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NOTES ON TOPOLOGICAL STABILITY

JOHN MATHER

Foreword to the 1970 Booklet

These notes are part of the first chapter of a series of lectures given by the author
in the spring of 1970. The ultimate aim of these notes will be to prove the theorem
that the set of topologically stable mappings form a dense subset of C∞(N,P ) for
any finite dimensional manifolds N and P where N is compact. The first chap-
ter is a study of Thom–Whitney theory of stratified sets and stratified mappings.
The connection of the material in these notes with the theorem on the density of
topologically stable mappings appears in Section 11, where we give Thom’s sec-
ond isotopy lemma. This result gives sufficient conditions for two mappings to be
topologically equivalent.
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1. Condition a

We begin by introducing some notions that are due to Whitney ([5] and [6]).
Let μ be a positive integer or ∞, which will be fixed throughout this paper. By

“smooth” we will mean differentiable of class Cμ.
Let M be a smooth (i.e., Cμ) n-manifold without boundary. By a smooth

(i.e., Cμ) submanifold of M , we will mean a subset X of M such that for every
x ∈ X there exists a coordinate chart (ϕ,U) of class Cμ such that x ∈ U and
ϕ(X ∩U) = Rk ∩ ϕ(U), for a suitable coordinate plane Rk in Rn. In the definition
of submanifold, we do not assume that X is closed. However, it follows from
the definition of submanifold that X is locally closed, i.e., each point in X has a
neighborhood U in M such that X ∩ U is closed in U .

If X is an r-dimensional submanifold of M and x ∈ X, then the tangent space
TXx of X at x is a point in the Grassmannian bundle of r-planes in TMx. In what
follows convergence means convergence in the standard topology of this bundle.

Let X and Y be smooth submanifolds of M and let y ∈ Y . Set r = dimX.

Definition 1.1. We say the pair (X,Y ) satisfies condition a at y if the following
holds. Given any sequence {xi} of points inX such that xi → y and TXxi

converges
to some r-plane τ ⊆ TMy, we have TYy ⊆ τ .

Example 1.2 (Whitney [6]). Let x, y, z denote coordinates for C3. Let Y be the
z-axis and let X be the set

{
zx2 − y2 = 0

}
with the z-axis deleted. Then X and

Y are complex analytic submanifolds of C3. It is easily seen that (X,Y ) satisfies
condition a at all points of Y except the origin, and that it does not satisfy condition
a there.

We will say that the pair (X,Y ) satisfies condition a if it satisfies condition a at
every point of Y .

In Example 1.2, the pair (X,Y ) does not satisfy condition a. If we set Z = {0}
and Y ′ = Y −Z, then the pairs (X,Y ′), (X,Z), and (Y ′, Z) do satisfy condition a.

2. Condition b

We will begin by defining Whitney’s condition b for submanifolds of Rn. Then we
extend this definition to submanifolds of an arbitrary manifold, using the definition
in Rn. We will also show that condition b implies condition a.

If x, y ∈ Rn and x �= y, then the secant
�
xy will denote the line in Rn which is

parallel to the line joining x and y and passes through the origin. For any x ∈ Rn

we identify TxRn with Rn in the standard way.
Let X,Y be (smooth) submanifolds of Rn. Let y ∈ Y . Let r = dimX.
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Definition 2.1. We say that the pair (X,Y ) satisfies condition b at y if the fol-
lowing holds. Let {xi} be a sequence of points in X, converging to y and {yi} a
sequence of points in Y , also converging to y. Suppose TXxi

converges to some r-

plane τ ⊆ Rn and that xi �= yi for all i and the secants
�
xiyi converge (in projective

space Pn−1) to some line � ⊆ Rn. Then � ⊆ τ .

Let (X ′, Y ′) be a second pair of submanifolds of Rn, and let y′ ∈ Y ′.

Lemma 2.2. Suppose there exist open neighborhoods U and U ′ of y and y′ in
Rn and a (smooth) diffeomorphism ϕ : U → U ′ such that ϕ(U ∩ X) = U ′ ∩ X ′,
ϕ(U ∩ Y ) = U ′ ∩ Y ′ and ϕ(y) = y′. Then (X,Y ) satisfies condition b at y if and
only if (X ′, Y ′) satisfies condition b at y′.

Proof. Obvious. �

Definition 2.3. Let M be a manifold and X, Y submanifolds. Let y ∈ Y . We say
that (X,Y ) satisfies condition b at y if for some coordinate chart (ϕ,U) about y,
we have that the pair (ϕ(U ∩X), ϕ(U ∩ Y )) satisfies condition b at ϕ(y).

In view of Lemma 2.2, if (X,Y ) satisfies condition b at y, then for every coordi-
nate chart (ϕ,U) about y, we have that (ϕ(U ∩X), ϕ(U ∩ Y )) satisfies condition b
at y.

For the rest of this section, let M be a manifold and X and Y submanifolds and
let y ∈ Y .

Proposition 2.4. If (X,Y ) satisfies condition b at y, then it satisfies condition a
at y.

Proof. Since both conditions a and b are purely local, we may suppose that X and
Y are submanifolds of Rn. Let {xi} be a sequence of points in X such that xi → y
and TXxi

→ τ , for some τ ⊆ TRn
y = Rn. We must show that TYy ⊆ τ . Suppose

otherwise. Then there exists a line � ⊆ Rn, passing through the origin, such that
� ⊆ TYy but � � τ . Since � ⊆ TYy, we can choose a sequence of points {yi} in Y

such that yi �= xi, yi → y and
�
xiyi → �. But since � � τ , this contradicts condition

b. �

We say (X,Y ) satisfies condition b if it satisfies condition b at every point y ∈ Y .

Example 2.5. Let X be the spiral in R2 defined by the condition that the tangent
of X makes a constant angle with the radial vector, and let Y be the origin. In
polar coordinates, this spiral is given by r − βθ = constant. Then the pair (X,Y )
does not satisfy condition b. For, by definition, the angle α between the line TXx

and the secant
�
0x is independent of x. If {xi} ⊂ X is a sequence converging to 0

and the tangents {TXxi
} converge to a line τ ⊆ R2, then

�
0xi converges to a line �,

which makes an angle α with τ .

Example 2.6 (Whitney [6]). Let x, y, z be coordinates for C3. Let Y be the z-axis.
Let X be the set {y2+x3− z2x2 = 0} with the z-axis deleted. It is easily seen that
the pair (X,Y ) satisfies condition a, and the pair (X,Y ) satisfies condition b at all
points of Y except the origin and that it does not satisfy condition b there.

Proposition 2.7. Suppose y ∈ X − Y and (X,Y ) satisfies condition b at y. Then
dimY < dimX.
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Proof. It is enough to consider the case when M = Rm. Since y ∈ X − Y , there
exists a sequence {xi} in X − Y which converges to y. By the compactness of
the Grassmannian, we may suppose, by passing to a subsequence if necessary, that
{TXxi

} converges to an r plane τ ⊆ Rm (where r = dimX). Since condition b
implies condition a (Proposition 2.4), TYy ⊆ τ . For i sufficiently large, there is a
point yi on Y which minimizes the distance to xi. By passing to a subsequence

if necessary, we may suppose the secants
�
xiyi converge to a line � ⊆ Rn. Since

yi minimizes the distance to xi, the secant
�
xiyi is orthogonal to TYyi

; hence � is
orthogonal to TYy. Since (X,Y ) satisfies condition b at y, we have � ⊆ τ . We have
shown TYy + � ⊆ τ and � is orthogonal to TYy; hence dimX = dim τ > dimTYy =
dimY . �

3. Blowing up

In the next section, we will give an intrinsic formulation of condition b which
will be useful later on. This formulation depends on the notion of blowing up a
manifold along a submanifold, which we define in this section.

Let N be a manifold and U a closed submanifold. By the manifold BUN obtained
by blowing up N along U , we will mean the manifold defined in the following way.
As a set BUN is the disjoint union (N−U)∪PηU , where PηU denotes the projective
normal bundle of U in N .

By the natural projection π : BUN → N , we mean the mapping defined by letting
π|PηU be the projection of PηU on U and letting π|N−U be the inclusion of N−U
into N .

To define the differentiable structure on BUN , we first consider the case when
N is open in Rn and U = Rr ∩ N , where Rr is the coordinate plane defined by
the vanishing of the last n − r coordinates. Then we have a mapping α : BUN →
Rn×RPn−r−1 defined as follows. First, α|PηU is the standard identification of PηU
with U × RPn−r−1 ⊆ Rn × RPn−r−1. Secondly, if x = (x1, · · · , xn) ∈ Rn − Rr,
then α(x) = (x, β(x)), where β(x) is the point in RPn−r−1 with homogeneous
coordinates (xr+1, · · · , xn).

It is easily verified that α [BUN ] is a C∞ submanifold of Rn × RPn−r−1, as
follows. Let (x1, · · · , xn) denote the coordinates of Rn. Let Xr+1, · · · , Xn denote
the homogeneous coordinates for RPn−r−1. For r + 1 ≤ i ≤ n, let Zi denote the
subset of RPn−r−1 defined by Xi �= 0, and let Xji be the real valued function
Xji = Xj/Xi on Zi. Then the intersection of α [BUN ] with N × Zi is the set
defined by

xj = Xjixi r + 1 ≤ j ≤ n, j �= i.

Therefore α [BUN ] is a submanifold of Rn × RPn−r−1.
Since the mapping α is injective, we may define a manifold structure on BUN

by pulling back the manifold structure on α [BUN ].
Now, let N ′ be a second open subset of Rn, let U ′ = Rr∩N ′, and let ϕ : (N,U) →

(N ′, U ′) be a Cμ diffeomorphism. Let ϕ∗ : BUN → BU ′N ′ be the induced mapping,
defined by letting ϕ∗|PηU : PηU → PηU ′ be the mapping induced by the differential,
and letting ϕ∗|(N − U) : N − U → N ′ − U ′ be the restriction of ϕ. Then ϕ∗ is a
diffeomorphism of class Cμ−1.

To show this, we first observe that ϕ∗ is a bijection and (ϕ∗)
−1 = (ϕ−1)∗.

Therefore, it suffices to show that ϕ∗ is of class Cμ−1. To show this, it is enough
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to show that xi ◦ ϕ∗ is of class Cμ−1, 1 ≤ i ≤ n, that ϕ−1
∗ Zi is open, r+ 1 ≤ i ≤ n,

and that Xjiϕ∗ is of class Cμ−1 for r + 1 ≤ j ≤ n and j �= i. Since

xi ◦ ϕ∗ = xi ◦ ϕ ◦ π,

where π : BUN → N is the natural projection, the first statement is obvious.
To prove the remaining two statements, we set ϕi = xi ◦ ϕ and observe that

there exist functions ψiα of class Cμ−1, for r + 1 ≤ i, α ≤ n, such that

(3.1) ϕi =

n∑
α=r+1

xαψiα.

This is proved as follows. Since for r + 1 ≤ i ≤ n, we have that ϕi vanishes on
U = N ∩ Rr, we get that

ϕi(x1, · · · , xn) =

∫ 1

0

d

dt
ϕi(x1, · · · , xr, txr+1, · · · , txn)dt

=
n∑

α=r+1

xα

∫ 1

0

∂ϕi

∂xα
(x1, · · · , xr, txr+1, · · · , txn)dt

so that (3.1) holds, where

ψiα =

∫ 1

0

∂ϕi

∂xα
(x1, · · · , xr, txr+1, · · · , txn)dt.

In view of (3.1), ϕ−1
∗ (Zi) ∩ Zk is the subset of Zk defined by

n∑
α=r+1

Xαkψiα �= 0,

and hence is open. It follows that ϕ−1
∗ Zi is open. It also follows from (3.1) that

Xji ◦ ϕ∗ =

∑n
α=r+1 Xαkψjα∑n
α=r+1 Xαkψiα

on ϕ−1
∗ (Zi) ∩ Zk, and hence is of class Cμ−1 there.

