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NOTES ON TOPOLOGICAL STABILITY

JOHN MATHER

FOREWORD TO THE 1970 BOOKLET

These notes are part of the first chapter of a series of lectures given by the author
in the spring of 1970. The ultimate aim of these notes will be to prove the theorem
that the set of topologically stable mappings form a dense subset of C*°(N, P) for
any finite dimensional manifolds N and P where N is compact. The first chap-
ter is a study of Thom—Whitney theory of stratified sets and stratified mappings.
The connection of the material in these notes with the theorem on the density of
topologically stable mappings appears in Section [, where we give Thom’s sec-
ond isotopy lemma. This result gives sufficient conditions for two mappings to be
topologically equivalent.

LisT oF REVISIONS

A List of Revisions to the 1970 booklet is appended at the end of this article.

ACKNOWLEDGMENTS

The ideas explained in these Notes are due to René Thom. The results are either
variants on results of Thom or known results, which the reader needs to know to
understand Thom’s results, but which Thom did not explain in his articles on this
subject.

The original version of these notes was typed by Mary McQuillen and made into
a booklet by the Harvard printing office in 1970. This revised version of the notes
was typeset in AAS-IXTEX by Shu Otsuka in December 2011. I wish to thank Susan
Friedlander and Mark Goresky for inviting me to publish these notes in the Bulletin
of the American Mathematical Society. My work on the 1970 booklet was supported
by an NSF grant. My work on this revision was supported by The Ambrose Monell
Foundation.

CONTENTS

Foreword to the 1970 Booklet

List of Revisions

Acknowledgments

1. Condition a

Condition b

Blowing up

An intrinsic formulation of condition b
Whitney stratifications

Tubular neighborhoods

ERERERERE

S OU N

©2012 American Mathematical Society
475



476 JOHN MATHER

7. Control data

8. Abstract stratified sets

9. Controlled vector fields

10. One parameter groups

11. The isotopy lemmas of Thom
References

List of Revisions

EREEEEE]

1. CONDITION a

We begin by introducing some notions that are due to Whitney ([5] and [6]).

Let p be a positive integer or oo, which will be fixed throughout this paper. By
“smooth” we will mean differentiable of class C*.

Let M be a smooth (i.e., C*) n-manifold without boundary. By a smooth
(i.e., C*) submanifold of M, we will mean a subset X of M such that for every
x € X there exists a coordinate chart (¢,U) of class C* such that z € U and
©(XNU) =RFNy(U), for a suitable coordinate plane R¥ in R™. In the definition
of submanifold, we do not assume that X is closed. However, it follows from
the definition of submanifold that X is locally closed, i.e., each point in X has a
neighborhood U in M such that X N U is closed in U.

If X is an r-dimensional submanifold of M and x € X, then the tangent space
TX, of X at x is a point in the Grassmannian bundle of r-planes in TM,.. In what
follows convergence means convergence in the standard topology of this bundle.

Let X and Y be smooth submanifolds of M and let y € Y. Set r = dim X.

Definition 1.1. We say the pair (X,Y) satisfies condition a at y if the following
holds. Given any sequence {z;} of points in X such that z; — y and T X, converges
to some r-plane 7 C T'M,,, we have TY,, C 7.

Ezample 1.2 (Whitney [6]). Let x,y, z denote coordinates for C3. Let Y be the
z-axis and let X be the set {z;v2 —y? = O} with the z-axis deleted. Then X and
Y are complex analytic submanifolds of C3. Tt is easily seen that (X,Y) satisfies
condition a at all points of Y except the origin, and that it does not satisfy condition
a there.

We will say that the pair (X,Y) satisfies condition a if it satisfies condition a at
every point of Y.

In Example [[L2] the pair (X,Y") does not satisfy condition a. If we set Z = {0}
and Y/ =Y — Z, then the pairs (X,Y”), (X, Z), and (Y, Z) do satisfy condition a.

2. CONDITION b

We will begin by defining Whitney’s condition b for submanifolds of R™. Then we
extend this definition to submanifolds of an arbitrary manifold, using the definition
in R™. We will also show that condition b implies condition a.

If 2,y € R" and z # y, then the secant zy will denote the line in R” which is
parallel to the line joining  and y and passes through the origin. For any x € R"
we identify T,R™ with R™ in the standard way.

Let X,Y be (smooth) submanifolds of R”. Let y € Y. Let r = dim X.
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Definition 2.1. We say that the pair (X,Y") satisfies condition b at y if the fol-
lowing holds. Let {z;} be a sequence of points in X, converging to y and {y;} a
sequence of points in Y, also converging to y. Suppose T'X,. converges to some r-

plane 7 C R™ and that x; # y; for all i and the secants T;y; converge (in projective
space P”_l) to some line ¢ C R™. Then ¢ C 7.

Let (X', Y”) be a second pair of submanifolds of R™, and let ¢y’ € Y'.

Lemma 2.2. Suppose there exist open neighborhoods U and U’ of y and y' in
R™ and a (smooth) diffeomorphism ¢: U — U’ such that (U N X) = U' N X/,
oUNY)=U0NY" and p(y) =y'. Then (X,Y) satisfies condition b at y if and
only if (X',Y") satisfies condition b at y'.

Proof. Obvious. O

Definition 2.3. Let M be a manifold and X, Y submanifolds. Let y € Y. We say
that (X,Y) satisfies condition b at y if for some coordinate chart (¢, U) about v,
we have that the pair (p(U N X), (U NY)) satisfies condition b at ¢(y).

In view of Lemma 22] if (X,Y") satisfies condition b at y, then for every coordi-
nate chart (¢, U) about y, we have that (p(U N X), (U NY)) satisfies condition b
at y.

For the rest of this section, let M be a manifold and X and Y submanifolds and
letyeY.

Proposition 2.4. If (X,Y) satisfies condition b at y, then it satisfies condition a
aty.

Proof. Since both conditions a and b are purely local, we may suppose that X and
Y are submanifolds of R™. Let {x;} be a sequence of points in X such that z; — y
and T'X,, — 7, for some 7 C TRZ = R™. We must show that 7Y, C 7. Suppose
otherwise. Then there exists a line £ C R", passing through the origin, such that
0 CTY, but £ Z 7. Since £ C TY,, we can choose a sequence of points {y;} in YV’
such that y; # x;, y; — y and a;y; — ¢. But since ¢ ¢ 7, this contradicts condition
b. O

We say (X,Y) satisfies condition b if it satisfies condition b at every point y € Y.

Example 2.5. Let X be the spiral in R? defined by the condition that the tangent
of X makes a constant angle with the radial vector, and let Y be the origin. In
polar coordinates, this spiral is given by r — 36 = constant. Then the pair (X,Y)
does not satisfy condition b. For, by definition, the angle o between the line T'X,,

and the secant Oz is independent of x. If {z;} C X is a sequence converging to 0

and the tangents {T'X,,} converge to a line 7 C R?, then Ox; converges to a line ¢,
which makes an angle a with 7.

Example 2.6 (Whitney [6]). Let x,y, z be coordinates for C3. Let Y be the z-axis.
Let X be the set {y? + 2% — 2222 = 0} with the z-axis deleted. It is easily seen that
the pair (X,Y) satisfies condition a, and the pair (X,Y) satisfies condition b at all
points of Y except the origin and that it does not satisfy condition b there.

Proposition 2.7. Suppose y € X —Y and (X,Y) satisfies condition b at y. Then
dimY < dim X.
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Proof. Tt is enough to consider the case when M = R™. Since y € X — Y, there
exists a sequence {z;} in X —Y which converges to y. By the compactness of
the Grassmannian, we may suppose, by passing to a subsequence if necessary, that
{TX,,} converges to an r plane 7 C R™ (where » = dim X). Since condition b
implies condition a (Proposition 24), TY, C 7. For ¢ sufficiently large, there is a
point y; on Y which minimizes the distance to x;. By passing to a subsequence
if necessary, we may suppose the secants x;y; converge to a line £ C R™. Since
y; minimizes the distance to z;, the secant z;y; is orthogonal to TY,,; hence ¢ is
orthogonal to T'Y,,. Since (X,Y) satisfies condition b at y, we have £ C 7. We have
shown TY, + ¢ C 7 and ¢ is orthogonal to TY; hence dim X = dim7 > dim 7Y, =
dimY. |

3. BLOWING UP

In the next section, we will give an intrinsic formulation of condition b which
will be useful later on. This formulation depends on the notion of blowing up a
manifold along a submanifold, which we define in this section.

Let N be a manifold and U a closed submanifold. By the manifold By N obtained
by blowing up N along U, we will mean the manifold defined in the following way.
As aset By N is the disjoint union (N —U)UPny, where Pry denotes the projective
normal bundle of U in N.

By the natural projection w: By N — N, we mean the mapping defined by letting
7|Pnu be the projection of Pny on U and letting 7| N —U be the inclusion of N —U
into N.

To define the differentiable structure on By N, we first consider the case when
N is open in R® and U = R" N N, where R” is the coordinate plane defined by
the vanishing of the last n — r coordinates. Then we have a mapping «: ByN —
R" x RP"~"~! defined as follows. First, | Pny is the standard identification of Pny
with U x RP*~ "1 C R® x RP" "L, Secondly, if z = (21, ,7,) € R* — R",
then a(x) = (x,8(z)), where 3(z) is the point in RP* "~! with homogeneous

coordinates (Ty41, - ,Tyn).
It is easily verified that a[ByN] is a C° submanifold of R® x RP" "1 as
follows. Let (z1,---,xy) denote the coordinates of R™. Let X, 1,---,X, denote

the homogeneous coordinates for RP"~"~1, For r + 1 < i < n, let Z; denote the
subset of RP"~"~1 defined by X; # 0, and let X;; be the real valued function
Xji = X;/X; on Z;. Then the intersection of a[ByN] with N x Z; is the set
defined by

Therefore o [Byy N] is a submanifold of R" x RP"~"~1,

Since the mapping « is injective, we may define a manifold structure on By N
by pulling back the manifold structure on « [By NJ.

Now, let N’ be a second open subset of R”, let U’ = R"NN’, and let ¢: (N,U) —
(N',U’) be a C* diffeomorphism. Let ¢,: By N — By N’ be the induced mapping,
defined by letting ¢.|Pny : Pny — Pny+ be the mapping induced by the differential,
and letting p.|(N —U): N —=U — N’ — U’ be the restriction of ¢. Then ¢, is a
diffeomorphism of class C*~1.

