is the ball around x of radius ε. From (0.1) and the covering property
of compact sets, the local upper bound leads immediately to (0.3) for compact sets.
To go from compact sets to closed sets one needs the following exponential tightness
estimate.
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Given any � < ∞, there is a compact setK� such that its complementKc
� satisfies

(0.6) lim sup
n→∞

1

n
logPn[K

c
� ] ≤ −�.

Upper bounds in probability are usually obtained through Tchebychef’s inequality.
If F (x) is a continuous function and we can estimate

(0.7) lim sup
n→∞

1

n
log

∫
enF (x)dPn ≤ ψ(F ),

then by Tchebychef’s inequality,

lim sup
n→∞

1

n
logPn[B(x, ε)] ≤ −F (x) + ψ(F ) + o(ε),

which leads to

I(x) ≥ sup
F

[F (x)− ψ(F )].

For most problems there is a natural class of function F for which one can estimate
(0.7) and the supremum above is taken over F .

The lower bounds are often obtained by “tilting”. It is enough to show that for
x ∈ X with I(x) < ∞,

lim
ε→0

lim inf
n→∞

1

n
logPn[B(x, ε)] ≥ −I(x).

One can show this by exhibiting a sequence Qn � Pn with the property Qn → δx
as n → ∞ and

lim sup
n→∞

1

n
logH(Qn|Pn) ≤ I(x),

where

H(Q|P ) =

∫
log

dQ

dP
dQ =

∫
dQ

dP
log

dQ

dP
dP.

The proof is quite elementary. It follows from expressing for any neighborhood G
of x, using Jensen’s inequality

Pn(G) = Qn(G) · 1

Qn(G)

∫
G

exp [− log
dQn

dPn
]dQn

≥ Qn(G) · exp [− 1

Qn(G)

∫
G

log
dQn

dPn
]dQn.

Another way to obtain the lower bound is through the Gärtner-Ellis theorem.

Theorem 0.1. If

Φ(t) = lim
n→∞

1

n
log

∫
etnF (x)dPn

exists and is differentiable at some t = t0 with Φ′(t0) = m, then

lim
ε→0

lim inf
n→∞

1

n
logPn[|F (x)−m| ≤ ε] ≥ −mt0 +Φ(t0) = − sup

t
[mt− Φ(t)].

The following facts follow easily from the definitions, provided (0.6) holds.

Theorem 0.2. If Pn satisfies (0.6), then a large deviation principle with a rate
function I(x) holds if and only if, for any bounded continuous function F (x),

lim
n→∞

1

n
log

∫
enF (x) dPn = sup

x
[F (x)− I(x)].
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Theorem 0.3. If {Pn} satisfies (0.6) and for any x ∈ X and any sequence Qn → δx

lim inf
n→∞

H(Qn|Pn) ≥ I(x),

then the large deviation upper bound (0.3) holds for Pn with the rate function I(x).

In order to establish the large deviation principle for a sequence {Pn} with rate
function I(x), it is clearly sufficient to show the existence of the limit

lim
n→∞

1

n
log

∫
enF (x) dPn = ψ(F )

for a rich enough class of functions. This can sometimes be shown by establishing
sub-additivity in n. If Pn is the distribution of the mean of n independent and
identically distributed random variables

Φ(t) =
1

n
log

∫
entx dPn(x) = log

∫
etxdP1(x)

and as was proved by Cramér, a large deviation principle holds with

I(x) = sup
t
[tx− Φ(t)].

The current volume is the latest among several books and monographs [2], [3],
[4], [9] and [12] that describe aspects of this theory. It focuses on Markov processes.
The approach of this particular monograph is best illustrated through an example.
Consider on Rd a vector field

X =
d∑

j=1

bj(x)
∂

∂xj
,

and perturb it by small noise. In other words consider the stochastic differential
equation

dxi(t) = bi(x(t))dt+
√
ε
∑
j

σi,j(x(t))dβj(t);x(0) = x.

We are interested in the large deviation property of the distribution P ε
x of the

solution xε(t) at time t = 1. If we can evaluate

Λ(x, f) = lim
ε→0

ε logEP ε
x [e

f(x(1))
ε ]

and show that

λ(x, f) = sup
y
[f(y)− Ix(y)],

we have essentially established the large deviation principle for P ε
x with rate function

Ix(y). The function

u(t, x) = ε logEP ε
x [e

f(x(1))
ε ]

solves

ut =
ε

2

∑
i,j

ai,j(x)uxi,xjj(x) +
∑
i,j

ai,j(x)uxi
(x)uxj

(x) +
∑
j

bj(x)uxj
(x)

with u(0, x) = f(x). Here ai,j(x) =
∑

k σi,k(x)σj,k(x). Equivalently we need the
limit as ε → 0 of uε(0, x) where

uε
t +

ε

2

∑
i,j

ai,j(x)u
ε
xi,xj

(x) +
∑
i,j

ai,j(x)u
ε
xi
(x)uε

xj
(x) +

∑
j

bj(x)u
ε
xj
(x) = 0
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with uε(1, x) = f(x). The limit will be the solution u(t, x) of the Hamilton-Jacobi
equation

ut +
∑
i,j

ai,j(x)uxi
(x)uxj

(x) +
∑
j

bj(x)uxj
(x) = 0;u(1, x) = f(x)

evaluated at t = 0, given by

u(0, x) = sup
x(·)

x(0)=x

[f(x(1))− 1

2

∫ 1

0

〈a−1(ẋ(t)− b(x(t))), (ẋ(t)− b(x(t)))〉dt]

showing that the rate function is

Ix(y) =
1

2
inf
x(·)

x(0)=x
x(1)=y

[

∫ 1

0

〈a−1(ẋ(t)− b(x(t))), (ẋ(t)− b(x(t)))〉dt].

In fact if we consider the distribution Qε
x of the solution in the interval [0, T ] as a

function of t, rather than just the value at time 1, it will converge weakly to the
distribution with all its mass at the solution of the deterministic ODE

ẋ = b(x);x(0) = x.

There will be a large deviation result with rate function

I(x(·)) = 1

2

∫ T

0

〈a−1(ẋ(t)− b(x(t))), (ẋ(t)− b(x(t)))〉dt

provided x(0) = x. Such large deviation principles were first considered in Schilder
[8] and Strassen [10] for Browninan motion, and in Varadhan [11] for diffusions
with b = 0, and by Glass [6] and independently by Ventcel and Freidlin [13] for
the general case. This idea started by Hopf [7] and Cole [1] and developed further
by Fleming and Souganidis [5], is the general theme of this monograph. While the
expectation satisfies a linear partial differential equation, the logarithm will satisfy
a nonlinear equation. As ε → 0 we will get, in the limit, a first order nonlinear
equation whose solution is given by a variational formula. The identification of the
limit as the relevant solution of the limiting nonlinear equation is done through the
theory of viscosity solutions.

The book is organized into three parts. The first part discusses the general
theory of large deviations along with some of the basic notions. The second part
studies the nonlinear semigroups that arise and establishes methods to prove their
convergence. The limiting equations in general will fail to have classical solutions
and the theory of viscosity solutions is then used as a tool to identify the limit. The
last part is devoted to several classes of examples to which the methods developed
in the second part are applied.
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