This completes the proof that ϕ∗ is a diffeomorphism of class Cμ−1.
Now we return to the general situation where N is a manifold, and U is a closed

submanifold, both of class Cμ. In view of what we have just done, we can construct
a differentiable structure on the part of BUN which lies above any coordinate
patch, and the differentiable structures above different coordinate patches are Cμ−1

compatible. Thus, we obtain the structure of a manifold of class Cμ−1 on BUN .
Note that the natural projection π : BUN → N is differentiable of class Cμ−1.
Since we have defined a structure of a manifold of class Cμ−1 on BUN , we have

also defined a topology on BUN . In the local case, when N = Rn and U = Rr,
this topology may be described more directly. Let {xi} be a sequence of points in
Rn−Rr, and suppose xi → x ∈ Rr. Let � ∈ RPn−r−1, so that (x, �) is a member of
BUN , if we identify BUN with the subset α(BUN) of Rn×RPn−r, as above. Then
it is easily seen that {xi} converges (in BUN) to (x, �) if and only if the secants
�
xix

′
i converge to �, where x′

i denotes the projection of xi on Rr.
This suggests that it should be possible to reformulate condition b in terms of

“blowing up.” We do this in the next section.
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4. An intrinsic formulation of condition b

Let N be a smooth manifold. Let ΔN denote the diagonal in N2. By the fat
square of N , we mean the manifold F (N) obtained by blowing up N2 along ΔN .

The normal bundle η of ΔN in N2 can be identified with the tangent bundle TN
in a canonical way, as follows. If x ∈ ΔN , then by definition

ηx = (TNx ⊕ TNx)/diagonal.

The mapping of TNx ⊕ TNx into TNx which sends v ⊕ w to v − w induces an
isomorphism of ηx with TNx. We use this isomorphism to identify ηx with TNx.

From this identification and the definition of the process of blowing up a manifold
along a submanifold, it follows that

F (N) = PT (N) ∪ (N2 −ΔN ) (disjoint union)

where PT (N) denotes the projective tangent bundle of N . Thus, points of F (N)
are of two kinds: pairs (x, y) with x, y ∈ N and x �= y and tangent directions on N .

It follows from the previous section that F (N) is a manifold of class Cμ−1.
Roughly speaking, a sequence {(xi, yi)} of points in N2 − ΔN converges to a

tangent direction � on N if the sequences {xi} and {yi} converge to the same point
x in N and the direction from xi to yi converge to �. In the case N = Rn, this can
be made precise: {(xi, yi)} converges to (x, �) ∈ Rn ×RPn−1 if both {xi} and {yi}
converge to x, and the secants

�
xiyi converge to �.

Now let X and Y be smooth submanifolds of N and let y ∈ Y . Suppose Y is
closed. In view of the previous paragraph, we obtain the following result.

Proposition 4.1. The pair (X,Y ) satisfies condition b at y if and only if the
following condition holds. Let {xi} be any sequence of points in X and {yi} any
sequence of points in Y such that xi �= yi. Suppose {xi} → y, {yi} → y, {(xi, yi)}
converges to a line � ⊆ PTNy, and {TXxi

} converges (in the Grassmannian of
r-planes in TN , where r = dimX) to an r-plane τ ⊆ TNy. Then � ⊆ τ . �

5. Whitney stratifications

Let M be a smooth (i.e., Cμ) manifold without boundary. Let S be a subset
of M . By a stratification S of S, we will mean a cover of S by pairwise disjoint
smooth submanifolds of M , which lie in S. We will say that S is locally finite if
each point of M has a neighborhood which meets at most finitely many strata. We
say S satisfies the condition of the frontier if for each stratum X of S its frontier
(X −X) ∩ S is a union of strata.

We will say S is aWhitney stratification if it is locally finite, satisfies the condition
of the frontier, and (X,Y ) satisfies condition b for any pair (X,Y ) of strata of S.

Let S be a Whitney stratification of a subset S of a manifold M . Suppose X and
Y are strata. We write Y < X if Y is in the frontier of X. In view of Proposition
2.7, if Y < X then dimY < dimX. It follows easily that the relation “<” defines
a partial order on S.

Remark. Let M be a manifold, S a closed subset of M , and S a Whitney stratifica-
tion of S. Let x and x′ be two points in the same connected component of a stratum
of S. Then there exists a homeomorphism h of M onto itself which preserves S and
S such that h(x) = x′. This follows from Thom’s theory [4] and we will prove it



NOTES ON TOPOLOGICAL STABILITY 481

below. In the case S has only two strata, it is quite easy to prove by an argument
due to Thom [4, p. 242].

We sketch Thom’s argument for the two strata case here. The only non-trivial
case is when the two strata satisfy X < Y and the two points x and x′ are in X.
In this case X is closed and X ⊂ Y = Y ∪X.

For simplicity, we will suppose that M is compact, though it is not difficult to
modify the argument to make it work in the case M is non-compact.

Let N be a small tubular neighborhood of X in M , let π : N → X be a smooth
retraction, and let ρ be a smooth function on M such that ρ ≥ 0, X = {ρ = 0},
and at a point x ∈ X, ρ is non-degenerate on the normal plane to X in the sense
that the Hessian matrix of ρ at x has rank equal to the codimension of X.

Now let x and x′ be two points in the same connected component of X. Let vX
be a smooth vector field on X such that the trajectory of v starting at x arrives at
x′ at time t = 1.

For ε > 0 sufficiently small, the subset Mε = {ρ = ε} of N is compact, and
π : Mε → X is a submersion. Furthermore, Yε = Mε ∩ Y is compact, and it follows
from condition b that π : Yε → X is a submersion for ε sufficiently small. It follows
easily that there is a vector field v on M −X and an ε1 > 0 such that v is tangent
along Y , and the following hold.

vρ(m) = 0 if m ∈ M −X and ρ(m) < ε1,(5.1)

π∗v(m) = vX(πm) if m ∈ M −X and ρ(m) < ε1.(5.2)

From (5.1) and the compactness of M , it follows that the trajectory of v starting
at any point of M −X is defined for all time. Hence v generates a one-parameter
group {h0

t : t ∈ R} of diffeomorphisms of M − X. Clearly vX generates a one-
parameter group {hX

t : t ∈ R} of diffeomorphisms of X. Let ht : M → M be
defined by ht|M − X = h0

t and ht|X = hX
t . It follows from (5.1) and (5.2) that

hX
t π(m) = πh0

t (m) if m ∈ M −X and ρ(m) < ε1. Hence ht is a homeomorphism
of M . Clearly ht preserves X, and furthermore ht preserves Y , since v is tangent
along Y . Finally h1(x) = x′ since the trajectory of vX starting at x arrives at x′

at time t = 1.
Thus h = h1 is the required homeomorphism of M .

6. Tubular neighborhoods

In this section, we define the notion of a tubular neighborhood of a submanifold
of a manifold, and prove an existence and uniqueness theorem for tubular neigh-
borhoods. Our existence and uniqueness theorem is slightly more general than the
standard one (cf., Lang [2]). The method of proof we use was suggested by A.
Ogus.

We recall that a vector bundle E over a smooth manifold M is said to be smooth
if the coordinate transition functions which define E are smooth functions. By a
smooth inner product on a vector bundle E, we will mean a rule which assigns
to each fibre Eu of E an inner product (·, ·)u on Eu and which has the following
property: if U is any open set in M and s1, s2 are two smooth sections of E above
U then the mapping u → (s1(u), s2(u))u is smooth. From now on, we will assume
all vector bundles and inner products on vector bundles are smooth, unless the
contrary is explicitly stated. By a (smooth) inner product bundle, we mean a pair
consisting of a (smooth) vector bundle E and a (smooth) inner product on E.
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If π : E → M is an inner product bundle over a manifold, and ε is a positive
function on M , then the open ε-ball bundle Bε of E will be defined as the set of e
in E such that ‖e‖ < ε(πe), where ‖e‖ is defined as (e, e)1/2.

Let M be a manifold and X a submanifold.

Definition. A tubular neighborhood T ofX inM is a triple (E, ε, ϕ), where π : E →
X is an inner product bundle, ε is a positive smooth function on X, and ϕ is a
diffeomorphism of Bε onto an open subset of M which commutes with the zero
section ζ of E:

Bε

ϕ

���
��

��
��

��
�

X

ζ

��

inclusion
�� M.

We set |T | = ϕ(Bε). By the projection associated to T , we mean the mapping
πT = π ◦ ϕ−1 : |T | → X. By the tubular function associated to T , we mean the
non-negative real valued function

ρT = ρ ◦ ϕ−1 : |T | → R where ρ(e) = ‖e‖2 for all ‖e‖ ∈ |T |.

It follows from these definitions that πT is a retraction of |T | on X, i.e., the
composition

X
inclusion−−−−−→ |T | πT−−→ X

is the identity. Also, X is the 0-set of ρT , the differential of ρT vanishes only on
X, and (in the case μ ≥ 2) at a point x ∈ X, ρT is non-degenerate on the normal
plane to X in the sense that the Hessian matrix of ρ at x has rank equal to the
co-dimension of X.

If U is a subset of X, the restriction T |U of T to U is defined as (E|U, ε|U,ϕ|U).
If T = (E, ε, ϕ) and T ′ = (E′, ε′, ϕ′) are two tubular neighborhoods of X in M ,

an inner product bundle isomorphism ψ : E → E′ will be said to be an isomorphism
of T with T ′ if there exists a positive continuous function ε′′ on X such that ε′′ ≤
min(ε, ε′) and ϕ′◦ψ|Bε′′ = ϕ|Bε′′ . Note that if this holds, then πT |ϕBε′′ = πT ′ |ϕBε′′

and ρT |ϕBε′′ = ρT ′ |ϕBε′′ . We say T and T ′ are isomorphic and write T ∼ T ′ if
there exists an isomorphism from T to T ′.

A smooth mapping f : M → P will be said to be a submersion if df : TMx →
TPf(x) is onto for each x ∈ M .

Throughout the rest of this section, let f : M → P be a smooth mapping, and
X a submanifold of M .

A tubular neighborhood T of X in M will be said to be compatible with f if
f ◦πT = f | |T |. A mapping h of M into itself will be said to be compatible with f if
f ◦h = f . A homotopy H : M×I → M of M into itself will be said to be compatible
with f if f ◦ Ht = f for all t ∈ I (= [0, 1]). By an isotopy of M , we will mean a
smooth mapping H : M × I → M such that H0 = id: M → M and Ht : M → M is
a diffeomorphism for all t ∈ I. If h is a diffeomorphism of M into itself, the support
of h will mean the closure of {x ∈ M : h(x) �= x}. Likewise, if H : M × I → M is an
isotopy, the support of H will mean the closure of {x ∈ M : ∃ t ∈ I, H(x, t) �= x}.

IfM ′ is a second manifold, X ′ is a submanifold ofM ′, and h : (M,X) → (M ′, X ′)
is a diffeomorphism, then for any tubular neighborhood T = (E, ε, ϕ) of X we define
a tubular neighborhood h∗T of X ′ by h∗T = ((h−1)∗E, ε ◦ h−1, h ◦ ϕ).
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We will begin by stating and proving a uniqueness theorem for tubular neighbor-
hoods, and then we will derive an existence theorem from the uniqueness theorem.
This procedure of deducing the existence theorem from the uniqueness theorem was
suggested to us by A. Ogus.

The simplest uniqueness theorem for tubular neighborhoods states that if X is
closed and T0 and T1 are tubular neighborhoods of X in M , then there exists
a diffeomorphism h of M onto itself which leaves X point-wise fixed such that
h∗T0 ∼ T1. Moreover, h can be chosen so that there is an isotopy H of M with
H1 = h which leaves X point-wise fixed. We can generalize this result in various
ways.