To show this, we first observe that ¢, is a bijection and (¢.)~t = (p71)..
Therefore, it suffices to show that ¢, is of class C#~!. To show this, it is enough
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to show that x; o ¢, is of class C*~1 1 < i < n, that ¢, 'Z; is open, r +1 < i < n,
and that Xj;¢, is of class C*~! for r +1 < j < n and j # i. Since
Tiop. =wiopom,

where 7m: By N — N is the natural projection, the first statement is obvious.
To prove the remaining two statements, we set ¢; = x; o ¢ and observe that
there exist functions 1);, of class C#~1, for r +1 < 4, a < n, such that

(31) Pi = Z TaWia-

a=r-+1

This is proved as follows. Since for r +1 < ¢ < n, we have that ¢; vanishes on
U= NNR", we get that

1
d
@i(:pl? e ,In) = / d_@i(xlv e axrvt$r+la te ,tzn)dt
0 t
n 1
O
= Z Ia/ a(pz (1'1,-~- a'rT7tx7"+1a"' 7t$7l)dt
a=r+1 0 Lo
so that ([B1)) holds, where
1
0p;
Via = 3 Yy, Ty by, - by )
0 O%q

In view of B1)), »; 1 (Z;) N Zy is the subset of Zj, defined by

Z Xock¢ia 7& Oa

a=r-+1

and hence is open. It follows that ¢ 1Z; is open. It also follows from (B.1I) that

n
Za:rJrl Xakwja
ZZ:T+1 Xock ¢ia

on ;1 (Z;) N Zy, and hence is of class C#~! there.

This completes the proof that ¢, is a diffeomorphism of class C*~1.

Now we return to the general situation where IV is a manifold, and U is a closed
submanifold, both of class C*. In view of what we have just done, we can construct
a differentiable structure on the part of By N which lies above any coordinate
patch, and the differentiable structures above different coordinate patches are C#~!
compatible. Thus, we obtain the structure of a manifold of class C*~! on By N.

Note that the natural projection m: By N — N is differentiable of class C#~1.

Since we have defined a structure of a manifold of class C*~! on By N, we have
also defined a topology on ByN. In the local case, when N = R™ and U = R",
this topology may be described more directly. Let {x;} be a sequence of points in
R™ —R", and suppose x; — = € R". Let £ € RP"~"~1 5o that (x,/) is a member of
By N, if we identify By N with the subset a(ByN) of R x RP™™" as above. Then
it is easily seen that {z;} converges (in ByN) to (z,¢) if and only if the secants
z;x} converge to £, where x denotes the projection of x; on R”.

This suggests that it should be possible to reformulate condition b in terms of
“blowing up.” We do this in the next section.

XJZO()O* =
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4. AN INTRINSIC FORMULATION OF CONDITION b

Let N be a smooth manifold. Let Ay denote the diagonal in N2. By the fat
square of N, we mean the manifold F(N) obtained by blowing up N? along A .

The normal bundle 7 of Ay in N? can be identified with the tangent bundle TN
in a canonical way, as follows. If z € Ay, then by definition

ng = (I'Ny & TN,)/diagonal.

The mapping of TN, & T'N,, into T'N,, which sends v & w to v — w induces an
isomorphism of 7, with TN,. We use this isomorphism to identify 7, with T'N,.

From this identification and the definition of the process of blowing up a manifold
along a submanifold, it follows that

F(N)=PT(N)U(N? - Ay) (disjoint union)

where PT(N) denotes the projective tangent bundle of N. Thus, points of F(N)
are of two kinds: pairs (z,y) with z,y € N and z # y and tangent directions on N.

It follows from the previous section that F(IV) is a manifold of class C*~1.

Roughly speaking, a sequence {(z;,v;)} of points in N? — Ay converges to a
tangent direction ¢ on N if the sequences {z;} and {y;} converge to the same point
z in N and the direction from z; to y; converge to £. In the case N = R", this can
be made precise: {(z;,y;)} converges to (z,f) € R® x RP"! if both {x;} and {y;}
converge to x, and the secants z;y; converge to /.

Now let X and Y be smooth submanifolds of N and let y € Y. Suppose Y is
closed. In view of the previous paragraph, we obtain the following result.

Proposition 4.1. The pair (X,Y) satisfies condition b at y if and only if the
following condition holds. Let {x;} be any sequence of points in X and {y;} any
sequence of points in'Y such that x; # y;. Suppose {z;} = vy, {vi} = vy, {(zi,y:)}
converges to a line ¢ C PTN,, and {T'X,,} converges (in the Grassmannian of
r-planes in TN, where r = dim X ) to an r-plane T CTN,. Then £ C 7. O

5. WHITNEY STRATIFICATIONS

Let M be a smooth (i.e., C*) manifold without boundary. Let S be a subset
of M. By a stratification 8§ of S, we will mean a cover of S by pairwise disjoint
smooth submanifolds of M, which lie in S. We will say that 8 is locally finite if
each point of M has a neighborhood which meets at most finitely many strata. We
say & satisfies the condition of the frontier if for each stratum X of 8 its frontier
(X — X)N S is a union of strata.

We will say 8 is a Whitney stratification if it is locally finite, satisfies the condition
of the frontier, and (X,Y") satisfies condition b for any pair (X,Y) of strata of 8.

Let 8 be a Whitney stratification of a subset .S of a manifold M. Suppose X and
Y are strata. We write Y < X if Y is in the frontier of X. In view of Proposition
27 if Y < X then dimY < dim X. It follows easily that the relation “<” defines
a partial order on 8.

Remark. Let M be a manifold, S a closed subset of M, and 8§ a Whitney stratifica-
tion of S. Let z and 2’ be two points in the same connected component of a stratum
of 8. Then there exists a homeomorphism h of M onto itself which preserves S and
8 such that h(xz) = 2’. This follows from Thom’s theory [4] and we will prove it
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below. In the case 8§ has only two strata, it is quite easy to prove by an argument
due to Thom [4, p. 242].

We sketch Thom’s argument for the two strata case here. The only non-trivial
case is when the two strata satisfy X < Y and the two points z and 2’ are in X.
In this case X is closed and X CY =Y U X.

For simplicity, we will suppose that M is compact, though it is not difficult to
modify the argument to make it work in the case M is non-compact.

Let N be a small tubular neighborhood of X in M, let 7: N — X be a smooth
retraction, and let p be a smooth function on M such that p > 0, X = {p = 0},
and at a point x € X, p is non-degenerate on the normal plane to X in the sense
that the Hessian matrix of p at x has rank equal to the codimension of X.

Now let z and x’ be two points in the same connected component of X. Let vx
be a smooth vector field on X such that the trajectory of v starting at x arrives at
z' at time ¢ = 1.

For ¢ > 0 sufficiently small, the subset M. = {p = ¢} of N is compact, and
m: M, — X is a submersion. Furthermore, Y. = M. NY is compact, and it follows
from condition b that 7: Y, — X is a submersion for ¢ sufficiently small. It follows
easily that there is a vector field v on M — X and an €; > 0 such that v is tangent
along Y, and the following hold.

(5.1) vp(m) =0 ifme M — X and p(m) < &1,
(5.2) mev(m) = vy (mm) ifmeM—X and p(m) < e;1.

From (B and the compactness of M, it follows that the trajectory of v starting
at any point of M — X is defined for all time. Hence v generates a one-parameter
group {hY: t € R} of diffeomorphisms of M — X. Clearly vy generates a one-
parameter group {h;:t € R} of diffeomorphisms of X. Let hy: M — M be
defined by h¢|M — X = h? and h|X = h;*. Tt follows from (5.I)) and (5.2) that
hi¥m(m) = whY(m) if m € M — X and p(m) < &;. Hence h; is a homeomorphism
of M. Clearly h; preserves X, and furthermore h; preserves Y, since v is tangent
along Y. Finally hq(z) = a’ since the trajectory of vx starting at = arrives at 2’
at time ¢ = 1.
Thus h = h; is the required homeomorphism of M.

6. TUBULAR NEIGHBORHOODS

In this section, we define the notion of a tubular neighborhood of a submanifold
of a manifold, and prove an existence and uniqueness theorem for tubular neigh-
borhoods. Our existence and uniqueness theorem is slightly more general than the
standard one (cf., Lang [2]). The method of proof we use was suggested by A.
Ogus.

We recall that a vector bundle E over a smooth manifold M is said to be smooth
if the coordinate transition functions which define E are smooth functions. By a
smooth inner product on a vector bundle F, we will mean a rule which assigns
to each fibre E, of E an inner product (-, ), on F, and which has the following
property: if U is any open set in M and s1, so are two smooth sections of E above
U then the mapping u — (s1(u), s2(u)), is smooth. From now on, we will assume
all vector bundles and inner products on vector bundles are smooth, unless the
contrary is explicitly stated. By a (smooth) inner product bundle, we mean a pair
consisting of a (smooth) vector bundle E and a (smooth) inner product on E.
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If 7: E — M is an inner product bundle over a manifold, and € is a positive
function on M, then the open e-ball bundle B, of E will be defined as the set of e
in E such that |le|| < e(me), where ||| is defined as (e,e)'/2.

Let M be a manifold and X a submanifold.

Definition. A tubular neighborhood T of X in M is a triple (E, €, @), where 7: E —
X is an inner product bundle, € is a positive smooth function on X, and ¢ is a
diffeomorphism of B, onto an open subset of M which commutes with the zero

section ¢ of E:
CT X

X — M.

inclusion
We set |T| = ¢(Be). By the projection associated to T, we mean the mapping
np = mo@ ' |T| = X. By the tubular function associated to T, we mean the
non-negative real valued function

pr=poy@ 1 |T| =R where p(e)=|le|*> forall |e| €T

It follows from these definitions that 7 is a retraction of |T| on X, i.e., the

composition

X inclusion |T| lT_> X
is the identity. Also, X is the O-set of pr, the differential of pr vanishes only on
X, and (in the case pu > 2) at a point € X, pr is non-degenerate on the normal
plane to X in the sense that the Hessian matrix of p at x has rank equal to the
co-dimension of X.

If U is a subset of X, the restriction T|U of T to U is defined as (E|U, €|U, ¢|U).

IfT = (E,ep)and T = (E',€,¢’) are two tubular neighborhoods of X in M,
an inner product bundle isomorphism : E — E’ will be said to be an isomorphism
of T with T” if there exists a positive continuous function €’ on X such that ¢’ <
min(e, €') and ¢’ o)| B.r = p|Ber. Note that if this holds, then wr|pBer = 7/ |@Ben
and pr|pBer = ppi|pBer. We say T and T' are isomorphic and write T ~ T if
there exists an isomorphism from T to T”.

A smooth mapping f: M — P will be said to be a submersion if df: TM, —
TPy (y) is onto for each x € M.

Throughout the rest of this section, let f: M — P be a smooth mapping, and
X a submanifold of M.

