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POINCARE AND THE EARLY HISTORY OF 3-MANIFOLDS

JOHN STILLWELL

ABSTRACT. Recent developments in the theory of 3-manifolds, centered around
the Poincaré conjecture, use methods that were not envisioned by Poincaré
and his contemporaries. Nevertheless, the main themes of 3-manifold topol-
ogy originated in Poincaré’s time. The purpose of this article is to reveal the
origins of the subject by revisiting the world of the early topologists.

1. INTRODUCTION

A century has now passed since the death of Poincaré, and it took most of
that century to solve his most famous problem—the Poincaré conjecture. Since
1904, when Poincaré posed the conjecture, the theory of 3-manifolds has become
vastly more sophisticated. The proof of the conjecture, by Grigory Perelman in
2003 (following a program outlined by Richard Hamilton in 1982), uses methods
from differential geometry and PDEs that were foreign to topology until the late
20th century. For an account of the recent history of 3-manifolds, leading up
to Perelman’s proof, see McMullen (2011) [39]. With the advent of these new
methods, we may have reached a point where topologists are unaware of, and can
barely imagine, what topology was like in Poincaré’s time. In this article I hope to
recreate the almost-lost world of Poincaré and his immediate successors. Hopefully,
this will give some insights into the themes and problems in 3-manifold topology
today.

Poincaré’s work on algebraic topology is collected in the volume Poincaré (2010)
[53], which shows Poincaré’s style of what Stephen Smale calls “research by suc-
cessive approximation”. At first, Poincaré was not sure of the best way to define
manifolds, or homology, or the fundamental group. He tried various approaches,
often leaving it open whether a particular approach is completely general, and
whether the objects he believes to be topologically invariant really are so. This left
many opportunities for his successors to clarify his definitions, point out gaps, and
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sometimes to provide counterexamples. Indeed, the process of revision began before
Poincaré was finished when Heegaard (1898) [34] discovered an error in Poincaré’s
homology theory, which led Poincaré to the discovery of torsion.

Poincaré’s successors were naturally interested in the Poincaré conjecture, but
they did not come close to proving it. Their attempts to understand the related
concept of homology spheres, on the other hand, were remarkably fruitful. They
led to the idea of surgery and to an early appreciation of the mysterious complexity
of fundamental groups, which stimulated the development of what was later called
combinatorial group theory and geometric group theory. As I hope to show, the
idea that combinatorial problems could be algorithmically unsolvable grew out of
difficulties in combinatorial group theory.

Much of the material in this article can be found, in scattered form, in my book
Stillwell (1993) [64]. However, in writing this more cohesive account, I have taken
the opportunity to include the results of more recent scholarship, particularly that
of Epple (1999b) [28], Gordon (1999) [31], and Volkert (2002) [6g].

2. POINCARE AND THE FUNDAMENTAL GROUP

Before Poincaré, the only part of topology that was well understood was the
theory of compact 2-manifolds (“closed surfaces” or “surfaces with boundary” as
they were then known). It was known, in particular, that orientable closed surfaces
were topologically classified by a single number, the genus p, or equivalently the
FEuler characteristic 2 — 2p, or the connectivity 2p. The concept of connectivity,
originally due to Riemann (1851) [56], was generalized to higher dimensions by
Betti (1871) [I1I], in what became known as the Betti numbers, later to become
part of Poincaré’s homology theory, as we will see.

As a natural outcome of this development, the initial aim of topology was to find
topologically invariant numbers, hopefully enough of them to completely classify
manifolds of all dimensions. In the case of 3-manifolds, this goal was articulated as
follows by Dyck (1884) [26]:

The object is to determine certain characteristical numbers for
closed threedimensional spaces, analogous to those introduced by
Riemann in the theory of his surfaces, so that their identity shows
the possibility of ... ‘one-to-one geometrical correspondence’.

Poincaré himself was motivated by the search for invariant numbers, but in 1892
he made a discovery—the fundamental group—that was to lead to the algebraic
topology of today, in which one searches for invariant algebraic structures rather
than numbers. The early history of 3-manifolds is the story of the gradually dawning
realization that the fundamental group is a new kind of invariant—one that cannot
reasonably be encoded by a set of numbers.