First, under the hypothesis that T0 and T1 are compatible with f and f |X
is a submersion, we can choose h and H to be compatible with f . Secondly, if
T0|U ∼ T1|U for some open set U in X, and Z is a closed subset of M such that
Z ∩X ⊆ U , then we can choose h and H to leave Z point-wise fixed.

The following proposition implies these statements, and has some other wrinkles
as well. We will use it in its full generality.

Proposition 6.1 (Uniqueness of tubular neighborhoods). Suppose μ ≥ 2. Suppose
the submanifold X of M is closed, and f |X : X → P is a submersion. Let U be an
open subset of X, let U ′ and V ′ be closed subsets of X, let V be an open subset of M ,
and suppose U ′ ⊆ U and V ′ ⊆ V . Let T0 and T1 be tubular neighborhoods of X in M
which are compatible with f and suppose there is an isomorphism ψ0 : T0|U → T1|U .
Then there is an isotopy H : M × I → M , compatible with f , leaving X point-wise
fixed, and with support in V − U ′, such that h∗T0|V ′ ∪ U ′ ∼ T1|V ′ ∪ U ′, where
h = H1. Moreover, if N is any neighborhood of the diagonal in M × M , we can
choose H such that (Ht(x), x) ∈ N for any t ∈ I and x ∈ M . Also, we can
choose H so that there is an isomorphism ψ : h∗T0|V ′ ∪ U ′ ∼ T1|V ′ ∪ U ′ such that
ψ|U ′ = ψ0|U ′.

Proof. Let m = dimM , c = codX, and p = dimP . For k < m, let Rk be
embedded as Rk × 0m−k in Rm. We will say that we are in the local case when
V ′ is compact and there exists a diffeomorphism Φ of M onto an open subset
of Rm, such that Φ(X) = Rm−c ∩ Φ(M), and a diffeomorphism Ψ of P onto an
open subset of Rp such that the following diagram commutes, where π is given by
π(x1, · · · , xm) = (x1, · · · , xp):

M

f

��

Φ �� Rm

π

��

P
Ψ

�� Rp.

There are two steps in the proof:
Step 1. Reduction to the local case. From the hypothesis that f |X is a sub-

mersion, it follows that for each x ∈ X there exists an open neighborhood Wx

of x in M , a diffeomorphism Φx of Wx onto an open subset of Rm such that
Φ(Wx ∩ X) = Φ(Wx) ∩ Rm−c, and a diffeomorphism Ψx of f(Wx) onto an open
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subset of Rp such that the following diagram commutes:

Wx

f

��

Φx �� Rm

π

��

f(Wx)
Ψx

�� Rp.

Furthermore, we may suppose each Wx is relatively compact, and that

Wx ∩ V ′ �= ∅ =⇒ Wx ⊆ V

Wx ∩ U ′ �= ∅ =⇒ Wx ∩X ⊆ U.
(6.1)

Then {M − X} ∪ {Wx} is a cover of M, so that there exists a locally finite
refinement of it, which we may take to be of the form {M − X} ∪ {Wi}, where
each Wi is open in M and is contained in Wxi

for some xi ∈ X. Since M has a
countable basis for its topology, the collection {Wi} is countable. Now we discard
all Wi for which Wi ∩U ′ �= ∅ or Wi ∩V ′ = ∅, and we index the remaining Wi’s by
the positive integers. Then we have V ′ ⊆ U ∪W1 ∪W2 ∪ · · · , and Wi ⊆ V for all
i, by (6.1).

We can choose closed sets W ′
i ⊆ Wi∩X such that V ′ ⊆ U ∪W ′

1∪W ′
2∪· · · . Since

W ′
i ⊆ Wxi

, and the latter is relatively compact, it follows that W ′
i is compact.

Now we construct by induction a sequence H0, H1, H2, · · · of isotopies of M
into itself and a sequence ψ0, ψ1, ψ2, · · · of isomorphisms of tubular neighborhoods.
We let H0 be defined by H0

t = identity, 0 ≤ t ≤ 1, and let ψ0 be as given in the
statement of the proposition.

For the inductive step, we suppose that H0, H1, · · · , Hi−1 and ψ0, ψ1, · · · , ψi−1

have been constructed, are compatible with f, and leave X point-wise fixed. We let
Gj be the isotopy of M defined by Gj

t = Hj
t ◦H

j−1
t ◦ · · · ◦H0

t . We set gj = Gj
1. We

let Uj = U ∪W1 ∪W2 ∪ · · · ∪Wj and suppose suppGi−1 ⊆ Ui−1 ∩V . Furthermore,

we suppose (Gi−1
t (x), x) ∈ N for all x ∈ M and t ∈ [0, 1], and that ψi−1 is an

isomorphism of tubular neighborhoods gi−1
∗ T0|U

∗
i−1 → T1|U

∗
i−1, where U∗

i−1 is an
open neighborhood of U ′ ∪W ′

1 ∪ · · · ∪W ′
i−1 in X.

Then it follows from the local case of the proposition that Hi and ψi can be
chosen so that the conditions of the induction are satisfied. For, let W 0

i be an
open subset of Wi such that W ′

i ⊆ W 0
i and W 0

i is relatively compact in Wi, and
let U∗

i be an open neighborhood of U ′ ∪W ′
1 ∪ · · · ∪W ′

i in X whose closure lies in
U∗
i−1 ∪ W 0

i . From the local case, it follows that we can construct an isotopy Hi

of Wi, compatible with f , leaving X ∩ Wi point-wise fixed, and with support in

W 0
i such that hi

∗g
i−1
∗ T0|U

∗
i ∩Wi ∼ T1|U

∗
i ∩Wi, where hi = Hi

1. (This is because

gi−1
∗ T0|U

∗
i−1 ∩ Wi ∼ T1|U

∗
i−1 ∩ Wi and U

∗
i ⊂ U∗

i−1 ∪ W 0
i .) Moreover, we may

choose Hi so that Hi
t is arbitrarily close to the identity for all t, and so there is an

isomorphism

ψi : h
i
∗g

i−1
∗ T0|U

∗
i ∩Wi → T1|U

∗
i ∩Wi

such that

ψi|U
∗
i ∩Wi ∩ U

∗
i−1 = ψi−1|U

∗
i ∩Wi ∩ U

∗
i−1.
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Since suppHi is a compact subset of Wi, we may extend Hi to an isotopy of M
whose support lies in Wi. Likewise, we may extend ψi to all of U∗

i by letting
ψi|U∗

i−1 = ψi−1|U∗
i−1. Then Hi and ψi satisfy the conditions of the induction.

Now if it is true that the sequence {Gj
t (x)} is eventually constant in a neighbor-

hood of any point x ∈ M , we can set

Ht(x) = lim
i→∞

Gi
t(x)

and

ψ(x) = lim
i→∞

ψi(x)

(since the latter is eventually constant in a neighborhood of any point). If we choose
N so that the projection π2 : N → M is proper (where π2 denotes the projection
on the second factor), then it is easily seen that the sequence Gi

t(x) is eventually
constant in a neighborhood of any point x ∈ M , and thatH and ψ have the required
properties.

This completes the reduction to the local case.
Step 2. Proof in the local case. Let T0 = (E0, ε0, ϕ0) and T1 = (E1, ε1, ϕ1). We

will first construct an isomorphism ψ : E0 → E1 of inner product bundles which
extends ψ0|U ′, and then construct the isotopy H to have the required properties.

The tubular neighborhood Ti (i = 0, 1) gives a natural identification αi of Ei

with the normal bundle νX of X in M . Explicitly, if x ∈ X, the restriction of αi

to the fibre Ei,x is the composition

Ei,x = T (Ei,x)0
dϕi−−→ TMx

projection−−−−−−→ TMx/TXx = νX,x.

Let β = α−1
1 α0 : E0 → E1. We may consider β as a section of Iso(E0, E1), where

the latter is the bundle whose fibre over x is the space of isomorphism of E0,x into
E1,x. In general β will not be of class Cμ, only of class Cμ−1; however, we may
approximate β arbitrarily closely (in the Cμ−1 topology) on any compact subset of
X by a section β1 of class Cμ.

To construct ψ, we will need the following well-known lemma in linear algebra.

Lemma. Let V and W be vector spaces, provided with inner products k and �.
Let L : V → W be a vector space isomorphism. Then there exists a unique positive
definite self-adjoint linear mapping H : W → W such that H ◦L : V → W preserves
inner products.

Remark 1. It is easily seen that this is equivalent to the assertion that any invertible
matrix L of real numbers has a unique decomposition L = H−1U where H is a
positive definite symmetric matrix and U is an orthogonal matrix.

Remark 2. Similarly, it is easily verified that there exists a unique positive definite
self-adjoint linear mapping H1 : V → V such that L ◦H1 : V → W preserves inner
products, and that H1 = L−1HL.

Proof of the lemma. Existence. Let e1, · · · , en be an orthonormal basis for V, and
let A = (αij) be the matrix given by αij = (Lei, Lej)�. Then αij is symmetric
and positive definite. It follows from the spectral theorem for symmetric positive
definite matrices that we may choose the basis e1, · · · en so that (αij) is a diagonal
matrix: αij = λiδij (where δij is the Kronecker delta symbol). Let fi = L(ei)/

√
λi.
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Then f1, · · · , fn is an orthonormal basis of W . Let H : W → W be given by
H(fi) = fi/

√
λi. Then H has the required properties.

Uniqueness. If there were two, H and H ′, we would have that U = (HL) ◦
(H ′L)−1 is orthogonal. Then UH ′L = HL so UH ′ = H. Taking adjoints, we then

obtain H ′U−1 = H so that H ′2 = H ′U−1UH ′ = H2. This implies H ′ = H, since
a positive definite self-adjoint mapping has only one positive definite self-adjoint
square root. �

Now we return to the proof of the uniqueness of tubular neighborhoods. For
each x ∈ X, let ηx be the unique self-adjoint positive definite linear automorphism
of E1,x such that ψx = ηx ◦ β1,x : E0,x → E1,x preserves inner products. Clearly,
ψ = {ψx} is a smooth isomorphism of E0 onto E1, and it preserves inner products.
From the fact that ηx is positive definite and self-adjoint it follows that (1−t)id+tηx
is an automorphism of E1,x for 0 ≤ t ≤ 1. Hence if β1 is chosen sufficiently C1-close
to β, it follows that

(1− t)β1 + tψ : E0 → E1

is an isomorphism for 0 ≤ t ≤ 1. Moreover, if we choose β1 so that β1 = β in a
neighborhood of U ′ (which we may do since β|U = ψ0 by definition of β), then
η = identity in a neighborhood of U ′, so that ψ|U ′ = ψ0|U ′.

Since we are in the local case, we may suppose without loss of generality that
M is open in Rm, P is open in Rp, X = Rm−c ∩M , and f = π|M . It is easily seen
that there exists a neighborhood V1 of V ′ in V such that for all m ∈ V1, we have
that

gt(m) = ϕ1 ◦ {(1− t)β1 + tψ} ◦ ϕ−1
0 (m)

is defined. Since V ′ ⊆ X, we have gt|V ′ = inclusion. Since V ′ is compact there
exists an open neighborhood V2 of V ′ in V1 such that V2 ⊆ gt(V1) for 0 ≤ t ≤ 1.
Let ρ be a C∞ function on M which is identically 1 in a neighborhood of V ′ and
which has compact support ⊆ V2. Let Gs,t : M → M be defined by

Gs,t(m) =

{
((1− ρ(m))m+ ρ(m)gtg

−1
s (m) if m ∈ V2,

m if m ∈ M − V2.

Then Gs,t is a smooth mapping for 0 ≤ s, t ≤ 1, and it depends smoothly on s and t.
Since Gt,t = identity and there is a compact set which contains the support of Gs,t

for all s and t, it follows that there exists δ > 0 such that Gs,t is a diffeomorphism
for |s− t| < δ. Let n be a positive integer such that 1/n < δ and set

H̃t = G0, t
n
◦G t

n , 2tn
◦ · · · ◦G (n−1)t

n ,t
.