A tubular neighborhood T of X in M will be said to be compatible with f if
fomr = f||T|. A mapping h of M into itself will be said to be compatible with f if
foh = f. Ahomotopy H: M xI — M of M into itself will be said to be compatible
with fif foH, = fforallt € I (=[0,1]). By an isotopy of M, we will mean a
smooth mapping H: M x I — M such that Hy =id: M — M and Hy: M — M is
a diffeomorphism for all ¢ € I. If h is a diffeomorphism of M into itself, the support
of h will mean the closure of {x € M: h(z) # x}. Likewise, if H: M x I — M is an
isotopy, the support of H will mean the closure of {x € M: It eI, H(x,t) # z}.

If M’ is a second manifold, X’ is a submanifold of M’, and h: (M, X) — (M', X')
is a diffeomorphism, then for any tubular neighborhood T' = (E, ¢, ¢) of X we define
a tubular neighborhood h,T of X’ by h.T = (h"Y)*E, eoh™!, hoy).
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We will begin by stating and proving a uniqueness theorem for tubular neighbor-
hoods, and then we will derive an existence theorem from the uniqueness theorem.
This procedure of deducing the existence theorem from the uniqueness theorem was
suggested to us by A. Ogus.

The simplest uniqueness theorem for tubular neighborhoods states that if X is
closed and Ty and 77 are tubular neighborhoods of X in M, then there exists
a diffeomorphism h of M onto itself which leaves X point-wise fixed such that
h.Ty ~ Ty. Moreover, h can be chosen so that there is an isotopy H of M with
H, = h which leaves X point-wise fixed. We can generalize this result in various
ways.

First, under the hypothesis that T, and T; are compatible with f and f|X
is a submersion, we can choose h and H to be compatible with f. Secondly, if
To|U ~ T1|U for some open set U in X, and Z is a closed subset of M such that
Z N X CU, then we can choose h and H to leave Z point-wise fixed.

The following proposition implies these statements, and has some other wrinkles
as well. We will use it in its full generality.

Proposition 6.1 (Uniqueness of tubular neighborhoods). Suppose p > 2. Suppose
the submanifold X of M is closed, and f|X: X — P is a submersion. Let U be an
open subset of X, let U and V' be closed subsets of X, let V be an open subset of M,
and suppose U' C U and V' C V. Let Ty and Ty be tubular neighborhoods of X in M
which are compatible with f and suppose there is an isomorphism g : To|U — T1|U.
Then there is an isotopy H: M x I — M, compatible with f, leaving X point-wise
fized, and with support in V. — U’, such that h/To|V' UU" ~ T1|V' U U’, where
h = Hy. Moreover, if N is any neighborhood of the diagonal in M x M, we can
choose H such that (Hy(x),z) € N for anyt € I and x € M. Also, we can
choose H so that there is an isomorphism ¥ : h.To|V' U U’ ~T1|V' U U’ such that

YU = aho|U’.

Proof. Let m = dimM, ¢ = codX, and p = dimP. For k < m, let R* be
embedded as R¥ x 0,,_; in R™. We will say that we are in the local case when
V' is compact and there exists a diffeomorphism ® of M onto an open subset
of R™, such that ®(X) = R™ ¢ N ®(M), and a diffeomorphism ¥ of P onto an
open subset of R? such that the following diagram commutes, where 7 is given by
m(@1, @) = (21, @)

M—2 L gm

PTRP.

There are two steps in the proof:

Step 1. Reduction to the local case. From the hypothesis that f|X is a sub-
mersion, it follows that for each x € X there exists an open neighborhood W,
of x in M, a diffeomorphism &, of W, onto an open subset of R™ such that
(W, NX)=d(W,)NR™ ¢ and a diffeomorphism ¥, of f(W,) onto an open
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subset of R? such that the following diagram commutes:

P
W, ——=——R™

fF(Wy) \11—>Rp'

Furthermore, we may suppose each W, is relatively compact, and that

W,NV' £8 = W, CV

(6.1) /
W,NU' #0 = W,NX CU.

Then {M — X} U {W,} is a cover of M, so that there exists a locally finite
refinement of it, which we may take to be of the form {M — X} U {W,}, where
each W; is open in M and is contained in W, for some z; € X. Since M has a
countable basis for its topology, the collection {W;} is countable. Now we discard
all W; for which W; NU’ # @ or W; NV’ = &, and we index the remaining W;’s by
the positive integers. Then we have V' CUUW;UWoU--- , and W; C V for all
i, by (@).

We can choose closed sets W/ C W; N X such that V/ CUUW{UW3U---. Since
W/ C W,,, and the latter is relatively compact, it follows that W/ is compact.

Now we construct by induction a sequence H®, H', H? ... of isotopies of M
into itself and a sequence g, 11, Y3, - - - of isomorphisms of tubular neighborhoods.
We let H° be defined by HY = identity,0 < ¢t < 1, and let 9y be as given in the
statement of the proposition.

For the inductive step, we suppose that H?, H', -, H*=! and g, 1, -, ¥i_1
have been constructed, are compatible with f, and leave X point-wise fixed. We let
G7 be the isotopy of M defined by GJ = H o H! ™" o---0 HY. We set ¢/ = GJ. We
let U; = UUW; UWaU---UW; and suppose supp G*~! C U;_1 NV. Furthermore,
we suppose (Gi*(z),z) € N for all € M and t € [0,1], and that t;_; is an
isomorphism of tubular neighborhoods gi_1T0|U;~11 — T1|U:71, where U} ;| is an
open neighborhood of U/ UW{ U ---UW/_; in X.

Then it follows from the local case of the proposition that H? and 1); can be
chosen so that the conditions of the induction are satisfied. For, let W be an
open subset of W; such that W/ C W? and W} is relatively compact in W;, and
let U} be an open neighborhood of U' UW/{ U --- U W/ in X whose closure lies in
Uy, UWY. From the local case, it follows that we can construct an isotopy H'
of W;, compatible with f, leaving X N W, point-wise fixed, and with support in
WP such that higi= To|U; N Wi ~ Ty|U; N W;, where h' = H?. (This is because
GITU, N W; ~ Ty[U, N W; and U, C Ur , UW?.) Moreover, we may
choose H' so that H} is arbitrarily close to the identity for all ¢, and so there is an
isomorphism

P higi_lTo‘UZ NnNWwW; — Tl‘U: NnWw;
such that
¢Z|U: NW; N szl = Qﬂl,l‘U: Nnw; ﬂU:ﬁl.
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Since supp H' is a compact subset of W;, we may extend H’ to an isotopy of M
whose support lies in W;. Likewise, we may extend 1; to all of U’ by letting
¥i|UF 1 = ;—1|U;_;. Then H' and 1; satisfy the conditions of the induction.

Now if it is true that the sequence {GJ(z)} is eventually constant in a neighbor-
hood of any point z € M, we can set

Hy(z) = lim Gi(x)
71— 00
and
Y(z) = lim 1;(x)
71— 00
(since the latter is eventually constant in a neighborhood of any point). If we choose
N so that the projection mo: N — M is proper (where 7, denotes the projection
on the second factor), then it is easily seen that the sequence Gi(z) is eventually
constant in a neighborhood of any point « € M, and that H and v have the required
properties.

This completes the reduction to the local case.

Step 2. Proof in the local case. Let Ty = (Eo, €0, o) and Ty = (E1,€1,1). We
will first construct an isomorphism v¢: Fy — E; of inner product bundles which
extends 1o|U’, and then construct the isotopy H to have the required properties.

The tubular neighborhood T; (i = 0,1) gives a natural identification «; of E;
with the normal bundle vx of X in M. Explicitly, if € X, the restriction of «;
to the fibre E; ; is the composition

dey; projection

Ei,w = T(Em)o — TM;E T‘Z\fw/jj)(m =VX,z-

Let B = aflaoz Ey — E;. We may consider 3 as a section of Iso(Ey, F1), where
the latter is the bundle whose fibre over z is the space of isomorphism of Ej , into
E1 .. In general 8 will not be of class C*, only of class C*~!; however, we may
approximate 3 arbitrarily closely (in the C*~! topology) on any compact subset of
X by a section 5y of class CH.

To construct ¥, we will need the following well-known lemma in linear algebra.

Lemma. Let V and W be vector spaces, provided with inner products k and .
Let L: V. — W be a vector space isomorphism. Then there exists a unique positive
definite self-adjoint linear mapping H: W — W such that HoL: V. — W preserves
inner products.

Remark 1. Tt is easily seen that this is equivalent to the assertion that any invertible
matrix L of real numbers has a unique decomposition L = H~'U where H is a
positive definite symmetric matrix and U is an orthogonal matrix.

Remark 2. Similarly, it is easily verified that there exists a unique positive definite
self-adjoint linear mapping H1: V — V such that Lo Hy: V — W preserves inner
products, and that H; = L~ 1HL.

Proof of the lemma. FExistence. Let ey, --- , e, be an orthonormal basis for V, and
let A = (c;) be the matrix given by «a;; = (Le;, Lej)e. Then oy; is symmetric
and positive definite. It follows from the spectral theorem for symmetric positive
definite matrices that we may choose the basis ey, - - - e, so that («a;;) is a diagonal
matrix: o;; = A;d;; (where 0;; is the Kronecker delta symbol). Let f; = L(e;) /v
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Then fi1,---, fn is an orthonormal basis of W. Let H: W — W be given by
H(f:) = fi/v/Xi- Then H has the required properties.

Uniqueness. If there were two, H and H’, we would have that U = (HL) o
(H'L)~! is orthogonal. Then UH'L = HL so UH' = H. Taking adjoints, we then
obtain H'U=! = H so that H'> = H'U-'UH’ = H?. This implies H = H, since
a positive definite self-adjoint mapping has only one positive definite self-adjoint
square root. O

Now we return to the proof of the uniqueness of tubular neighborhoods. For
each z € X, let n, be the unique self-adjoint positive definite linear automorphism
of E; , such that ¢, = 1y 0 B1 41 Eps — E1, preserves inner products. Clearly,
1 = {1y, } is a smooth isomorphism of Fy onto Fj, and it preserves inner products.
From the fact that 7, is positive definite and self-adjoint it follows that (1—¢t)id+tn,
is an automorphism of E; , for 0 < ¢ < 1. Hence if (; is chosen sufficiently C'-close
to S, it follows that

(1-t)B1 +1Y: Ey — By

is an isomorphism for 0 < ¢t < 1. Moreover, if we choose 31 so that §; = § in a
neighborhood of U’ (which we may do since S|U = 1 by definition of 3), then
7 = identity in a neighborhood of U’, so that ¥|U’ = iy|U".

Since we are in the local case, we may suppose without loss of generality that
M is open in R™, P is open in RP, X = R™ °N M, and f = 7|M. It is easily seen
that there exists a neighborhood Vi of V' in V such that for all m € V4, we have
that

ge(m) = pro{(L=t)B1 +ty} o o5 (m)
is defined. Since V' C X, we have g;|V’ = inclusion. Since V' is compact there
exists an open neighborhood V5 of V' in V; such that Vo C g4(V;) for 0 <t < 1.