Poincaré (1892) [47] introduces the fundamental group in terms of closed paths
in a manifold, much as we do today, but in describing examples he assumes that
the 3-manifold is defined by a polyhedral region with faces identified by certain
geometric transformations. Clearly, he is building on his experience with Fuchsian
groups in the early 1880s (see Poincaré (1985) [52]), where each group is associated
with a fundamental polygon (usually in the hyperbolic plane), with edges identified
by certain motions. These groups include the fundamental groups of all orientable
surfaces of genus > 1. Indeed, the fundamental group of a surface of genus 2 is
one of Poincaré’s examples of a Fuchsian group given in Poincaré (1882) [46] (see
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Poincaré (1985) [52], p. 81]). From now on we will denote the fundamental group
by the modern symbol 7.

The 3-manifolds introduced by Poincaré (1892) [47] are what we would now call
torus bundles over the circle. He defines them by taking the unit cube in R? as
fundamental region, and identifying opposite faces by the transformations

(x,y,2) = (x 4+ 1,9, 2),
(:r? y’ Z) H (I’y + 172)7
(z,y,2) = (0ax + By, yx + 0y, 2z + 1),

where «,3,7,0 € Z and ad — By = 1. The cross-section of this manifold for
fixed z is therefore a square with opposite edges identified by translation; that
is, a torus. The bottom torus (z = 0) is identified with the top torus (z = 1)
by an essentially arbitrary continuous bijection of the torus. The infinitely many
quadruples («, 3,7,0) give infinitely many nonhomeomorphic manifolds, because
they have infinitely many different groups m;. Poincaré is able to show this, thanks

to his knowledge of the group of transformations z +— ‘f;z i’g (the modular group,

one of the classical Fuchsian groups).

On the other hand, the Betti numbers of these torus bundles are each either 1, 2,
or 3, so Poincaré’s 3-manifolds necessarily include two with the same Betti numbers
but different 1. Thus in 1892 Poincaré established that 7y is a more discriminating
invariant than the Betti numbers, giving group theory a foothold in topology that
it has retained ever since.

Nevertheless, in his first long paper on topology Poincaré (1895) [48], Poincaré
continued to explore the Betti numbers. He set up machinery for computing them
by assuming that each manifold has a decomposition into cells homeomorphic to
simplices, reading off linear equations he called homologies, and computing the
Betti numbers by linear algebra. By considering the dual of the cell decomposition
he discovered Poincaré duality, according to which the Betti numbers equidistant
from the top and bottom dimension are equal. In particular, for a 3-manifold the
2-dimensional Betti number equals the 1-dimensional Betti number. In a footnote,
Poincaré remarked that the 1-dimensional Betti number may be extracted from
by “allowing its generators to commute”, so for 3-manifolds all Betti numbers are
implicit in 7.

At the same time, Poincaré (1895) [48] continued to explore 7;. He reintroduced
his family of torus bundles, now giving a detailed proof that they have infinitely
many different 71, but he also gave new examples that establish more simply that
w1 is a stronger invariant than the Betti numbers. In particular, by identifying
opposite faces of an octahedron, he found a manifold with the same (trivial) Betti
numbers as the 3-sphere S?, but a different 71; namely, the cyclic group of order
2. This manifold is in fact the real projective space RP?, though Poincaré does not
seem to have noticed.

RP? is also a crucial example in the thesis of Heegaard (1898) [34], where it
was used to pinpoint an error in Poincaré’s account of the Betti numbers; namely,
failure to account for the effects of torsion. The difference between S* and RP?
can indeed be detected by homology, when torsion is included: S® has no torsion,
whereas RP? has torsion number 2.

This led Poincaré to rework his homology theory in two Compléments to the
1895 paper, published in 1899 and 1900. The extended theory produced torsion
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numbers as well as Betti numbers, and indeed Poincaré introduced the word “tor-
sion”, since he saw it as a characteristic of manifolds that are somehow “twisted”
upon themselves, like the M&bius band. His method for computing them, described
in Poincaré (1900) [49], is to describe the cell structure of a manifold by an inci-
dence matriz, from which the Betti and torsion numbers may be extracted by the
elementary divisor theory of Smith (1861) [61]. He also attempted to put this the-
ory on a sound foundation by proving that any smooth manifold admits a simplicial
decomposition (a “triangulation”). His attempt was far from acceptable by modern
standards.