Then H̃t is an isotopy ofM , and it follows from the definition of H̃ that H̃1 = g1◦g−1
0

in a sufficiently small neighborhood of V ′. Also it follows from the definitions

that gt and H̃t are the identity in a sufficiently small neighborhood of U ′ for all

t. Thus H̃1 = g1 ◦ g−1
0 in a sufficiently small neighborhood of U ′ ∪ V ′. Clearly

supp H̃ ⊆ V2 ⊆ V .

Furthermore, H̃1 ◦ g0 ◦ϕ0 = g1 ◦ϕ0 = ϕ1 ◦ψ in a small neighborhood of U ′ ∪V ′.

Thus ψ is an isomorphism of (H̃1g0)∗T0|U ′ ∪ V ′ with T1|U ′ ∪ V ′.

It is clear from the construction that H̃ is compatible with f and leaves X point-
wise fixed. By choosing the function ρ used in the construction of G to have support
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in a very small neighborhood of V ′, we may arrange for H̃t to be as close to the
identity (in the compact-open topology) as we like.

It is easily seen that there exists an isotopy Ĥ of M which is compatible with f

and leaves X point-wise fixed, such that Ĥt is the identity in a neighborhood of U ′

and Ĥ1 = g0 in a neighborhood of V ′. Let Ht = H̃t ◦ Ĥ1. Then H is an isotopy of
M with all the required properties. �

Now we state and prove the existence theorem for tubular neighborhoods.

Proposition 6.2. Suppose f |X : X → P is a submersion. Let U be an open subset
of X and let T0 be a tubular neighborhood of U in X. Let U ′ be a subset of U which
is closed in X. Then there exists a tubular neighborhood T of X in M such that
T |U ′ ∼ T0|U ′.

Proof. It is enough to consider the case when X is closed in M . For, in general,
there is an open subset M0 in M such that X is a closed subset of M0, since X
is locally closed in M . Clearly a tubular neighborhood of X in M0 is a tubular
neighborhood of X in M .

The local case of this proposition is trivial.
To prove the proposition in general, we take a locally finite family {Wi} of open

sets in M having the following properties:

(a) For each i, there is a coordinate chart ϕi : Wi → Rn such that ϕi(Wi ∩ X) =
ϕi(Wi) ∩ Rn−c (where c = codX) and such that there is a coordinate chart
ψi : f(Wi) → Rp such that the following diagram commutes

Wi

f

��

ϕi
�� Rn

π

��

f(Wi)
ψi

�� Rp.

(b) each W i is compact, and
(c) {Wi ∩X} is a cover of X.

Furthermore, we can choose closed sets W ′
i of X such that W ′

i ⊆ Wi and {W ′
i} is

a cover of X. Since M has a countable basis for its topology, the family {Wi} is
countable. We will suppose that it is indexed by the positive integers. For each
positive integer i we let Ui = U ∪W1 ∪ · · · ∪Wi and U ′

i = U ′ ∪W ′
1 ∪ · · · ∪W ′

i . We
let U0 = U and U ′

0 = U ′.
Now we construct by induction on i an open neighborhood U ′′

i of U ′
i in X and

a tubular neighborhood Ti of U
′′
i . We take T0 as given. For the inductive step, we

suppose U ′′
i−1 and Ti−1 have been constructed. We let U ′′

i be any open neighborhood
of U ′

i in X which is relatively compact in Wi ∪ U ′′
i−1.

Since U
′′
i ⊆ Wi ∪ U ′′

i−1, there exist open sets A and B in U ′′
i such that U ′′

i =

A ∪ B, A ⊆ Wi − U ′
i−1 and B ⊆ U ′′

i−1. Since the existence theorem for tubular
neighborhoods is true in the local case, we may choose a tubular neighborhood T ′

i

of Wi ∩ X in Wi. Then we have two tubular neighborhoods of U ′′
i−1 ∩ Wi ∩ X in

M , namely the restrictions of T ′
i and Ti−1. Since A ∩ B is relatively compact in

(U ′′
i − U ′

i−1) ∩ Wi ∩ X, we may find a diffeomorphism h of M onto itself leaving
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X point-wise fixed such that h∗Ti−1|A ∩ B ∼ T ′
i |A ∩ B. Furthermore, we may

suppose h is compatible with f and h is the identity outside an arbitrarily small
neighborhood of A ∩B; in particular, that h is the identity in a neighborhood
of U ′

i−1. Since h∗Ti−1|A ∩ B ∼ T ′
i |A ∩ B there is a tubular neighborhood Ti of

U ′′
i = A ∪ B in M such that Ti|A ∼ T ′

i |A and Ti|B ∼ h∗Ti−1|B. Clearly Ti is
compatible with f .

Furthermore, Ti ∼ Ti−1 in a neighborhood of U ′
i−1. It follows easily that there

is a tubular neighborhood T of X in M such that T ∼ Ti in a neighborhood of U ′
i

for all i, and that this tubular neighborhood is compatible with f . �

7. Control data

Throughout this section, let M be a manifold and S a Whitney stratification of
a subset S of M .

Suppose that for each stratum X of S we are given a tubular neighborhood
TX of X in M . Let πX : |TX | → X denote the projection associated to TX and
ρX : |TX | → R be the tubular function associated to TX .

Definition. The family {TX} of tubular neighborhoods will be called control data
for S if the following commutation relations are satisfied: if X and Y are strata and
X < Y , then

πXπY (m) = πX(m),

ρXπY (m) = ρX(m)

for all m such that both sides of the equation are defined, i.e., all m ∈ |TX | ∩ |TY |
such that πY (m) ∈ |TX |.

If f maps M into P , then the family {TX} will be said to be compatible with f
if for all X ∈ S and all m ∈ |TX |, we have fπX(m) = f(m).

Proposition 7.1. If f : M → P is smooth and f |X is a submersion into P for each
stratum X, then there exists a family {TX} of control data for S which is compatible
with f .

For the proof of the proposition, we will need Lemma 7.3 below. The proof
of Lemma 7.3 depends on Lemma 7.2, which says (roughly speaking) that every
tubular neighborhood is locally like a standard example.

Definition. By the standard tubular neighborhood Tm,c of Rm−c × 0c in Rm, we
mean the triple (E, ε, ϕ), where E is the trivial bundle over Rm−c with fibre Rc (pro-
vided with its standard inner product), ε = 1, and ϕ : Bε → Rm is the restriction
map of the identification mapping Rm−c × Rc → Rm.

More generally if U is open in Rm−c, the standard tubular neighborhood of U in
Rm will mean Tm,c|U .

Lemma 7.2. If X is a submanifold of M , TX is a tubular neighborhood of X, and
x ∈ X, then there exists a coordinate chart ϕ : U → Rm, where U is open in M and
x ∈ U , such that ϕ(X ∩ U) = ϕ(U) ∩ Rm−c (where c = codX) and such that

ϕ∗(TX |X ∩ U) ∼ Tm,c|ϕ(X ∩ U).

Proof. Immediate from the definitions. �
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If T = (E, ε, ϕ) is a tubular neighborhood of X in M and ε′ is any smooth
positive function on X, we let |T |ε′ = ϕ(Bε∩Bε′), |T |0ε′ = ϕ(Bε∩Bε′), and ∂|T |ε′ =
ϕ(Bε∩Sε′) where Sε′ is the ε

′-sphere bundle in E, i.e., Sε′ = {v ∈ E : ‖v‖ = ε′(π(v))}
where π : E → X denotes the projection. Clearly |T |ε′ is a smooth manifold with
boundary ∂|T |ε′ , and interior |T |0ε′ . We will say ε′ is admissible if ε′ < ε. In this
case the projection πT : |T |ε′ → X is a proper mapping.

Lemma 7.3. Let X and Y be disjoint submanifolds of M such that the pair (Y,X)
satisfies condition b. Let T be tubular neighborhood of X in M . Then there exists
a positive smooth function ε′ on X such that the mapping

(ρT , πT ) : Y ∩ |T |0ε′ → R×X

is a submersion.

Proof. Let Σ be the set of y ∈ |T | such that the rank of the mapping

(ρT , πT ) : Y ∩ |T | → R×X

at y is < dim(R × X). The lemma is equivalent to the assertion that for any
x ∈ X there exists a neighborhood N of x in M such that N ∩ Σ = ∅. Since this
is a purely local statement, it follows from Lemma 7.2 that it is enough to prove
the proposition when M = Rm, X = Rm−c × 0c, and T is the standard tubular
neighborhood Tm,c of Rm−c in Rm. In this case πT is the orthogonal projection of
Rm on Rm−c, and ρT is the function which is given by ρ(y) = dist.(y,Rm−c)2.

Let y ∈ |T |−Rm−c. The kernel of the differential of (πT , ρT ) at y is the orthogonal
complement of (Rm−c × 0c) ⊕ yπT (y) in Rm. The hypothesis that condition b
is satisfied implies that for y near Rm−c, (Rm−c × 0c) ⊕ yπT (y) is close in the
Grassmannian of m− c + 1 planes in m space to an m − c+ 1 plane which lies in
TYy. Hence for y near enough to Rm−c, we have that TYy is transversal to the
kernel of the differential of (πT , ρT ) at y, so that (πT , ρT )|Y is a submersion at y,
i.e., y /∈ Σ. �

Proof of Proposition 7.1. Let Sk denote the family of strata of S of dimension ≤ k,
and let Sk denote the union of all strata in Sk. We will show by induction on k
that the proposition is true for Sk and Sk in place of S and S.

For the inductive step, we suppose that for each stratum X of dimension < k, we
are given a tubular neighborhood TX ofX, and this family of tubular neighborhoods
satisfies the commutation relations.

By shrinking the TX if necessary, we may suppose that if X and Y are strata of
dimension < k which are not comparable (i.e., neither Y < X nor X < Y holds),
then |TX |∩|TY | = ∅. To construct the TX on the strata of dimension k, we may do
it one stratum at a time, since there are no commutation relations to be satisfied
among the strata of the same dimension. Let X be a stratum of dimension k.

We construct the tubular neighborhoods TX in two steps, as follows. For each
� ≤ k, we let U� denote the union of all |TY | for Y < X and dimY ≥ �. We let
X� = U� ∩X. In the first step, we construct a tubular neighborhood T� of X� by
decreasing induction on �. In the inductive step, we will shrink various |TY |, but
this is permitted, since we do it only a finite number of times. Then in the second
step, we extend T0 to a tubular neighborhood TX of X.

First step. For � = k, we have Xk = ∅, so there is nothing to construct. For the
inductive step, we suppose that T�+1 has been constructed and that the following
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special cases of the commutation relations are satisfied: if Y < X, dimY ≥ � + 1,
m ∈ |T�+1| ∩ |TY | and π�+1(m) ∈ |TY |, where π�+1 = πT�+1

, then

ρY π�+1(m) = ρY (m),

πY π�+1(m) = πY (m).
(∗�+1)

By replacing T�+1 with a smaller tubular neighborhood if necessary, we may suppose
that for m ∈ |T�+1| there is Z < X with dimZ > � such that m ∈ |TZ | and
π�+1(m) ∈ |TZ |.

To construct T� it is enough to construct T� on |TY |∩X for each stratum Y < X
of dimension � separately, since if Y and Y ′ are two strata of dimension �, we have
|TY | ∩ |TY ′ | = ∅, since Y and Y ′ are not comparable.

Thus, we wish to construct a tubular neighborhood TX,Y of |TY | ∩ X whose
restriction to |TY | ∩ X�+1 is isomorphic to the restriction of T�+1, such that the
following commutation relation is satisfied: if m ∈ |TX,Y | ∩ |TY | and πX,Y (m) ∈
|TY |, where πX,Y = πTX,Y

, then

ρY πX,Y (m) = ρY (m),

πY πX,Y (m) = πY (m).