Let p be a C* function on M which is identically 1 in a neighborhood of V' and
which has compact support C V5. Let Gs+: M — M be defined by

Gy — (= om0+ e ) i m € Vo,
m if meM-—V,.
Then G ; is a smooth mapping for 0 < s,¢ < 1, and it depends smoothly on s and t.
Since Gy = identity and there is a compact set which contains the support of G ;
for all s and ¢, it follows that there exists § > 0 such that G is a diffeomorphism
for |s —t| < d. Let n be a positive integer such that 1/n < ¢ and set
Hy =Gy10G

t
n

20"‘OG(n—1)tt.
"n Tt

Then H, is an isotopy of M, and it follows from the definition of H that Hy = g1 oga1
in a sufficiently small neighborhood of V'. Also it follows from the definitions
that g; and H, are the identity in a sufficiently small neighborhood of U’ for all
t. Thus H; = g1 o gal in a sufficiently small neighborhood of U’ U V’. Clearly
supp H C Vo C V.

Furthermore, H; 0 gy o ¢y = g1 0 0o = ¢1 01 in a small neighborhood of U’ U V.
Thus ¢ is an isomorphism of (Hygo).To|U’ UV’ with Ty|U’ U V",

It is clear from the construction that H is compatible with f and leaves X point-
wise fixed. By choosing the function p used in the construction of G to have support
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in a very small neighborhood of V', we may arrange for I;'t to be as close to the
identity (in the compact-open topology) as we like.

It is easily seen that there exists an isotopy H of M which is compatible with f
and leaves X point-wise fixed, such that H, is the identity in a neighborhood of U’
and H; = go in a neighborhood of V'. Let H; = H,o H;. Then H is an isotopy of
M with all the required properties. O

Now we state and prove the existence theorem for tubular neighborhoods.

Proposition 6.2. Suppose f|X: X — P is a submersion. Let U be an open subset
of X and let Ty be a tubular neighborhood of U in X. Let U’ be a subset of U which
is closed in X. Then there exists a tubular neighborhood T of X in M such that
T|U" ~ To|U".

Proof. Tt is enough to consider the case when X is closed in M. For, in general,
there is an open subset My in M such that X is a closed subset of My, since X
is locally closed in M. Clearly a tubular neighborhood of X in Mj is a tubular
neighborhood of X in M.
The local case of this proposition is trivial.
To prove the proposition in general, we take a locally finite family {W;} of open
sets in M having the following properties:
(a) For each i, there is a coordinate chart ¢;: W; — R™ such that ¢;(W; N X) =
©i(W;) NR™ ¢ (where ¢ = cod X) and such that there is a coordinate chart
;i f(W;) — RP such that the following diagram commutes

W, — L R"

(3

(b) each W, is compact, and

(¢) {W; N X} is a cover of X.

Furthermore, we can choose closed sets W/ of X such that W] C W; and {W/} is
a cover of X. Since M has a countable basis for its topology, the family {W;} is
countable. We will suppose that it is indexed by the positive integers. For each
positive integer i we let U; = U UWL U ---UW,; and U = U UW{U---UW/. We
let Uy =U and U) =U".

Now we construct by induction on ¢ an open neighborhood U/’ of U/ in X and
a tubular neighborhood T; of U}’. We take T as given. For the inductive step, we
suppose U/” | and T;_; have been constructed. We let U/” be any open neighborhood
of U/ in X which is relatively compact in W; U U/’ ;.

Since U;/ C W, U U/, there exist open sets A and B in U/ such that U/ =
AUB, ACW,;—-U!_, and B C U/",. Since the existence theorem for tubular
neighborhoods is true in the local case, we may choose a tubular neighborhood T
of W; N X in W;. Then we have two tubular neighborhoods of U}’ ; N W; N X in
M, namely the restrictions of T} and T;_;. Since A N B is relatively compact in
(U= U/_y) N W; N X, we may find a diffeomorphism h of M onto itself leaving
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X point-wise fixed such that h.T;—1|A N B ~ T/|AN B. Furthermore, we may
suppose h is compatible with f and h is the identity outside an arbitrarily small
neighborhood of AN B; in particular, that A is the identity in a neighborhood
of U/_,. Since h.T;_1|/AN B ~ T/|AN B there is a tubular neighborhood T; of
U/ = AU B in M such that T;|A ~ T!|A and T;|B ~ h,T;—1|B. Clearly T; is
compatible with f.

Furthermore, T; ~ T;_1 in a neighborhood of U/_;. It follows easily that there
is a tubular neighborhood T of X in M such that T ~ T; in a neighborhood of U/
for all 7, and that this tubular neighborhood is compatible with f. |

7. CONTROL DATA

Throughout this section, let M be a manifold and 8 a Whitney stratification of
a subset S of M.

Suppose that for each stratum X of § we are given a tubular neighborhood
Tx of X in M. Let mx: |Tx| — X denote the projection associated to Tx and
px: |Tx| — R be the tubular function associated to Tx.

Definition. The family {T'x} of tubular neighborhoods will be called control data
for 8 if the following commutation relations are satisfied: if X and Y are strata and
X <Y, then

mxmy(m) = wx(m),
pxmy (m) = px(m)

for all m such that both sides of the equation are defined, i.e., all m € |Tx| N |Ty|
such that my (m) € |Tx]|.

If f maps M into P, then the family {Tx } will be said to be compatible with f
if for all X € 8 and all m € |Tx|, we have frx(m)= f(m).

Proposition 7.1. If f: M — P is smooth and f|X is a submersion into P for each
stratum X, then there exists a family {Tx } of control data for 8 which is compatible
with f.

For the proof of the proposition, we will need Lemma [.3] below. The proof
of Lemma [(3] depends on Lemma [[.2] which says (roughly speaking) that every
tubular neighborhood is locally like a standard example.

Definition. By the standard tubular neighborhood T, . of R™~¢ x 0. in R, we
mean the triple (F, €, @), where E is the trivial bundle over R™~¢ with fibre R¢ (pro-
vided with its standard inner product), e = 1, and ¢: B, — R™ is the restriction
map of the identification mapping R™ ¢ x R¢ — R™.

More generally if U is open in R™~¢, the standard tubular neighborhood of U in
R™ will mean T, |U.

Lemma 7.2. If X is a submanifold of M, Tx is a tubular neighborhood of X, and
x € X, then there exists a coordinate chart ¢: U — R™, where U is open in M and
x €U, such that (X NU) = p(U) NR™™¢ (where ¢ = cod X ) and such that

0u(Tx|X N U) ~ T el (X N ).

Proof. Immediate from the definitions. O
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If T = (E,¢,¢) is a tubular neighborhood of X in M and € is any smooth
positive function on X, we let |T|e = p(B.NBe), |T|% = p(B:NBe), and 9|T| =
©(BeNS,) where Se is the €-sphere bundle in E, i.e., So = {v € E: ||v]| = ¢'(w(v))}
where m: E — X denotes the projection. Clearly |T'|o is a smooth manifold with
boundary 9|T|./, and interior |T|%. We will say € is admissible if € < e. In this
case the projection 7p: |T|e — X is a proper mapping.

Lemma 7.3. Let X andY be disjoint submanifolds of M such that the pair (Y, X)
satisfies condition b. Let T' be tubular neighborhood of X in M. Then there exists
a positive smooth function € on X such that the mapping

(pr,7r): Y NIT|® - R x X
is a submersion.

Proof. Let ¥ be the set of y € |T| such that the rank of the mapping
(pT,TK'T)Z Yn |T| - RxX

at y is < dim(R x X). The lemma is equivalent to the assertion that for any
x € X there exists a neighborhood N of z in M such that N N¥ = @. Since this
is a purely local statement, it follows from Lemma that it is enough to prove
the proposition when M = R™, X = R™7¢ x 0., and T is the standard tubular
neighborhood T}, . of R™~¢ in R™. In this case 7 is the orthogonal projection of
R™ on R™~¢, and pr is the function which is given by p(y) = dist.(y, R™~¢)2.

Let y € [T'|-R™~¢. The kernel of the differential of (77, pr) at y is the orthogonal
complement of (R™™¢ x 0.) ® ymr(y) in R™. The hypotlrgsi_s\that condition b
is satisfied implies that for y near R™~¢ (R™~ ¢ x 0.) @ ymr(y) is close in the
Grassmannian of m — ¢ 4+ 1 planes in m space to an m — ¢ + 1 plane which lies in
TY,. Hence for y near enough to R™~¢, we have that TY, is transversal to the
kernel of the differential of (7, pr) at y, so that (w7, pr)|Y is a submersion at y,
ie,y¢X. O

Proof of Proposition [[ Il Let 8) denote the family of strata of § of dimension < k;,
and let Sy denote the union of all strata in 8. We will show by induction on k
that the proposition is true for 8, and S in place of § and S.

For the inductive step, we suppose that for each stratum X of dimension < k, we
are given a tubular neighborhood T’x of X, and this family of tubular neighborhoods
satisfies the commutation relations.

By shrinking the T'x if necessary, we may suppose that if X and Y are strata of
dimension < k which are not comparable (i.e., neither ¥ < X nor X < Y holds),
then |Tx|N|Ty| = &. To construct the Tx on the strata of dimension k, we may do
it one stratum at a time, since there are no commutation relations to be satisfied
among the strata of the same dimension. Let X be a stratum of dimension k.

We construct the tubular neighborhoods Tx in two steps, as follows. For each
¢ < k, we let Uy denote the union of all [Ty| for Y < X and dimY > ¢. We let
X, =U; N X. In the first step, we construct a tubular neighborhood T} of X, by
decreasing induction on ¢. In the inductive step, we will shrink various |Ty |, but
this is permitted, since we do it only a finite number of times. Then in the second
step, we extend Ty to a tubular neighborhood Tx of X.

First step. For £ = k, we have X = &, so there is nothing to construct. For the
inductive step, we suppose that Ty;1 has been constructed and that the following
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special cases of the commutation relations are satisfied: if Y < X, dimY > ¢+ 1,
m € |To1| N |Ty| and w41 (m) € [Ty |, where w1 = 77, ,, then

PY Te+1 (m) = PY(m),

(*e11) Ty mer1(m) = my (m).

By replacing 7,41 with a smaller tubular neighborhood if necessary, we may suppose
that for m € |Tyqq| there is Z < X with dimZ > ¢ such that m € |Tz| and
7T[+1(m) € ‘Tz|

To construct Ty it is enough to construct Ty on |Ty|N X for each stratum ¥V < X
of dimension ¢ separately, since if Y and Y’ are two strata of dimension ¢, we have
|Ty| N |Ty/| = &, since Y and Y’ are not comparable.