By shrinking |TY | if necessary, we may arrange that if m ∈ |T�+1| ∩ |TY | and
π�+1(m) ∈ |TY |, then this commutation relation is already satisfied (with π�+1 in
place of πX,Y ) for the following reason. Since m ∈ |T�+1|, there exists Z < X
with dimZ > �, m ∈ |TZ | and π�+1(m) ∈ |TZ |. Since π�+1(m) ∈ |TY | ∩ |TZ |, the
last named space is not empty; hence Y and Z are comparable, and by dimension
restrictions Y < Z. Therefore

ρY π�+1(m) = ρY πZπ�+1(m) = ρY πZ(m) = ρY (m),

πY π�+1(m) = πY πZπ�+1(m) = πY πZ(m) = πY (m).

(We may have to shrink |TY | to guarantee that these equalities hold for all m ∈
|T�+1| ∩ |TY |.)

Furthermore, by shrinking TY further if necessary, we may suppose that

(ρY , πY ) : |TY | ∩X → R× Y

is a submersion. The commutation relation that we must verify is precisely the
condition that TX,Y be compatible with the mapping (ρY , πY ) : |TY | ∩ X�+1 →
R × Y . Therefore from the generalized tubular neighborhood theorem, we get
that if X0

�+1 is an open subset of X whose closure lies in X�+1, then there exists
TX,Y which satisfies the commutation relations and whose restriction to |TY | ∩
X0

�+1 is isomorphic to the restriction of T�+1. Now we replace TZ for Z < X by

smaller tubular neighborhoods T ′
Z such that X ′

�+1 ⊆ X0
�+1, where X ′

�+1 is defined
analogously to X�+1, but with T ′

Z in place of TZ . Then TX,Y has the required
properties.

This completes the first step: we conclude that there exists a tubular neighbor-
hood T0 of X0 satisfying equation (∗0) for any Y < X.

Second step. From equation (∗0) it follows that we may assume that T0 is
compatible with f . For, by replacing T0 with a smaller tubular neighborhood if
necessary, we may assume that if m ∈ |T0|, then for some Y < X, we have m ∈ |TY |
and π0(m) ∈ |TY | . Then

fπ0(m) = fπY π0(m) = fπY (m) = f(m).



NOTES ON TOPOLOGICAL STABILITY 491

Since T0 is compatible with f , we may extend a suitable restriction of T0 to a
tubular neighborhood T ofX which is compatible with f , by the generalized tubular
neighborhood theorem. Then, by replacing the TY with possibly smaller tubular
neighborhoods (as in Step 1), we get that the compatibility conditions are satisfied.

This completes the construction of TX , and therefore also completes the proof
of the proposition. �

8. Abstract stratified sets

If V is a closed subset of a manifold M which admits a Whitney stratification (in
the sense defined in Section 5) then we can find control data for this stratification
by the previous section. This provides V with considerable structure. The purpose
of this section is to axiomatise the sort of structure which occurs. We depart only
slightly from Thom’s notion of abstract stratified set ([3] and [4]).

Definition 8.1. An abstract stratified set is a triple (V, S, J) satisfying the following
axioms, (A1)–(A9).

(A1) V is a Hausdorff, locally compact topological space with a countable basis
for its topology.

This axiom implies that V is metrisable. For, since V is locally compact, it is
regular, so the metrisability of V follows from Urysohn metrisation theorem (Kelly
[1].) Since V is metrisable, every subset X of V is normal (in the sense that any
two disjoint closed subsets of X can be separated by open sets). We will often use
this fact without explicit mention.

(A2) S is a family of locally closed subsets of V , such that V is the disjoint union
of the members of S.

The members of S will be called the strata of V .

(A3) Each stratum of V is a topological manifold (in the induced topology),
provided with a smoothness structure (of class Cμ).

(A4) The family S is locally finite.
(A5) The family S satisfies the axiom of the frontier: if X,Y ∈ S and Y ∩X �= ∅,

then Y ⊆ X.

If Y ⊆ X and Y �= X, we write Y < X. This relation is obviously transitive:
Z < Y and Y < X imply Z < X.

(A6) J is a triple {(TX), (πX), (ρX)}, where for each X ∈ S, TX is an open
neighborhood of X in V , πX is a continuous retraction of TX onto X, and
ρX : X → [0,∞) is a continuous function.

We will call TX the tubular neighborhood ofX (with respect to the given structure
of a stratified set on V ), πX the local retraction of TX onto X and ρX the tubular
function of X.

(A7) X = {v ∈ TX : ρX(v) = 0}.
If X and Y are any strata, we let TX,Y = TX ∩ Y , πX,Y = πX |TX,Y , and

ρX,Y = ρX |TX,Y . Then πX,Y is a mapping of TX,Y into X and ρX,Y is a mapping
TX,Y into (0,∞). Of course, TX,Y may be empty, in which case these are the empty
mappings.
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(A8) For any strata X and Y the mapping

(πX,Y , ρX,Y ) : TX,Y → X × (0,∞)

is a smooth submersion.

This implies dimX < dimY when TX,Y �= ∅.

(A9) For any strata X, Y , and Z, we have

πX,Y πY,Z(v) = πX,Z(v),

ρX,Y πY,Z(v) = ρX,Z(v)

whenever both sides of this equation are defined, i.e., whenever v ∈ TX,Z ∩
TY,Z and πY,Z(v) ∈ TX,Y .

Definition 8.2. We say that two stratified sets (V, S, J) and (V ′, S′, J′) are equiv-
alent if the following conditions hold.

(a) V = V ′, S = S′, and for each stratum X of S = S′, the two smoothness
structures on X given by the two stratifications are the same.

(b) If J = {(TX), (πX), (ρX)} and J′ = {(T ′
X), (π′

X), (ρ′X)}, then for each stratum
X, there exists a neighborhood T ′′

X of X in TX ∩T ′
X such that ρX |T ′′

X = ρ′X |T ′′
X

and πX |T ′′
X = π′

X |T ′′
X .

From the normality of arbitrary subsets of a stratified set, it follows that any
(abstract) stratified set is equivalent to one which satisfies the following conditions.

(A10) If X, Y are strata and TX,Y �= ∅, then X < Y .
(A11) If X, Y are strata and TX ∩ TY �= ∅, then X and Y are comparable, i.e.,

one of the following holds: X < Y , Y < X, or X = Y .

From (A10) it follows that X < Y if and only if TX,Y �= ∅, and from (A11) that
X and Y are comparable if and only if TX ∩ TY �= ∅.

Note that from (A8) it follows that the relation X < Y defines a partial order
on S. It is enough to verify X < Y and Y < X do not hold simultaneously. But
(A8) implies X < Y ⇒ dimX < dimY .

As an example of an (abstract) stratified set, let V be a subset of a manifold
M and suppose V admits a Whitney stratification S, and let {T ′

X} be a family
of control data for S. Let TX = T ′

X ∩ V , πX = π′
X |TX , and ρX = ρ′X |TX . Set

J = {TX}. Then (V, S, J) is an abstract stratified set. In this way, we associate
with any system of control data for a Whitney stratified set V a structure of an
abstract stratified set on V .

Hence it follows from Proposition 7.1 that any Whitney stratified set admits the
structure of an abstract stratified set.

If (V, S, J) is a stratified set, V ′ is any topological space, and ϕ : V ′ → V is
a homeomorphism, then the structure of a stratified set on V “pulls back” in an
obvious way to give a structure of a stratified set (V ′, ϕ∗S, ϕ∗J) on V ′.

If (V ′, S′, J′) and (V, S, J) are abstract stratified sets, then a homeomorphism
ϕ : V ′ → V is said to be an isomorphism of stratified sets if (V ′, S′, J′) is equivalent
to (V ′, ϕ∗S, ϕ∗J).

The uniqueness result that we will prove below implies the following: if S is a
Whitney stratification of a subset V of a manifold, and J and J′ are two system of
control data, then the abstract stratified sets (V, S, J) and (V, S, J′) are isomorphic.
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9. Controlled vector fields

Throughout this section, we let (V, S, J) be an (abstract) stratified set. We
suppose μ ≥ 2.

Definition. By a stratified vector field η on V , we mean a collection {ηX : X ∈ S},
where for each stratum X, we have that ηX is a smooth vector field on X.

By smooth vector field we mean a vector field of class Cμ−1.
Let J = {(TX), (πX), (ρX)}, and for two strata X and Y , let TX,Y , πX,Y , and

ρX,Y be defined as in the previous section.

Definition. A stratified vector field η on V will be said to be controlled (by J)
if the following control conditions are satisfied: for any stratum Y there exists a
neighborhood T ′

Y of Y in TY such that for any second stratum X > Y and any
v ∈ T ′

Y ∩X, we have

ηXρY,X(v) = 0,(9.1)

(πY,X)∗ηX(v) = ηY (πY,X(v)).(9.2)

Definition. If P is a smooth manifold and f : V → P is a continuous mapping, we
will say that f is a controlled submersion if the following conditions are satisfied.

(1) f |X : X → P is a smooth submersion, for each stratum X of V .
(2) For any stratum X, there is a neighborhood T ′

X of X in TX such that f(v) =
fπX(v) for all v ∈ T ′

X .

Note that both the notions that we have just introduced depend only on the
equivalence class of the stratified set (V, S, J), i.e., if (V, S, J′) is a stratified set which
is equivalent to (V, S, J), then a controlled vector field (or controlled submersion)
with respect to one of these stratified sets is the same as a controlled vector field
(or controlled submersion) with respect to the other.

Proposition 9.1. If f : V → P is a controlled submersion, then for any smooth
vector field ζ on P , there is a controlled vector field η on V such that f∗η(v) =
ζ(f(v)) for all v ∈ V .

Proof. By induction on the dimension of V (where the dimension of V is defined
to be the supremum of the dimensions of the strata of V ). By the k skeleton Vk

of V , we will mean the union of all strata of V of dimension ≤ k. Clearly Vk has
the structure of a stratified set, where the strata of Vk are the strata of V which
lie in Vk, the tubular neighborhoods are the intersections with Vk of the tubular
neighborhoods (in V ) of strata in Vk and the local retractions and tubular functions
on Vk are the restrictions of the local retractions and tubular functions on V .

In the case dimV = 0, the statement of the proposition is trivial. Hence, by
induction, it is enough to show that if the proposition is true whenever dimV ≤ k
then it is true when dimV = k + 1. Thus, we may (and do) assume that dimV =
k+1 and that there is a controlled vector field ηk on Vk such that f∗ηk(v) = ζ(f(v))
for all v ∈ Vk. We will show that there exists a controlled vector field η on V which
extends ηk such that f∗η(v) = ζ(f(v)) for all v ∈ V .

To construct η, it is enough to construct ηX separately for each stratum X of
V such that dimX = k+ 1, because the condition that a vector field be controlled
involves only strata Y,X such that Y < X.
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Since by the induction assumption ηk is controlled, we can choose neighborhoods
T 1
Y of Y in TY (one for each stratum Y ⊆ Vk) such that if Y < Z are strata, then the

control conditions (9.1) and (9.2) are satisfied (with Z in place of X) for v ∈ T 1
Y ∩Z.

By the assumption that f is controlled, we may choose the neighborhoods T 1
Y such

that f(v) = fπY (v) for all v ∈ T 1
Y .

Is is easily seen that we may choose neighborhoods T 2
Y of Y in T 1

Y (one for each
stratum Y ⊆ Vk) such that the following holds: if Y < Z are strata in Vk then

πZ(T
2
Y ∩ T 2

Z) ⊆ T 1
Y .

We can furthermore choose the T 2
Y so that T 2

Y is closed in V − ∂Y (where ∂Y
denotes the frontier of Y ), since V − ∂Y is metrisable and therefore normal, and Y
is closed in V − ∂Y . Finally, we can choose the T 2

Y so that if Y is not comparable
to Z, then T 2

Y ∩ T 2
Z = ∅.