Thus, we wish to construct a tubular neighborhood Tx y of [Ty| N X whose
restriction to |Ty| N X4 is isomorphic to the restriction of Ty41, such that the
following commutation relation is satisfied: if m € |Tx y| N |Ty| and 7x,y(m) €
|Ty |, where mx y = Ty, , then

pyTxy(m) = py(m),
Ty mxy(m) =y (m).

By shrinking |Ty| if necessary, we may arrange that if m € |Ty41| N [Ty | and
mer1(m) € |Ty |, then this commutation relation is already satisfied (with mp41 in
place of mx y) for the following reason. Since m € |Ty4q], there exists Z < X
with dimZ > ¢, m € |Tz| and mpy1(m) € |Tz|. Since mer1(m) € |Ty| N [Tz, the
last named space is not empty; hence Y and Z are comparable, and by dimension
restrictions Y < Z. Therefore

pyTes1(m) = pymzmepi(m) = pymz(m) = py(m),
Ty Ter1(m) = wymzmep1(m) = wymz(m) = my(m).

(We may have to shrink |Ty| to guarantee that these equalities hold for all m €
T2 O[Ty )
Furthermore, by shrinking Ty further if necessary, we may suppose that

(py,’]ry): |Ty‘ﬁX—>RXY

is a submersion. The commutation relation that we must verify is precisely the
condition that Tx y be compatible with the mapping (py,7y): |Ty| N Xpy1 —
R x Y. Therefore from the generalized tubular neighborhood theorem, we get
that if X?_H is an open subset of X whose closure lies in X, 1, then there exists
Tx,y which satisfies the commutation relations and whose restriction to |Ty| N
X ? "1 is isomorphic to the restriction of Ty1. Now we replace T for Z < X by
smaller tubular neighborhoods 77 such that X; , C X?H, where X7, is defined
analogously to Xy11, but with 77, in place of Tz . Then Tx y has the required
properties.

This completes the first step: we conclude that there exists a tubular neighbor-
hood T of X, satisfying equation (xq) for any ¥ < X.

Second step. From equation (xg) it follows that we may assume that Tj is
compatible with f. For, by replacing 7y with a smaller tubular neighborhood if
necessary, we may assume that if m € |Tp|, then for some Y < X, we have m € |Ty|
and mo(m) € |Ty| . Then

Imo(m) = frymo(m) = fry(m) = f(m).
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Since Ty is compatible with f, we may extend a suitable restriction of Ty to a
tubular neighborhood T of X which is compatible with f, by the generalized tubular
neighborhood theorem. Then, by replacing the Ty with possibly smaller tubular
neighborhoods (as in Step 1), we get that the compatibility conditions are satisfied.

This completes the construction of Tx, and therefore also completes the proof
of the proposition. |

8. ABSTRACT STRATIFIED SETS

If V is a closed subset of a manifold M which admits a Whitney stratification (in
the sense defined in Section []) then we can find control data for this stratification
by the previous section. This provides V with considerable structure. The purpose
of this section is to axiomatise the sort of structure which occurs. We depart only
slightly from Thom'’s notion of abstract stratified set ([3] and [4]).

Definition 8.1. An abstract stratified set is a triple (V, 8, J) satisfying the following
axioms, (A1)—(A9).

(Al) V is a Hausdorff, locally compact topological space with a countable basis
for its topology.

This axiom implies that V' is metrisable. For, since V is locally compact, it is
regular, so the metrisability of V' follows from Urysohn metrisation theorem (Kelly
[1].) Since V is metrisable, every subset X of V' is normal (in the sense that any
two disjoint closed subsets of X can be separated by open sets). We will often use
this fact without explicit mention.

(A2) 8 isa family of locally closed subsets of V', such that V' is the disjoint union
of the members of 8.

The members of 8§ will be called the strata of V.

(A3) Each stratum of V is a topological manifold (in the induced topology),
provided with a smoothness structure (of class C*).

(A4) The family 8 is locally finite.

(A5) The family § satisfies the axiom of the frontier: if X,Y € § and YNX # @,
then Y C X.

IfY C X and Y # X, we write Y < X. This relation is obviously transitive:
Z <Y andY < X imply Z < X.

(A6) J is a triple {(Tx), (7x), (px)}, where for each X € 8§, Tx is an open
neighborhood of X in V', wx is a continuous retraction of T'x onto X, and
px: X — [0,00) is a continuous function.

We will call T'x the tubular neighborhood of X (with respect to the given structure
of a stratified set on V'), mx the local retraction of Tx onto X and px the tubular
function of X.

(A7) X ={veTx: px(v) =0}

If X and Y are any strata, we let Txy = Tx NY, nxy = nx|[Tx,y, and
px,y = px|Tx,y. Then wx y is a mapping of T'x y into X and px y is a mapping
Tx,y into (0,00). Of course, T'x y may be empty, in which case these are the empty
mappings.
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(A8) For any strata X and Y the mapping
(mx,v,pxy): Txy — X x (0,00)
is a smooth submersion.

This implies dim X < dimY when Tx y # @.
(A9) For any strata X, Y, and Z, we have

Wx,yﬂy,z(v) = 71'X,Z(U)a

PX,YWKZ(U) = pX7Z(U)

whenever both sides of this equation are defined, i.e., whenever v € T'x z N
TY,Z and ﬂ'yvz(v) S TX7y.

Definition 8.2. We say that two stratified sets (V,8,J) and (V’,8',J') are equiv-
alent if the following conditions hold.

(a) V. = V', 8§ = &, and for each stratum X of § = 8, the two smoothness
structures on X given by the two stratifications are the same.

(b) It 3 = {(Tx), (mx), (px)} and J' = {(T%), (7%), (p’x)}, then for each stratum
X, there exists a neighborhood T% of X in Tx NT% such that px|T% = p'x |T%
and mx |T% = 7% |T%.

From the normality of arbitrary subsets of a stratified set, it follows that any
(abstract) stratified set is equivalent to one which satisfies the following conditions.

(A10) If X, Y are strata and Tx y # &, then X <Y
(All) If X, Y are strata and Tx N Ty # &, then X and Y are comparable, i.e.,
one of the following holds: X <Y, Y < X, or X =Y.

From (A10) it follows that X <Y if and only if Tx y # &, and from (A11) that
X and Y are comparable if and only if Tx N Ty # @.

Note that from (A8) it follows that the relation X < Y defines a partial order
on 8. It is enough to verify X <Y and ¥ < X do not hold simultaneously. But
(A8) implies X <Y = dim X < dimY.

As an example of an (abstract) stratified set, let V' be a subset of a manifold
M and suppose V' admits a Whitney stratification 8, and let {T%} be a family
of control data for 8. Let Tx = T%x NV, nx = 7 |Tx, and px = p'x|Tx. Set
J = {Tx}. Then (V,8,3) is an abstract stratified set. In this way, we associate
with any system of control data for a Whitney stratified set V a structure of an
abstract stratified set on V.

Hence it follows from Proposition [I] that any Whitney stratified set admits the
structure of an abstract stratified set.

If (V,8,3) is a stratified set, V' is any topological space, and ¢: V' — V is
a homeomorphism, then the structure of a stratified set on V' “pulls back” in an
obvious way to give a structure of a stratified set (V’/, ©*8,¢*J) on V.

If (V',8,3) and (V,8,3) are abstract stratified sets, then a homeomorphism
¢: V' — V is said to be an isomorphism of stratified sets if (V',8’,J') is equivalent
to (V1,9°8,5"3).

The uniqueness result that we will prove below implies the following: if § is a
Whitney stratification of a subset V' of a manifold, and J and J" are two system of
control data, then the abstract stratified sets (V,8,3) and (V, 8,J’) are isomorphic.
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9. CONTROLLED VECTOR FIELDS

Throughout this section, we let (V,8,J) be an (abstract) stratified set. We
suppose i > 2.

Definition. By a stratified vector field n on V, we mean a collection {nx: X € 8§},
where for each stratum X, we have that nx is a smooth vector field on X.

By smooth vector field we mean a vector field of class C#~1.
Let 3 = {(Tx), (7x), (px)}, and for two strata X and Y, let Tx y, 7xy, and
px,y be defined as in the previous section.

Definition. A stratified vector field 7 on V will be said to be controlled (by J)
if the following control conditions are satisfied: for any stratum Y there exists a
neighborhood Ty, of Y in Ty such that for any second stratum X > Y and any
v e Ty NX, we have

(9.1) nxpy,x(v) =0,
(9.2) (Ty,x)«nx (v) = ny (Ty, x (v))-

Definition. If P is a smooth manifold and f: V' — P is a continuous mapping, we
will say that f is a controlled submersion if the following conditions are satisfied.

(1) f|X: X — P is a smooth submersion, for each stratum X of V.
(2) For any stratum X, there is a neighborhood T% of X in Tx such that f(v) =
frx(v) for all v € T%.

Note that both the notions that we have just introduced depend only on the
equivalence class of the stratified set (V,8,3J), i.e., if (V, 8,J’) is a stratified set which
is equivalent to (V,8,J), then a controlled vector field (or controlled submersion)
with respect to one of these stratified sets is the same as a controlled vector field
(or controlled submersion) with respect to the other.

Proposition 9.1. If f: V — P is a controlled submersion, then for any smooth
vector field { on P, there is a controlled vector field n on V such that f.n(v) =
C(f(w)) forallveV.

Proof. By induction on the dimension of V' (where the dimension of V is defined
to be the supremum of the dimensions of the strata of V). By the k skeleton Vj
of V, we will mean the union of all strata of V of dimension < k. Clearly Vj has
the structure of a stratified set, where the strata of Vi are the strata of V which
lie in Vj, the tubular neighborhoods are the intersections with Vi of the tubular
neighborhoods (in V') of strata in Vj, and the local retractions and tubular functions
on V}, are the restrictions of the local retractions and tubular functions on V.

In the case dim V' = 0, the statement of the proposition is trivial. Hence, by
induction, it is enough to show that if the proposition is true whenever dimV < k
then it is true when dimV = k + 1. Thus, we may (and do) assume that dimV =
k+1 and that there is a controlled vector field ny on V}, such that f.ni(v) = ¢(f(v))
for all v € V. We will show that there exists a controlled vector field n on V which
extends 7 such that f.n(v) = ((f(v)) for all v € V.

To construct 7, it is enough to construct nx separately for each stratum X of
V such that dim X = k + 1, because the condition that a vector field be controlled
involves only strata Y, X such that ¥ < X.
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Since by the induction assumption 7y is controlled, we can choose neighborhoods
Ty of Y in Ty (one for each stratum Y C Vj,) such that if Y < Z are strata, then the
control conditions (@) and ([@.2)) are satisfied (with Z in place of X) for v € T{-NZ.
By the assumption that f is controlled, we may choose the neighborhoods T} such
that f(v) = fry (v) for all v € Ty-.