Now consider the following conditions on a vector field ηX on X:

The control conditions (9.1) and (9.2) are satisfied for any v ∈ T 2
Y ∩X.(9.3Y )

f∗ηX(v) = ζ(f(v)) for all v ∈ X.(9.4)

We claim that there is a vector field ηX on X satisfying (9.4) and (9.3Y ) for all
strata Y < X. To prove this claim will clearly be enough to prove the proposition.

Consider a point v ∈ X. The set Sv of strata Y < X such that v ∈ T 2
Y is totally

ordered, since if Y and Z are not comparable then T 2
Y ∩T 2

Z = ∅. If Sv is not empty,
then there is a largest member Y = Yv .

Suppose for the moment this is the case and (9.3Y ) holds at v. Then (9.3Z)
holds for all Z ∈ Sv. For, either Z = Y or Z < Y . In the latter case πY (v) ∈ T 1

Z

(by the choice of the T 2
Y ’s). Then

ηXρZ,X(v) = ηXρZ,Y πY,X(v)

= (πY,X)∗ηX(v)ρZ,Y

= ηY (πY,X(v))ρZ,Y = 0

and

(πZ,X)∗ηX(v) = (πZ,Y )∗(πY,X)∗ηX(v)

= (πZ,Y )∗ηY (πY,X(v))

= ηZ(πZ,Y πY,X(v))

= ηZ(πZ,X(v)).

Thus (9.3Z) holds at v for all Z ∈ Sv. Furthermore

f∗ηX(v) = (f ◦ πY,X)∗ηX(v)

= f∗ηY (πY,X(v))

= ζ(f(v)).

Thus (9.4) holds at v.
This shows that to construct ηX satisfying (9.4) and (9.3Y ) for all Y < X, it is

enough to construct ηX satisfying (9.3Yv
) at v for all v ∈ X for which Sv is non-

empty, and satisfying (9.4) at v for all v ∈ X for which Sv is empty. Clearly, we
can construct a vector field ηX in a neighborhood of each point v in X satisfying
the appropriated condition (9.3Yv

) or (9.4). Since the set of vectors satisfying the
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appropriate condition in TXv is convex, we may construct ηX globally by means
of a partition of unity. �

10. One parameter groups

Let V be a topological space. By a one-parameter group of homeomorphism of
V , we mean a continuous mapping α : R× V → V such that αt+s(v) = αtαs(v) for
all t, s ∈ R and all v ∈ V, and α0(v) = v for all v ∈ V. Now suppose V is a stratified
set (V, S, J) and α preserves each stratum. If η is a stratified vector field on V ,
we say that η generates α if the following condition is satisfied. For any v ∈ V ,
the mapping t �→ αt(v) of R into V is C1 (as a mapping into the stratum which
contains v) and

d

dt
(αt(v))

∣∣∣∣
t=0

= η(v).

Note that this implies

d

dt
(αt(v)) = π(αt(v)), t ∈ R.

It is well known that any C1 vector field on a compact manifold without boundary
generates a unique one-parameter group (see, e.g., [2, p. 66]). It is also known that
to extend this result to noncompact manifolds, we must generalize the notion of
one-parameter group.

Definition. Let V be a locally compact space. A local one-parameter group (on V )
is a pair (J, α), where J is an open subset of R× V and α : J → V is a continuous
mapping such that the following hold.

(a) 0× V ⊆ J and α(0, v) = v for all v ∈ V.
(b) If v ∈ V , then the set Jv = J ∩ (R×v) ⊆ R is an open interval (av, bv), possibly

infinite at one or both ends.
(c) If v ∈ V , and t, s, and t+ s are in (av, bv) then α(t+ s, v) = α(t, α(s, v)).
(d) For any v ∈ V and any compact set K ⊆ V , there exists ε > 0 such that

α(t, v) /∈ K if t ∈ (av, av + ε) ∪ (bv − ε, bv).

From now on in this section, we suppose (V, S, J) is an (abstract) stratified set,
and η is a stratified vector field on V .

Definition. If (J, α) is a local one-parameter group (on V ), we say η generates α
if the following conditions (a)–(c) are satisfied.

(a) Each stratum X of V is invariant under α, i.e., α[J ∩ (R×X)] ⊆ X.
(b) For each v ∈ V , the mapping t �→ α(t, v) of (av, bv) into the stratum which

contains v is C1.
(c) For any v ∈ V , we have

d

dt
α(t, v)

∣∣∣∣
t=0

= η(v).

Since α is a local one-parameter group, condition (c) is equivalent to:
(c′) For any (t, v) ∈ V , we have

d

dt
α(t, v) = η(α(t, v)).
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This generalizes the ordinary notion of what it means for a vector field to generate
a local one parameter group.

Since (V, S, J) is a stratified set, it makes sense to talk of a controlled vector field
on V (Section 9).

Proposition 10.1. If η is a controlled vector field on V , then η generates a unique
local one parameter group (J, α).

Proof. For each stratum X, the restriction ηX of η to X is a smooth vector field on
X (by the definition of stratified vector field); hence ηX generates a unique smooth
local one-parameter group (JX , αX) of diffeomorphisms of X, by a standard result
in differential geometry [2, IV, Section 2]. Let (J, α) be defined by

J =
⋃
X∈S

JX ,

α =
⋃
X∈S

αX .

We assert that (J, α) is a local one-parameter group generated by η.
It is clear that (a), (b), and (c) in the definition of local one-parameter group

hold, and that if α is a local one-parameter group, then it is generated by v.
Uniqueness is obvious since each (JX , αX) is unique. All that remains to be verified
is that J is open, α is continuous, and (d) holds.

We begin by showing that (d) holds. If not, there exists v ∈ V and a compact
set K in V such that α(t, v) ∈ K for values of t arbitrarily close to av or bv. We
may suppose that α(t, v) ∈ K for values of t arbitrarily close to bv; the other case is
treated similarly. Then there exists a sequence {ti}, converging to bv from below,
such that y = limα(ti, v) exists and lies in K. Let X (resp. Y ) denote the stratum
of V which contains v (resp. y).

If X = Y , we get a contradiction to the fact that αX is a one-parameter group.
Otherwise Y < X. For large i, ρY,X(αv(ti)) and πY,X(αv(ti)) are defined, and the
control conditions are satisfied for mi = αv(ti).

Thus, by taking i sufficiently large, we may suppose that there exists ε > t− ti
such that [0, ε] ⊆ Jyi

, where yi = πY,X(mi), and if TY is the tubular neighborhood
of Y , πY is the local retraction of TY onto Y, and ρY is the tubular function of Y ,
then ρY,X(mi) < εY on αyi

([0, ε]) and the control conditions for the pair Y,X are
satisfied for

m ∈ {ρY,X = ρY,X(mi)} ∩ π−1
Y,X(αyi

[0, ε]) ∩X.

Since {ρY,X = ρY,X(mi)} ∩ π−1
Y,X(αyi

[0, ε]) is compact (because ρY,X(mi) < εY on

αyi
([0, ε])), and αv stays in X (by definition), it follows from the control conditions

that

αv(ti + s) ∈ {ρY,X = ρY,X(mi)} ∩ π−1
Y,X(αyi

(s)) ∩X for 0 ≤ s ≤ ε.

But this contradicts the hypothesis that αv(tj) → y as j → ∞. This contradiction
proves (d).

Now let (t, v) ∈ J . We will show that J is a neighborhood of (t, v) and α is
continuous at (t, v). We will suppose t ≥ 0; the other case is treated similarly. As
before, let X be the stratum which contains v. Since αX is a local one-parameter
group, there is a compact neighborhood U of v in X and an ε > 0 such that
[−ε, t + ε] × U ⊆ J . Let TX denote the tubular neighborhood of X, πX the local
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retraction of TX on X, and ρX the tubular function of X. Since αX([−ε, t+ε]×U)
is compact, we may choose an ε1 > 0 such that the following hold:

(a) Let Σ = {y ∈ TX : ρX(y) ≤ ε1 and πX(y) ∈ αX([−ε, t + ε] × U)}. Then Σ is
compact.

(b) If y ∈ Σ, then the control conditions for the pair X, Y hold at y, where Y is
the stratum which contains y.

Clearly, the set Σ0 of y ∈ TX such that ρX(y) ≤ ε1 and πX(y) ∈ U is a neigh-
borhood of v in V . If y ∈ Σ0, it follows from the control conditions that

ρX(αy(s)) = ρX(y),

πX(αy(s)) = απX(y)(s)

for all s ∈ Jy such that αy(s
′) ∈ Σ for 0 ≤ s′ < s. From these facts and (d), it

follows that [−ε, t+ ε]× Σ0 ⊆ J ; thus J contains a neighborhood of (t, v).
The argument that we have just given shows that if (t′, y) ∈ [t − ε, t + ε] × Σ0,

then y′ = α(t′, y) ∈ TX , ρX(y′) ≤ ε1, and πX(y′) = α(t′, πX(y)). Hence, for an
arbitrarily small neighborhood of α(t, x) we may choose ε > 0 and a neighborhood
Σ1. Hence, α is continuous at (t, v). �

Corollary 10.2. Let P be a manifold, and f : V → P be a proper, controlled
submersion. Then f is a locally trivial fibration.

Proof. It is enough to consider the case when P = Rk and show in this case that
there is a homeomorphism h : V → V0 × Rk, where V0 denotes the fibre of V over
0, such that the following diagram commutes:

(Diagram 10.1) V
h ��

f
��
��

��
��

��
��

��
V0 × Rk

π2

����
��
��
��
��
��
��

Rk

where π2 denotes the projection on the second factor.
Consider the coordinate vector fields ∂1, · · · , ∂k on Rk. By Proposition 9.1, for

each i, 1 ≤ i ≤ k, there is a controlled vector field ∂̃i on V such that

f∗∂̃i(v) = ∂i(f(v)), v ∈ V.

By Proposition 10.1, each ∂i generates a local one-parameter group (Ji, αi). Clearly

f(αi(t, v)) = f(v) + (0, · · · , 0, t, 0, · · · , 0),
where the non-vanishing entry is in the i-th place. Then from the assumption that
f is proper and condition (d) in the definition of a one parameter group, it follows
that Ji = R× V . Let h be given by

h(v) = (α1(−t1, α2(−t2, · · · , αk(−tk, v) · · · )), f(v))
where we set f(v) = (t1, · · · , tk). It is easily seen that h maps V into V0 × Rk and
that Diagram 10.1 commutes. Let h : V0 × Rk → V be defined by

h(v, (t1, · · · , tk)) = αk(tk, · · · , α2(t2, α1(t1, v) · · · )).
From the fact that the αi’s are one-parameter groups, it follows that hh = hh =
identity. Hence h is a homeomorphism, as required. �
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Note that V0 has a natural structure of a stratified set (V0, S0, J0), where S0
and J0 are defined as follows. S0 is the collection {X ∩ V0 : X ∈ S}. If X ∈ S

and X0 = X ∩ V0 is the corresponding member of S0, then we let TX0
= TX ∩ V0,

πX0
= πX |TX0

and ρX0
= ρX |TX0

. Note that πX0
maps into X0 because f is a

controlled submersion. We let J0 be the triple {(TX0
), (πX0

), (ρX0
)}.

Furthermore V0 × Rk has a structure of a stratified set (defined in an obvious
way).

Corollary 10.3. If h is constructed as in the proof of Corollary 10.2, then h is an
isomorphism of stratified sets.

Proof. Immediate from the construction of h. (See the end of Section 8 for the
definition of isomorphism.) �
Corollary 10.4. Let M be a manifold, let S be a closed subset of M and let S be
a Whitney stratification of S. Let X and Y be strata with X < Y . Let W be a
submanifold of M which meets X transversally. Then X ∩W ⊆ Y ∩W .

Proof. Let x ∈ X ∩W . To show x ∈ Y ∩W , it is enough to consider what happens
in a neighborhood of x. By replacing M with a sufficiently small neighborhood
of x, we may suppose that X is connected and closed, and there exists a tubular
neighborhood TX of X in M such that W ∩|TX | = π−1

X (W ∩X), where πX : |TX | →
X is the projection associated to TX . From Lemma 7.3, it follows that by choosing
TX sufficiently small, we may suppose that there exists ε > 0 such that ρX < ε on
TX , where ρX is the tubular function associated to TX , where (ρX , πX) : |TX | →
[0, ε)×X is proper, and where for each stratum Z of S, the mapping

(ρX , πX)|Z : Z ∩ |TX | → (0, ε)×X

is a submersion.
Let S′ = {Z ∩ (|TX | − X) : Z ∈ S}. Then S′ is a Whitney stratification of

S ∩ (|TX | − X). By Proposition 10.1, there is a family of control data J′ for S′

which is compatible with (ρX , πX). Then (S ∩ (|TX | − X), S′, J′) is an abstract
stratified set and (ρX , πX) is a controlled submersion. Hence by Corollary 10.2,
S ∩ (|TX |−X) is a locally trivial bundle over (0, ε)×X, and by Corollary 10.3, the
local trivializations respect the stratification.

It follows that any stratum of S′ (e.g., Y ∩ (|TX | −X)) intersects each fibre of
(ρX , πX). In particular ∅ �= Y ∩ (ρX , πX)−1(ε′, X) ⊆ Y ∩ W for 0 < ε′ < ε. It
follows that x ∈ Y ∩W . �

The next corollary says that a stratification which satisfies all the conditions
of a Whitney stratification except the condition of the frontier also satisfies the
condition of the frontier, provided that its strata are connected.

Corollary 10.5. Let M be a manifold and S be a locally finite stratification of a
closed subset V of M whose strata are connected such that any pair of strata satisfy
condition b. Then S is a Whitney stratification.

Proof. It suffices to show that the condition of the frontier holds. Suppose X and
Y are strata and Y ∩ X �= ∅. The proof of Corollary 10.4 shows that Y ∩ X is
open in Y . Since Y ∩ X is clearly closed in Y , and Y is connected, this proves
Y ⊆ X. �

The proof of Corollary 10.4 also shows:



NOTES ON TOPOLOGICAL STABILITY 499

Corollary 10.6. Let M be a manifold, S a Whitney stratification of M , X a
stratum of M , and TX a tubular neighborhood of X in M such that for any stratum
Z of S, the mapping (ρX , πX) : (|TX | − X) ∩ Z → Xε is a submersion, where
TX = (E,ϕ, ε) and Xε = {(t, x) ∈ R × X : 0 < t < ε(x)}. Then the bundle
(|TX | −X, (ρX , πX), Xε) is locally trivial and the local trivializations can be chosen
to respect the stratification.

11. The isotopy lemmas of Thom

In this section, we will state Thom’s first and second isotopy lemmas. We will
prove the first and sketch a proof of the second.

Throughout this section, we let M and P be smooth manifolds, f : M → P a
smooth mapping, and S a closed subset ofM which admits a Whitney stratification.

Proposition 11.1 (Thom’s first isotopy lemma). Suppose f |S : S → P is proper
and f |X : X → P is a submersion for each stratum X of S. Then the bundle
(S, f, P ) is locally trivial.

Proof. By Proposition 7.1, we can find a system of control data for S which is
compatible with f . This provides S with a structure of an abstract stratified set in
such a way that f is a controlled submersion. Then the conclusion of the theorem
is an immediate consequence of Corollary 10.2. �

Remark. Thom considered the case P = R. If a, b ∈ R, then the proof of Proposition
10.1 constructs an isotopy from the fibre Sa to the fibre Sb, whence the name
“isotopy lemma”.

The second isotopy lemma is an analogous result for mappings instead of spaces.
Consider a diagram of spaces and mappings:

X
f

��

π1

��
��

��
��

��
��

��
Y

π2

����
��
��
��
��
��

Z .

We say that f is trivial over Z if there exists spacesX0 and Y0, a mapping f0 : X0 →
Y0 and homeomorphisms X ≈ X0×Z, Y ≈ Y0×Z such that the following diagram
of spaces and mappings is commutative:

X

≈

��

f
��

π1

		�
��

��
��

��
��

��
� Y

≈

��

π2

����
��
��
��
��
��
��

Z

X0 × Z



�������������

f × id
�� Y0 × Z.

���������������
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We say f is locally trivial over Z if for any z ∈ Z, there is a neighborhood U of
z in Z such that in the diagram

π−1
1 (U)

f
��

π1

			
		

		
		

		
		

		
π−1
2 (U)

π2

��




















U,

we have that f is trivial over U .
Local triviality of a mapping f over a space Z has a consequence which is very

important in our proof that topologically stable mappings are dense. We think of f
as a family {fa : a ∈ Z} of mappings, where fa : Xa → Ya is the mapping obtained
by restricting f to the fibre Xa of X over a. If Z is connected and f is locally
trivial over Z, then for any a and b in Z, the mappings fa and fb are equivalent
in the sense that there exist homeomorphisms h : Xa → Xb and h′ : Ya → Yb such
that h′fa = fbh.

This is the relation of equivalence that is used in the definition of topologically
stable mapping, and a step in the proof that the topologically stable mappings form
an open dense set will be to show that certain families of mappings are locally trivial
in the sense defined above, by an application of Thom’s second isotopy lemma.

Now suppose M ′ is a smooth manifold and S′ is a closed subset of M ′, which
admits a Whitney stratification S′. Let g : M ′ → M be a smooth mapping and
suppose g(S′) ⊆ S. Thom’s second isotopy lemma gives sufficient conditions for
the following diagram to be locally trivial:

(Diagram 11.1) S′ g
��

g ◦ f
��
��

��
��

��
��

��
S

f
����
��
��
��
��
��

P

To state Thom’s second isotopy lemma, we must introduce Thom’s condition ag.
Let X and Y be submanifolds of M ′ and let y be a point in Y . Suppose g|X and
g|Y are of constant rank. We say the pair (X,Y ) satisfies condition ag at y if the
following holds:

Let {xi} be any sequence of points in X converging to y. Suppose that sequence
of planes ker(d(g|X ′)xi

) ⊆ TM ′
xi

converges to a plane τ ⊆ TM ′
y in the appropriate

Grassmannian bundle. Then ker(d(g|Y ′)y) ⊆ τ .
We say the pair (X,Y ) satisfies condition ag if it satisfies condition ag at every

point y of Y .
Now, we return to the situation of Diagram 11.1. We will say that g is a Thom

mapping (over P ) if the following conditions are satisfied.

(a) g|S′ and f |S are proper.
(b) For each stratum X of S, f |X is a submersion.
(c) For each stratum X ′ of S′, g(X ′) lies in a stratum X of S, and g : X ′ → X is a

submersion (whence g|X ′ is of constant rank).
(d) Any pair (X ′, Y ′) of strata of S′ satisfies condition ag (which makes sense in

view of (c)).

In the case P is a point, we will drop “over P”.
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Proposition 11.2 (Thom’s second isotopy lemma). If g is a Thom mapping over
P , then g is locally trivial over P .

The proof of this requires new machinery. Let {T} be a system control data for
the stratification S of S. We need the notion of a system {T ′} of control data over
{T} for the stratification S′ of S′.

Caution. A system of control data over {T} is not a system of control data as
previously defined. If we were to require that a system of control data over {T}
also be a system of control data tout court then the fundamental existence theorem
for control data over {T} (Proposition 11.3, below) would not be true.

Definition. Suppose g is a Thom mapping. A system {T ′} of control data for S′

over {T} is a family of tubular neighborhoods, indexed by S′, where T ′
X is a tubular

neighborhood of X in M ′ with the following properties:

(a) If X ′ and Y ′ are strata of S′ and X ′ < Y ′, then the commutation relation

πX′πY ′(v) = πX′(v)

holds for all v for which both sides are defined, i.e., all v ∈ |TX′ | ∩ |TY ′ | such
that πY ′(v) ∈ |TX′ |.

Furthermore, if g(X ′) and g(Y ′) lie in the same stratum of S, then the
commutation relation

ρX′πY ′(v) = ρX′(v)

holds for all v for which both sides of this equation are defined.
(b) If X ′ is a stratum of S′ and X is a stratum of S which contains g(X ′), then

gπX′(v) = πXg(v)

for all v for which both sides of this equation are defined, i.e., for all v ∈
|TX′ | ∩ g−1|TX |.

Note that (a) is weaker than the commutation relation for control data in the
case g(X ′) and g(Y ′) are not in the same stratum of S.

Proposition 11.3. If g is a Thom mapping then for any system {T} of control
data for S there exists a system {T ′} of control data for S′ over {T}.

The proof of this is similar to the proof of the existence theorem for control data
(Proposition 7.1). We will only outline it.

Proof (Outline): Let S′k be the family of all strata of S′ of dimension ≤ k, and let
S′
k denote the union of all strata in S′k. We will show by induction on k that the

proposition is true for S′k and S′
k in place of S′ and S′. This will suffice to prove

the proposition.
The case k = 0 is trivial. For the inductive step, we suppose that for each

stratum X ′ of S′ of dimension < k, we are given a tubular neighborhood TX′ of
X ′ and that this family of tubular neighborhoods satisfies conditions (a) and (b)
above.

By shrinking the TX′ if necessary, we may suppose that if X ′ and Y ′ are strata
of dimension < k which are not comparable, then |TX′ | ∩ |TY ′ | = ∅. To construct
the TX′ on the strata of dimension k, we may do it one stratum at a time, since the
relations (a) and (b) impose no conditions on pairs of strata of the same dimension.
Let X ′ be a stratum of S′ of dimension k.
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We construct the tubular neighborhood TX′ in two steps as follows. For each
� ≤ k, we let U ′

� denote the union of all |TY ′ | for Y ′ < X ′ and dimY ′ ≥ �. We let
X ′

� = U ′
� ∩X ′. In the first step, we construct a tubular neighborhood T ′

� of X ′
� by

decreasing induction on �, shrinking various T ′
Y where necessary.

This step is carried out in essentially the same way as the first step in the proof
of Proposition 7.1. We start the induction at � = k, where there is nothing to prove.
For the inductive step, we suppose T ′

�+1 has been constructed. We observe that to
construct T ′

� it is enough to construct T ′
� on |TY ′ | ∩X ′ for each stratum Y ′ < X ′

of dimension � separately. Then there are two cases.
Case 1. If g(Y ′) and g(X ′) are in the same stratum of S, then the construction

is carried in the same way as the corresponding construction in the proof of Propo-
sition 7.1. In this way we define T ′

� on |TY ′ |∩X ′ so that the commutation relations
(a) hold. (Note that (b) follows from (a) and the induction hypothesis in this case.)

Case 2. In the case g(Y ′) and g(X ′) are not in the same stratum of S, the proof
must be modified. Let X be the stratum which contains g(X ′) and let Y be the
stratum which contains g(Y ′). Then Y < X. By shrinking |TY ′ | if necessary, we
may suppose that g(|TY ′ |) ⊆ |TY |. Let

V = (|TY | ∩X)×Y Y ′

where the fibre product is taken with respect to the mappings

πY : |TY | ∩X → Y,

g : Y ′ → Y.

Then the mapping
G = (g, πY ′) : |TY ′ | ∩X ′ → V

is defined because the following commutes:

|TY ′ | ∩X ′

g

��

πY ′
�� Y ′

g

��

|TY | ∩X πY

�� Y,

by the induction hypothesis that (b) is satisfied for those tubular neighborhoods
which are already defined.