Is is easily seen that we may choose neighborhoods T2 of Y in Ty (one for each
stratum Y C Vj) such that the following holds: if Y < Z are strata in Vj, then

77 (TENTZ) C Ty

We can furthermore choose the T% so that T¢ is closed in V — Y (where Y
denotes the frontier of Y), since V' — 9Y is metrisable and therefore normal, and Y
is closed in V — Y. Finally, we can choose the 7% so that if Y is not comparable
to Z, then T2 NT% = 2.

Now consider the following conditions on a vector field nx on X:

(9.3y) The control conditions (@) and ([@.2)) are satisfied for any v € T¢ N X.
(94)  finx(w) =((f(v)) for all v € X.

We claim that there is a vector field nx on X satisfying ([@4) and ([@-3y] for all
strata Y < X. To prove this claim will clearly be enough to prove the proposition.

Consider a point v € X. The set 8, of strata Y < X such that v € T2 is totally
ordered, since if Y and Z are not comparable then T2 NT2 = @. If 8, is not empty,
then there is a largest member Y =Y, .

Suppose for the moment this is the case and ([@.3y]) holds at v. Then (9.3z)
holds for all Z € §,,. For, either Z =Y or Z < Y. In the latter case my (v) € T}
(by the choice of the T2’s). Then

nxpz,x (V) =nxpzymy,x(v)
= (my,x)«nx (v)pzy

=ny(ryx(v))pzy =0

and

(mz,x)«nx (V) = (T2,y )« (Ty,x)nx (V)
= (mz,y)ny (my.x (v))
=nz(rzymy,x(v))
=nz(7z,x(v)).
Thus (9.3z) holds at v for all Z € §,. Furthermore

fenx (v) = (f oy, x)wnx (v)
= fany (my,x (v))
= ((f(v)).
Thus (@4) holds at v.
This shows that to construct nx satisfying (@) and ([0:3y]) for all Y < X, it is
enough to construct nx satisfying (9.3y,) at v for all v € X for which §, is non-
empty, and satisfying (@) at v for all v € X for which 8, is empty. Clearly, we

can construct a vector field nx in a neighborhood of each point v in X satisfying
the appropriated condition (9.3y,) or (@4). Since the set of vectors satisfying the
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appropriate condition in T'X,, is convex, we may construct nx globally by means
of a partition of unity. O

10. ONE PARAMETER GROUPS

Let V' be a topological space. By a one-parameter group of homeomorphism of
V', we mean a continuous mapping a: R x V' — V such that azys(v) = azas(v) for
allt,s € Rand all v € V, and a(v) = v for all v € V. Now suppose V is a stratified
set (V,8,3) and « preserves each stratum. If 7 is a stratified vector field on V,
we say that n generates « if the following condition is satisfied. For any v € V,
the mapping t — a;(v) of R into V is C! (as a mapping into the stratum which
contains v) and

Note that this implies

d

dt

It is well known that any C'* vector field on a compact manifold without boundary

generates a unique one-parameter group (see, e.g., [2, p. 66]). It is also known that

to extend this result to noncompact manifolds, we must generalize the notion of
one-parameter group.

(ar(v)) = m(ae(v)), teR.

Definition. Let V be a locally compact space. A local one-parameter group (on V)
is a pair (J, @), where J is an open subset of R x V' and a: J — V is a continuous
mapping such that the following hold.

(a) 0 x V C Jand a(0,v) =v for all v € V.

(b) If v € V, then the set J, = JN(R xv) C R is an open interval (a,, b, ), possibly
infinite at one or both ends.

(¢) fveV,andt, s, and t + s are in (ay, b,) then a(t + s,v) = a(t, a(s,v)).

(d) For any v € V and any compact set K C V, there exists ¢ > 0 such that
a(t,v) ¢ K if t € (ay,a, +¢) U (b, — €, by).

From now on in this section, we suppose (V,8,J) is an (abstract) stratified set,
and 7 is a stratified vector field on V.

Definition. If (J, «) is a local one-parameter group (on V), we say n generates o

if the following conditions (@)—(@) are satisfied.

(a) Each stratum X of V is invariant under a, i.e., a[J N (R x X)] C X.

(b) For each v € V, the mapping ¢ — «(t,v) of (ay,b,) into the stratum which
contains v is C*.

(¢) For any v € V, we have

d
Ea(t, v) s = n(v).

Since « is a local one-parameter group, condition (@) is equivalent to:

(¢") For any (t,v) € V, we have

%a(t,v) =n(a(t,v)).
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This generalizes the ordinary notion of what it means for a vector field to generate
a local one parameter group.

Since (V, 8,J) is a stratified set, it makes sense to talk of a controlled vector field
on V (Section[d).

Proposition 10.1. Ifn is a controlled vector field on V, then n generates a unique
local one parameter group (J, «).

Proof. For each stratum X, the restriction nx of n to X is a smooth vector field on
X (by the definition of stratified vector field); hence nx generates a unique smooth
local one-parameter group (Jx, ax) of diffeomorphisms of X, by a standard result
in differential geometry [2, IV, Section 2]. Let (J, ) be defined by

7= Jx,

Xes

o = UOéx.

Xes

We assert that (J, «) is a local one-parameter group generated by 7.

It is clear that (@), (B, and (@) in the definition of local one-parameter group
hold, and that if o is a local one-parameter group, then it is generated by wv.
Uniqueness is obvious since each (Jx, ax) is unique. All that remains to be verified
is that J is open, « is continuous, and (d]) holds.

We begin by showing that (d) holds. If not, there exists v € V and a compact
set K in V such that a(t,v) € K for values of ¢ arbitrarily close to a, or b,. We
may suppose that a(t,v) € K for values of ¢ arbitrarily close to b,; the other case is
treated similarly. Then there exists a sequence {t;}, converging to b, from below,
such that y = lim «(¢;,v) exists and lies in K. Let X (resp. Y) denote the stratum
of V' which contains v (resp. ).

If X =Y, we get a contradiction to the fact that ax is a one-parameter group.
Otherwise Y < X. For large i, py,x (a(t;)) and 7wy, x (e, (t;)) are defined, and the
control conditions are satisfied for m; = v, (¢;).

Thus, by taking ¢ sufficiently large, we may suppose that there exists € >t —t;
such that [0,¢] C J,,, where y; = my,x (m;), and if Ty is the tubular neighborhood
of Y, my is the local retraction of Ty onto Y, and py is the tubular function of Y,
then py, x(m;) < ey on oy, ([0,¢]) and the control conditions for the pair Y, X are
satisfied for

m € {py,x = py.x(mi)} Nyl (0, [0,€]) N X.
Since {py.x = py,x(m;)} N W;’TX (0, [0,€]) is compact (because py,x(m;) < ey on
oy, ([0,€])), and «, stays in X (by definition), it follows from the control conditions
that

ay(ti + ) € {py,x = py,x(m;)} ﬁﬂ'{,}x(ayi(s)) NX for 0<s<e.

But this contradicts the hypothesis that «,(t;) — y as j — oco. This contradiction
proves (d)).

Now let (t,v) € J. We will show that J is a neighborhood of (¢,v) and « is
continuous at (¢,v). We will suppose t > 0; the other case is treated similarly. As
before, let X be the stratum which contains v. Since ax is a local one-parameter
group, there is a compact neighborhood U of v in X and an € > 0 such that
[—e,t+¢e] x U C J. Let Tx denote the tubular neighborhood of X, wx the local



NOTES ON TOPOLOGICAL STABILITY 497

retraction of Tx on X, and px the tubular function of X. Since ax ([—¢,t+¢] x U)
is compact, we may choose an g1 > 0 such that the following hold:
(a) Let ¥ = {y € Tx: px(y) <e1 and 7x(y) € ax([—¢,t +¢] x U)}. Then ¥ is
compact.
(b) If y € X, then the control conditions for the pair X, Y hold at y, where Y is
the stratum which contains y.
Clearly, the set X of y € Tx such that px(y) < e1 and wx(y) € U is a neigh-
borhood of v in V. If y € 3, it follows from the control conditions that

px (ay(s)) = px (),

7TX(O‘y(S)) = O‘WX(y)(S)
for all s € J, such that a,(s’) € X for 0 < s’ < s. From these facts and (d), it
follows that [—e,t + €] x X¢ C J; thus J contains a neighborhood of (¢,v).

The argument that we have just given shows that if (¢',y) € [t —e,t + €] x Xy,
then v/ = a(t',y) € Tx, px(y') < e1, and 7x(y') = a(t’,7x(y)). Hence, for an
arbitrarily small neighborhood of «(t, ) we may choose ¢ > 0 and a neighborhood
¥1. Hence, « is continuous at (t,v). O

Corollary 10.2. Let P be a manifold, and f: V — P be a proper, controlled
submersion. Then f is a locally trivial fibration.

Proof. Tt is enough to consider the case when P = R¥ and show in this case that
there is a homeomorphism h: V — V; x R¥, where V; denotes the fibre of V over
0, such that the following diagram commutes:

h

(Diagram 10.1) v Vo x RF

Rk
where 75 denotes the projection on the second factor.
Consider the coordinate vector fields dy,- - ,0x on RF. By Proposition [@.1], for
each i, 1 < i < k, there is a controlled vector field 9; on V such that
fo0i(v) = 0,(f(v)), veEV.
By Proposition[I0.1] each 9; generates a local one-parameter group (J;, ;). Clearly

f(Oéi(t,U)) = f(U) + (05 ,O,t,O,--~ 7O)a
where the non-vanishing entry is in the i-th place. Then from the assumption that

f is proper and condition (d)) in the definition of a one parameter group, it follows
that J; =R x V. Let h be given by

h(v) = (a1 (=t ao(~t2, -, ap(~tg,v) ), f(v))
where we set f(v) = (t1,-- ,tx). It is easily seen that A maps V' into Vo x R* and
that commutes. Let h: Vy x R¥ — V be defined by

h(v, (t1, -+ ,tr)) = ag(t, -, aa(te, a1 (t1,v) -+ ).

From the fact that the a;’s are one-parameter groups, it follows that hh = hh
identity. Hence h is a homeomorphism, as required.

ol
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Note that V5 has a natural structure of a stratified set (Vo,8¢,J0), where 8
and Jo are defined as follows. 8 is the collection {X NVy: X € 8}. f X € 8
and Xo = X NV} is the corresponding member of 8, then we let Tx, = Tx NV,
Tx, = 7x|Tx, and px, = px|Tx,. Note that mx, maps into Xy because f is a
controlled submersion. We let Jo be the triple {(Tx,), (7x,), (px,)}-

Furthermore V) x R* has a structure of a stratified set (defined in an obvious

way).

Corollary 10.3. If h is constructed as in the proof of Corollary 0.2, then h is an
isomorphism of stratified sets.