Lemma 11.4. There exists a neighborhood N of Y ′ in |TY ′ | such that

G|N ∩X ′ : N ∩X ′ → V

is a submersion.

Proof. Let Σ be the set of points in |TY ′ | ∩ X ′ where the differential of G is not
onto. It suffices to show that Y ′ ∩ Σ = ∅.

Let x′ ∈ |TY ′ | ∩X ′, x = g(x′), y′ = πY ′(x′), and y = g(y′) = πY (x). Then

dGx′ = (d(πY ′X′)x′ , d(g|X ′)x′) : TX ′
x′ → TVG(x′) = TXx ×TYy

TY ′
y′ .

By definition, x′ ∈ Σ if and only if this mapping is not onto. Since

d(g|X ′)x′ : : TX ′
x′ → TXx

is onto (by hypothesis), it follows that this mapping is onto if and only if

d(πY ′X′)x′ : ker (d(g|X ′)x′) → ker (d(g|Y ′)y′)
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is onto. From condition ag, it follows that Y ′ does not meet the closure Σ of the
set of points where this mapping is not onto. �

Now we extend T ′
� over |TY ′ | ∩X ′ in such a way that (a) holds (the weak (a)!)

and (b) holds. We may do this by the generalized existence theorem for tubular
neighborhoods and Lemma 11.4.

This completes the inductive step.
Now the second step (extension of T�′ from U ′

0 over all of X ′) is carried out in
exactly the same way as in the proof of Proposition 7.1. �

The rest of the proof of Proposition 11.2 will be carried out in three steps. First,
we define the notion of a controlled vector field over another controlled vector field.
(WARNING: this is not a special case of the notion of a controlled vector field.)
Then we prove a lifting theorem for controlled vector fields. Finally, we show that
every controlled vector field over another controlled vector field generates a local
one-parameter group.

Now we suppose g is a Thom mapping. We suppose that we are given a system
{T} of control data for S and a system {T ′} of control data for S′ over {T}. Let
η = {ηX}X∈S be a controlled vector field on S.

Definition. By a controlled vector field on S′ over η, we will mean a collection
{ηX′}X′∈S′ where ηX′ is a vector field on X ′, such that the following conditions are
satisfied.

(a) For any X ′ ∈ S′ and x′ ∈ X ′, we have

(g|X ′)∗ηX′(x′) = ηX(g(x′)),

where X is the stratum of S that contains g(x′).
(b) For any X ′, Y ′ ∈ S′ with Y ′ < X ′, there is a neighborhood NY ′ of Y ′ in |TY ′ |

such that for y′ ∈ |TY ′ | ∩X ′, we have

(πY ′,X′)∗ηX′(x′) = ηY ′(πY ′,X′(x′))

and if g(X ′) and g(Y ′) are in the same stratum of S then we have

ηX′ρY ′,X′(x′) = 0.

(Note that condition b is weaker than the condition that we imposed on a con-
trolled vector field in Section 9 in the case g(Y ′) and g(X ′) are not in the same
stratum of S.)

Proposition 11.5. There exists a controlled vector field on S′ over η.

The proof is completely analogous to the proof of Proposition 9.1, and we omit
it. �
Proposition 11.6. If η′ is a controlled vector field on S′ over η, then η′ generates
a local one parameter group, which commutes with the one-parameter group on S
generated by η.

The proof of this is essentially the same as the proof of Proposition 10.1. The
only additional remark to be made is that if X ′ and Y ′ are strata of S with Y ′ < X ′,
and g(Y ′) lies in Y and g(X ′) lies in X, then, in the case Y < X, a trajectory y′

of η′ starting at a point of X ′ cannot approach Y ′ because the image of y′ is a
trajectory of η and therefore cannot approach a point of Y .

We omit the proof. �
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Proof of Proposition 11.2. To prove that g is locally trivial over P , it suffices to
consider the case P = Rp and prove that g is trivial over P in this case. By
Proposition 7.1 we can find a system {T} of control data for S compatible with f ,
and by Proposition 11.3 there exists a system {T ′} of control data for S′ over {T}.
Let ∂1, · · · , ∂p be the coordinate vector fields on Rp. By Proposition 9.1, we can

lift ∂i to a controlled vector field ∂̃i on S, and by Proposition 11.5 we can lift ∂̃i to

a controlled vector field
≈
∂i on S′ over ∂̃i.

By Propositions 10.1 and 11.6 the vector fields ∂̃i and
≈
∂i generate local one-

parameter groups ϕ̃i and
≈
ϕi. Since the mappings f and g are proper and ∂i gen-

erates a (global) one-parameter group ϕi, it follows that ϕ̃i and
≈
ϕi are (global)

one-parameter groups.
Let S0 (resp. S′

0) denote the fibre of S (resp. S′) over 0. To complete the proof,
it is enough to construct local homeomorphisms h and h′ such that the following
diagram commutes.

S′ g
��

f ◦ g

���
��

��
��

��
��

��
�

h′ ≈

��

S

f

��
��
��
��
��
��
��

≈ h

��

Rp

S′
0 × Rp g0 × id

��



�������������
S0 × Rp

����������������

We define h and h′ as follows.

h′(x) = (ϕ′
p,−tp · · ·ϕ

′
1,−t1(x), t) where t = (t1, · · · , tp) = f ◦ g(x),

h(x) = (ϕp,−tp · · ·ϕ1,−t1(x), t) where t = (t1, · · · , tp) = f(x).

It is easily verified that the above diagram commutes and that h and h′ are
homeomorphisms. �
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List of Revisions

The above article is a slightly revised version of the booklet that I wrote in 1970.
Here I describe the main changes.

There are a few places where I wrote something other than what I meant. The
most important is the formulation of Proposition 7.1. I have changed “If f : M → P
is a submersion” in the original to “If f : M → P is smooth and f |X is a submersion
of X into P for each stratum X.”

I have changed “Let μ be a positive number” to “Let μ be a positive integer” in
the second paragraph in Section 1.

In Example 2.5, I have changed “If {xi} ⊂ X is a sequence converging to 0, then

the tangents {TXxi
} converge to a line τ ⊆ R2, and

�
0xi converges to a line �, which

makes an angle α with τ .” to “If {xi} ⊂ X is a sequence converging to 0 and the

tangents TXxi
converge to a line τ ⊆ R2, then

�
0xi converges to a line �, which

makes an angle α with τ .”
I have changed “X = Y = Y ∪ X” following the remark in section 5 to “X ⊂

Y = Y ∪X.”
I have changed “{x ∈ M : t ∈ I, H(x, t) �= x}” to “{x ∈ M : ∃t ∈ I, H(x, t) �=

x}” in Section 6.
I have changed “with support in V ” in the statement of Proposition 6.1 to “with

support in V − U ′.” I have added the hypothesis, “Suppose μ ≥ 2.”
In the second paragraph of step 1 of the proof of Proposition 6.1, I have changed

“Wi is contained in Wxi
” to “Wi is open in M and is contained in Wxi

.” In the

sixth paragraph, I have changed “U∗
i−1 ⊂ W 0” to “U

∗
i ⊂ U∗

i−1 ∪W 0
i .”

I have added “(in the Cμ−1 topology)” in the next to last paragraph before the
lemma used in the proof of Proposition 6.1.

In the lemma used in the proof of Proposition 6.1, I have changed “inner products
i and j” to “inner products k and l” and “H ◦ L : V → V ” to “H ◦ L : V → W .”

In the existence part of the proof of this lemma, I have changed “(Lei, Lej)j”
to “(Lei, Lej)�” and “Then f1, . . . , fn is an orthonormal basis of V .” to “Then
f1, . . . , fn is an orthonormal basis of W .”

I have changed “β” to “β1” in both of the first two displayed formulas follow-
ing the proof of this lemma. I have changed “close” to “C1−close” immediately
preceding the first of these formulas.

I have changed “U1” to “U ′” at the end of the first paragraph following the proof
of this lemma.

I have changed “gs(V2) ⊆ gt(V1) for 0 ≤ s, t ≤ 1” to “V2 ⊂ gt(V1) for 0 ≤ t ≤ 1”
in the second paragraph following the proof of this lemma.

Towards the end of the proof of Proposition 6.1, I have changed “H” to “H̃”

every time “H” appears, “g1” to “g1 ◦ g−1
0 ” (twice), “H1 ◦ϕ” to “H̃1 ◦ g0 ◦ϕ0” and

H1∗ to (H̃1g0)∗. The last paragraph in this proof is new.
In the proof of Proposition 6.2, third paragraph, I have changed “Furthermore,

we can choose closed sets such that W ′
i ⊆ Wi such that {W ′

i} is a cover” to “Fur-
thermore we can choose closed sets W ′

i of X such that W ′
i ⊂ Wi and {W ′

i} is a
cover.”

In the proof of Proposition 6.2, second paragraph from the end, I have changed

“U ′′
i ⊆ Wi − U ′

i−1” to “U
′′
i ⊆ Wi ∪ U ′′

i−1.”
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Immediately before Lemma 7.3, I have changed “tubular restriction πT ” to “pro-
jection πT .”

In Section 8, before Definition 8.2, I have changed “v ∈ TY,Z” to “v ∈ TX,Z ∩
TY,Z .”

In Section 8, fifth paragraph before the end, I have changed “and let πX : T ′
X →

X and ρX : T ′
X → (0,∞)” to “Let TX = T ′

X∩V, πX = π′
X |TX , and ρX = ρ′X |TX .“

In Section 8, last paragraph, I have changed “if (V, S, J) is a Whiteny stratified
set,” to “if S is a Whitney stratification of a subset V of a manifold,”

In Section 9 following (9.4), I have removed “by inclusion” from the phrase “The
set Sv of strata Y < X such that v ∈ T 2

Y is totally ordered by inclusion.”
In the following paragraph, I have put a comma in the sentence “For, either

Z = Y or Z < Y.”
In the first displayed formula following this, I have added

= (πY,X)∗ηX(σ)vZ,Y

= ηY (πY,X(v))ρZ,Y

In Section 10, I have added “and α0(v) = v for all v ∈ V ” at the end of the
second sentence. I have added “and α(0, v) = v for all v ∈ V ” to the condition given
in (a) of the first definition. I have added “possibly infinite at one or both ends.”
to the condition given in (b). I have changed “Since α is a one-parameter group”
to “Since α is a local one-parameter group” following (c) of the second definition.
I have changed “(Section 5)” to “(Section 9)” immediately preceding Propostion
10.1. I have changed “Proposition 10.1” to “Proposition 9.1” in the second sentence
of the first paragraph following Diagram 10.1. In Corollary 10.4, I have changed
“let X be a closed subset of M” to “let S be a closed subset of M .”

I have changed “a smooth local one-parameter group” to “a unique smooth local
one-parameter group” in the first paragraph of the proof of Proposition 10.1 and
“Uniqueness is obvious.” to “Uniqueness is obvious since JX , αX) is unique.” in
the second paragraph.

In Section 11, following the third diagram, I have changed the sentence “Local
triviality of a mapping f over a space Z has a consequence which will be very
important in what follows” to “Local triviality of a mapping f over Z has a con-
sequence which is very important in our proof that topologically stable mappings
are dense.”

In Case 1 of the proof of Proposition 11.3, I have changed “(Note that (b) follows
from (a) in this case.)” to “(Note that (b) follows from (a) and the induction
hypothesis in this case.)”

In (a) of the definition following Lemma 11.4, I have added “where X is the
stratum of S that contains g(x′).”

In my 1970 notes, I wrote about “pre-stratifications” and “pre-stratified sets.”
I have eliminated the prefix “pre-” from all such expressions. In three places, I
referred to non-existent “figures”. I have eliminated these references.

The sections “Foreword to the 1970 Booklet”, “List of Revisions”, “Acknowledg-
ments”, and “Contents” at the beginning of this article have been added.

The other changes either are very minor and do not affect the meaning in any
way, or have been inadvertantly overlooked.
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