Proof. Tmmediate from the construction of h. (See the end of Section [ for the
definition of isomorphism.) O

Corollary 10.4. Let M be a manifold, let S be a closed subset of M and let & be
a Whitney stratification of S. Let X and Y be strata with X < Y. Let W be a
submanifold of M which meets X transversally. Then X "W CY NW.

Proof. Let x € XNW. To show x € Y N W | it is enough to consider what happens
in a neighborhood of z. By replacing M with a sufficiently small neighborhood
of x, we may suppose that X is connected and closed, and there exists a tubular
neighborhood Ty of X in M such that WN|Tx| = 75" (WNX), where 7x : |Tx| —
X is the projection associated to Tx. From Lemma[73] it follows that by choosing
Tx sufficiently small, we may suppose that there exists € > 0 such that px < e on
Tx, where px is the tubular function associated to Tx, where (px,7x): [Tx| —
[0,€) x X is proper, and where for each stratum Z of 8, the mapping

(px,ﬂ'x)|ZZ Z N |Tx| — (O,E) x X

is a submersion.

Let 8 = {ZN(|Tx| — X): Z € 8}. Then 8 is a Whitney stratification of
SN (|Tx| — X). By Proposition M0 there is a family of control data J" for 8
which is compatible with (px,7x). Then (SN (|Tx| — X),8,J') is an abstract
stratified set and (px,7x) is a controlled submersion. Hence by Corollary [10.2]
SN(|Tx|—X) is a locally trivial bundle over (0, ) x X, and by Corollary [[0.3] the
local trivializations respect the stratification.

It follows that any stratum of 8’ (e.g., Y N (|Tx| — X)) intersects each fibre of
(px,mx). In particular @ # Y N (px,7x) '(e,X) CYNW for 0 < &’ <e. It
follows that z € Y N W. g

The next corollary says that a stratification which satisfies all the conditions
of a Whitney stratification except the condition of the frontier also satisfies the
condition of the frontier, provided that its strata are connected.

Corollary 10.5. Let M be a manifold and § be a locally finite stratification of a
closed subset V- of M whose strata are connected such that any pair of strata satisfy
condition b. Then 8 is a Whitney stratification.

Proof. Tt suffices to show that the condition of the frontier holds. Suppose X and
Y are strata and Y N X # &. The proof of Corollary 0.4 shows that Y N X is

open in Y. Since Y N X is clearly closed in Y, and Y is connected, this proves
Y CX. O

The proof of Corollary [0.4] also shows:
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Corollary 10.6. Let M be a manifold, 8 a Whitney stratification of M, X a
stratum of M, and Tx a tubular neighborhood of X in M such that for any stratum
Z of 8, the mapping (px,7x): (|Tx| — X)NZ — X, is a submersion, where
Tx = (E,p,e) and X = {(t,z) € Rx X:0 < t < e(x)}. Then the bundle
(ITx| — X, (px,7x), Xe) is locally trivial and the local trivializations can be chosen
to respect the stratification.

11. THE ISOTOPY LEMMAS OF THOM

In this section, we will state Thom’s first and second isotopy lemmas. We will
prove the first and sketch a proof of the second.

Throughout this section, we let M and P be smooth manifolds, f: M — P a
smooth mapping, and S a closed subset of M which admits a Whitney stratification.

Proposition 11.1 (Thom’s first isotopy lemma). Suppose f|S: S — P is proper
and fI|X: X — P is a submersion for each stratum X of S. Then the bundle
(S, f, P) is locally trivial.

Proof. By Proposition [[.I] we can find a system of control data for S which is
compatible with f. This provides S with a structure of an abstract stratified set in
such a way that f is a controlled submersion. Then the conclusion of the theorem
is an immediate consequence of Corollary O

Remark. Thom considered the case P = R. If a,b € R, then the proof of Proposition
[I0.T] constructs an isotopy from the fibre S, to the fibre S,, whence the name
“isotopy lemma”.

The second isotopy lemma is an analogous result for mappings instead of spaces.
Consider a diagram of spaces and mappings:

We say that f is trivial over Z if there exists spaces X and Y, a mapping fo: Xg —
Yy and homeomorphisms X ~ Xy x Z, Y &~ Y{ x Z such that the following diagram
of spaces and mappings is commutative:

>
~

Q
N
Q

X()XZ - Y()XZ.
fxid
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We say f is locally trivial over Z if for any z € Z, there is a neighborhood U of
z in Z such that in the diagram

m  (U) w5y 1 (U)

1 2

U,

we have that f is trivial over U.

Local triviality of a mapping f over a space Z has a consequence which is very
important in our proof that topologically stable mappings are dense. We think of f
as a family {f,: a € Z} of mappings, where f,: X, — Y, is the mapping obtained
by restricting f to the fibre X, of X over a. If Z is connected and f is locally
trivial over Z, then for any a and b in Z, the mappings f, and f; are equivalent
in the sense that there exist homeomorphisms h: X, — X and h’': Y, — Y} such
that h'f, = foh.

This is the relation of equivalence that is used in the definition of topologically
stable mapping, and a step in the proof that the topologically stable mappings form
an open dense set will be to show that certain families of mappings are locally trivial
in the sense defined above, by an application of Thom’s second isotopy lemma.

Now suppose M’ is a smooth manifold and S’ is a closed subset of M’, which
admits a Whitney stratification 8’. Let g: M’ — M be a smooth mapping and
suppose ¢g(S’) € S. Thom’s second isotopy lemma gives sufficient conditions for
the following diagram to be locally trivial:

(Diagram 11.1) S’

gof f
P

To state Thom’s second isotopy lemma, we must introduce Thom’s condition ag.
Let X and Y be submanifolds of M’ and let y be a point in Y. Suppose g|X and
g|Y are of constant rank. We say the pair (X,Y) satisfies condition a4 at y if the
following holds:

Let {x;} be any sequence of points in X converging to y. Suppose that sequence
of planes ker(d(g|X")z,) € T'M,, converges to a plane 7 C T'M, in the appropriate
Grassmannian bundle. Then ker(d(g|Y”),) C 7.

We say the pair (X,Y") satisfies condition a4 if it satisfies condition a, at every
point y of Y.

Now, we return to the situation of We will say that g is a Thom

mapping (over P) if the following conditions are satisfied.

(a) g|S" and f|S are proper.

(b) For each stratum X of 8, f|X is a submersion.

(c) For each stratum X’ of 8', g(X’) lies in a stratum X of 8§, and g: X’ — X is a
submersion (whence g|X' is of constant rank).

(d) Any pair (X',Y”) of strata of 8 satisfies condition a, (which makes sense in
view of (@)).

In the case P is a point, we will drop “over P”.
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Proposition 11.2 (Thom’s second isotopy lemma). If g is a Thom mapping over
P, then g is locally trivial over P.

The proof of this requires new machinery. Let {T'} be a system control data for
the stratification 8 of S. We need the notion of a system {T"} of control data over
{T'} for the stratification 8" of S’.

Caution. A system of control data over {T} is not a system of control data as
previously defined. If we were to require that a system of control data over {T'}
also be a system of control data tout court then the fundamental existence theorem
for control data over {T'} (Proposition [[T.3] below) would not be true.

Definition. Suppose g is a Thom mapping. A system {T"} of control data for 8
over {T'} is a family of tubular neighborhoods, indexed by 8’, where T% is a tubular
neighborhood of X in M’ with the following properties:

(a) If X’ and Y’ are strata of 8 and X’ < Y, then the commutation relation
wxmy (V) = Tx/ (V)
holds for all v for which both sides are defined, i.e., all v € |Tx/| N |Ty/| such
that my(v) € [T'x|.
Furthermore, if g(X’) and ¢g(Y’) lie in the same stratum of 8, then the
commutation relation

pxmy(v) = px(v)
holds for all v for which both sides of this equation are defined.
(b) If X’ is a stratum of 8’ and X is a stratum of § which contains g(X'), then

grx:(v) = mxg(v)
for all v for which both sides of this equation are defined, i.e., for all v €
Tx/| N g Tx].
Note that (@) is weaker than the commutation relation for control data in the
case g(X') and g(Y”’) are not in the same stratum of 8.

Proposition 11.3. If g is a Thom mapping then for any system {T} of control
data for 8§ there exists a system {T'} of control data for 8’ over {T}.

The proof of this is similar to the proof of the existence theorem for control data
(Proposition [[T]). We will only outline it.

Proof (Outline): Let 8}, be the family of all strata of 8’ of dimension < k, and let
S}, denote the union of all strata in 8),. We will show by induction on k that the
proposition is true for 8, and S in place of 8’ and S’. This will suffice to prove
the proposition.

The case k = 0 is trivial. For the inductive step, we suppose that for each
stratum X’ of 8 of dimension < k, we are given a tubular neighborhood T of
X’ and that this family of tubular neighborhoods satisfies conditions (@) and ()
above.

By shrinking the T'x/ if necessary, we may suppose that if X’ and Y’ are strata
of dimension < k which are not comparable, then |Tx/| N |Ty/| = &. To construct
the T'x/ on the strata of dimension k, we may do it one stratum at a time, since the
relations (@) and () impose no conditions on pairs of strata of the same dimension.
Let X’ be a stratum of 8’ of dimension k.
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We construct the tubular neighborhood Tx in two steps as follows. For each
¢ < k, we let U; denote the union of all |Ty| for Y’ < X’ and dimY”’ > £. We let
X, =U;NX'. In the first step, we construct a tubular neighborhood T} of X by
decreasing induction on ¢, shrinking various 7y where necessary.

This step is carried out in essentially the same way as the first step in the proof
of Proposition[Z.]] We start the induction at £ = k, where there is nothing to prove.
For the inductive step, we suppose T} 41 has been constructed. We observe that to
construct T} it is enough to construct T, on |Ty/| N X' for each stratum Y’ < X’
of dimension ¢ separately. Then there are two cases.

Case 1. If g(Y') and ¢g(X') are in the same stratum of 8, then the construction
is carried in the same way as the corresponding construction in the proof of Propo-
sition [Tl In this way we define T, on |Ty~|N X’ so that the commutation relations
(@) hold. (Note that (b)) follows from (@) and the induction hypothesis in this case.)

Case 2. In the case g(Y’) and g(X’) are not in the same stratum of 8, the proof
must be modified. Let X be the stratum which contains g(X’) and let Y be the
stratum which contains g(Y”’). Then Y < X. By shrinking |Ty~| if necessary, we
may suppose that g(|Ty-|) C |Ty|. Let

V=(Ty|NnX) xy Y’
where the fibre product is taken with respect to the mappings
my: |Ty|NX =Y,
g:Y' =Y.
Then the mapping
G=(g,my): [Ty |NX" =V
is defined because the following commutes:

Ty |nXx —2 Ly

T[N X ———— Y,
Ty
by the induction hypothesis that (b)) is satisfied for those tubular neighborhoods
which are already defined.
Lemma 11.4. There exists a neighborhood N of Y’ in |Ty+| such that
GINNX:NnX' =V
is a submersion.

Proof. Let ¥ be the set of points in |Ty/| N X’ where the differential of G is not
onto. It suffices to show that Y/ NY = &.
Let o' € |[Ty/|NX', 2 = g(2'), y = 7wy (2'), and y = g(y') = 7y (z). Then

dGyr = (d(myrx1)er, d(g| X)) TXy — TVi(ary = TXy X1y, TY,).
By definition, 2’ € ¥ if and only if this mapping is not onto. Since
d(g| X e :TX. - TX,
is onto (by hypothesis), it follows that this mapping is onto if and only if
d(myrx7)ar: ker (d(g|X")or) — ker (d(g]Y")y)
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is onto. From condition ag, it follows that Y’ does not meet the closure 3 of the
set of points where this mapping is not onto. (Il

Now we extend T} over |Ty+| N X’ in such a way that (@) holds (the weak (@)!)
and (b)) holds. We may do this by the generalized existence theorem for tubular
neighborhoods and Lemma [IT.41

This completes the inductive step.

Now the second step (extension of Ty from U over all of X') is carried out in
exactly the same way as in the proof of Proposition [Z.1l O

The rest of the proof of Proposition [IT.21 will be carried out in three steps. First,
we define the notion of a controlled vector field over another controlled vector field.
(WARNING: this is not a special case of the notion of a controlled vector field.)
Then we prove a lifting theorem for controlled vector fields. Finally, we show that
every controlled vector field over another controlled vector field generates a local
one-parameter group.

Now we suppose ¢ is a Thom mapping. We suppose that we are given a system
{T} of control data for 8§ and a system {7’} of control data for 8’ over {T'}. Let
1 = {nx}xes be a controlled vector field on S.

Definition. By a controlled vector field on S’ over 1, we will mean a collection
{nx'}xres’ where nx is a vector field on X', such that the following conditions are
satisfied.

(a) For any X’ € 8’ and 2/ € X', we have

(91X )wnx (2') = nx (9(2")),
where X is the stratum of 8 that contains g(a).
(b) For any X', Y’ € 8§ with Y’ < X', there is a neighborhood Ny of Y’ in |Ty|
such that for y’ € |Ty/| N X', we have

(myr x)wnxe (27) = ny (wyr x0 (27))
and if g(X’) and g(Y”) are in the same stratum of 8 then we have
nxpyrx (@) = 0.
(Note that condition [b] is weaker than the condition that we imposed on a con-

trolled vector field in Section [ in the case g(Y') and g(X') are not in the same
stratum of 8.)

Proposition 11.5. There exists a controlled vector field on S’ over 7.

The proof is completely analogous to the proof of Proposition [@.1] and we omit
it. O

Proposition 11.6. Ifn/ is a controlled vector field on S’ over n, then ' generates
a local one parameter group, which commutes with the one-parameter group on S
generated by n.

The proof of this is essentially the same as the proof of Proposition [0l The
only additional remark to be made is that if X’ and Y’ are strata of 8§ with Y/ < X”,
and ¢g(Y”’) lies in Y and g(X’) lies in X, then, in the case Y < X, a trajectory y’
of 1/ starting at a point of X’ cannot approach Y’ because the image of 3/ is a
trajectory of n and therefore cannot approach a point of Y.

We omit the proof. O
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Proof of Proposition I1.2l To prove that g is locally trivial over P, it suffices to
consider the case P = RP and prove that g is trivial over P in this case. By
Proposition [Tl we can find a system {T'} of control data for § compatible with f,
and by Proposition [[T.3] there exists a system {T"} of control data for 8’ over {T'}.
Let O1,--- ,0p be the coordinate vector fields on RP. By Proposition [0.I], we can

lift 9; to a controlled vector field 51 on S, and by Proposition [1.5] we can lift 5z to
a controlled vector field 51 on S’ over 51‘-

By Propositions [[0.1] and [[I.6] the vector fields d; and 51- generate local one-
parameter groups @; and @,. Since the mappings f and g are proper and 9; gen-
erates a (global) one-parameter group ¢;, it follows that @; and zl are (global)
one-parameter groups.

Let Sy (resp. S§) denote the fibre of S (resp. S”) over 0. To complete the proof,
it is enough to construct local homeomorphisms i and A’ such that the following
diagram commutes.

S /S
n' |~ h
| / XId\
Si x RP So x RP

We define h and h’ as follows.

h/(l‘) = ((p;),—tp T @ll,—tl (‘T)a t) where ¢ = (tla T ’tp) =fo g(x),
h(z) = (Pp—t, - P1,-t,(7),t) where t = (ti,---,t,) = f(z).

It is easily verified that the above diagram commutes and that h and h' are
homeomorphisms. O
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LisT oF REVISIONS

The above article is a slightly revised version of the booklet that I wrote in 1970.
Here I describe the main changes.

There are a few places where I wrote something other than what I meant. The
most important is the formulation of Proposition 7.1. I have changed “If f : M — P
is a submersion” in the original to “If f : M — P is smooth and f|X is a submersion
of X into P for each stratum X.”

I have changed “Let u be a positive number” to “Let u be a positive integer” in
the second paragraph in Section 1.

In Example 2.5, T have changed “If {z;} C X is a sequence converging to 0, then

the tangents {T'X,, } converge to a line 7 C R?, and Ox; converges to a line £, which
makes an angle a with 7.7 to “If {z;} C X is a sequence converging to 0 and the

tangents TX,, converge to a line 7 C R?, then Ox; converges to a line ¢, which
makes an angle o with 7.”

I have changed “X =Y =Y U X” following the remark in section 5 to “X C
Y=YUX/”

I have changed “{x € M :t € I, H(z,t) #x}" to {de e M : It eI, H(xt)#
x}” in Section 6.

I have changed “with support in V” in the statement of Proposition 6.1 to “with
support in V — U’.” T have added the hypothesis, “Suppose p > 2.”

In the second paragraph of step 1 of the proof of Proposition 6.1, I have changed
“W; is contained in W,,” to “W; is open in M and is contained in W,.” In the
sixth paragraph, I have changed “U; , € W°” to “U; c U , UWL.”

I have added “(in the C*~! topology)” in the next to last paragraph before the
lemma used in the proof of Proposition 6.1.

In the lemma used in the proof of Proposition 6.1, I have changed “inner products
i and j” to “inner products k and {” and “HoL:V —-V” to “HoL:V — W.”

In the existence part of the proof of this lemma, I have changed “(Le;, Le;);”
to “(Le;, Lej),” and “Then fi,..., f, is an orthonormal basis of V.” to “Then
fi,..., fn is an orthonormal basis of W.”

I have changed “B” to “f,” in both of the first two displayed formulas follow-
ing the proof of this lemma. I have changed “close” to “C'—close” immediately
preceding the first of these formulas.

I have changed “U;” to “U’” at the end of the first paragraph following the proof
of this lemma.

I have changed “gs(V2) C g¢(V1) for 0 < s,t < 1”7 to “Vo C g¢(V1) for 0 <t <17
in the second paragraph following the proof of this lemma.

Towards the end of the proof of Proposition 6.1, I have changed “H” to “H
every time “H” appears, “g;” to “gy 0 gy " (twice), “Hy 0 ¢” to “Hjo0gpopy” and
Hy, to (ﬁlgo)*. The last paragraph in this proof is new.

In the proof of Proposition 6.2, third paragraph, I have changed “Furthermore,
we can choose closed sets such that W/ C W; such that {W/} is a cover” to “Fur-
thermore we can choose closed sets W/ of X such that W/ C W, and {W/} is a
cover.”

In the proof of Proposition 6.2, second paragraph from the end, I have changed
Ul Ccw; —=Ul_,” to “U;/ cCw,uu/,”
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Immediately before Lemma 7.3, T have changed “tubular restriction 7p” to “pro-
jection 7p.”

In Section 8, before Definition 8.2, I have changed “v € Ty,z” to “v € Tx, z N
TY,Z~”

In Section 8, fifth paragraph before the end, I have changed “and let mx : T% —
X and px : T — (0,00)” to “Let Tx = TNV, 7x =7'|Tx,and px = p'y|Tx.“

In Section 8, last paragraph, I have changed “if (V, 8, J) is a Whiteny stratified
set,” to “if § is a Whitney stratification of a subset V' of a manifold,”

In Section 9 following (9.4), I have removed “by inclusion” from the phrase “The
set 8, of strata Y < X such that v € TZ is totally ordered by inclusion.”

In the following paragraph, I have put a comma in the sentence “For, either
Z=YorZ<Y”

In the first displayed formula following this, I have added

= (my,x)«nx (0)vzy

=y (my,x(v))pzy

In Section 10, I have added “and ag(v) = v for all v € V7 at the end of the
second sentence. I have added “and (0, v) = v for all v € V” to the condition given
in (a) of the first definition. I have added “possibly infinite at one or both ends.”
to the condition given in (b). I have changed “Since « is a one-parameter group”
to “Since « is a local one-parameter group” following (c) of the second definition.
I have changed “(Section 5)” to “(Section 9)” immediately preceding Propostion
10.1. T have changed “Proposition 10.1” to “Proposition 9.1” in the second sentence
of the first paragraph following Diagram 10.1. In Corollary 10.4, I have changed
“let X be a closed subset of M” to “let S be a closed subset of M.”

I have changed “a smooth local one-parameter group” to “a unique smooth local
one-parameter group” in the first paragraph of the proof of Proposition 10.1 and
“Uniqueness is obvious.” to “Uniqueness is obvious since Jx,ax) is unique.” in
the second paragraph.

In Section 11, following the third diagram, I have changed the sentence “Local
triviality of a mapping f over a space Z has a consequence which will be very
important in what follows” to “Local triviality of a mapping f over Z has a con-
sequence which is very important in our proof that topologically stable mappings
are dense.”

In Case 1 of the proof of Proposition 11.3, I have changed “(Note that (b) follows
from (a) in this case.)” to “(Note that (b) follows from (a) and the induction
hypothesis in this case.)”

In (a) of the definition following Lemma 11.4, I have added “where X is the
stratum of S that contains g(z’).”

In my 1970 notes, I wrote about “pre-stratifications” and “pre-stratified sets.”
I have eliminated the prefix “pre-” from all such expressions. In three places, I
referred to non-existent “figures”. I have eliminated these references.

The sections “Foreword to the 1970 Booklet”, “List of Revisions”, “Acknowledg-
ments”, and “Contents” at the beginning of this article have been added.

The other changes either are very minor and do not affect the meaning in any
way, or have been inadvertantly overlooked.
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