It may seem strange to the modern mathematician that Poincaré never recog-
nized the existence of homology groups, which is how we package Betti and torsion
numbers today (following Noether (1925) [43], whose title is precisely “Derivation
of elementary divisor theory from group theory”). But in the 19th century, when
the goal of all mathematics was “arithmetization”, numbers were the most desirable
kind of topological invariant. As late as 1934, the famous textbook of Seifert and
Threlfall applauded Poincaré’s approach to homology in these terms:

By introducing the incidence matrices . . . Poincaré took the decisive
step towards the arithmetization of topology.

(See the English translation, Seifert and Threlfall (1980) [58, p. 330].)

By complementing the Betti numbers with the torsion numbers, Poincaré made
his homology theory strong enough to distinguish RP? from S3, and in Poincaré
(1900) [49] this emboldened him to state his first “Poincaré conjecture”: any 3-
manifold with trivial homology is homeomorphic to S3. This conjecture lay undis-
turbed for the next few years, while Poincaré published two more Compléments
on the applications of topology to algebraic geometry. The main interest in these
two papers, from the 3-manifold viewpoint, is the reappearance of Poincaré’s torus
bundles in Poincaré (1902) [50], where they are shown to arise naturally in the
study of families of algebraic curves. Volkert points out in Volkert (2002) [68] that
this may be where Poincaré encountered these manifolds in the first place.

Finally, Poincaré (1904) [51] returned to m; with a new study of the difference
between homology and homotopy, first in the case of curves on surfaces. Among
other things, he found a remarkable algorithm for deciding whether a curve on a
surface of genus > 2 is homotopic to a simple curve. Using hyperbolic geometry, he
formalized the idea of “pulling a curve tight” on the surface (finding the geodesic
representative of its free homotopy class) and thereby showed that a curve is ho-
motopic to a simple curve if and only if its geodesic representative is simple. This
seems to be the first significant application of geometrization to topology; an idea
that was taken further by Dehn and revived with great success by Thurston.

The results on simple curves, however, were only a warmup for the main event
in Poincaré (1904) [51]: the construction of what we now call a homology sphere—
a 3-manifold with the same homology as S?, but with different 7;. (Hence the
homology sphere is not homeomorphic to S3.) Poincaré’s construction is quite un-
motivated and mysterious. The homology sphere is the result of pasting together
two handlebodies of genus 2—that is, “filled” surfaces of genus 2—according to a
scheme indicated in Figure [l (Part of the mystery is how the homology sphere,
which is an exceptionally symmetric object, arises from this utterly asymmetric di-
agram.) By some miracle, m; of the resulting manifold turns out to have generators
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FIGURE 1. Poincaré’s diagram of his homology sphere

a,b and defining relations
a*ba"tb=b"2a" a1 = 1.

On the one hand, this group is nontrivial because setting (a=1b)? = 1 maps it onto
the 60-element icosahedral group

a®=b= ("' =1.

On the other hand, the group collapses to the single element 1 when generators
are allowed to commute, which shows that the homology of the manifold is trivial.
Thus the homology sphere shows, as strongly as possible, the superiority of 71 over
homology for distinguishing 3-manifolds.

With the construction of the homology sphere, Poincaré’s earlier conjecture was
demolished and the real Poincaré conjecture was born: any closed 3-manifold with
trivial w1 is homeomorphic to S3. Poincaré does not offer an opinion on the truth
of this conjecture, saying only that “this question would carry us too far away”. As
we now know, the Poincaré conjecture left topologists with enough work to keep
them busy for the next 100 years. In the short term, just trying to understand the
Poincaré sphere was hard enough. That and the broader question of the extent
to which 7, characterizes 3-manifolds were the questions that occupied Poincaré’s
immediate successors. We now look at these successors—the first generation of
algebraic topologists.

3. HEEGAARD

Quite apart from his amendment to Poincaré’s homology theory, Poul Heegaard
(1871-1948) made other important contributions to the study of 3-manifolds. He
found two new and interesting ways to construct them: as branched coverings of
S? and by Heegaard diagrams.

Heegaard’s branched coverings, or “Riemann spaces” as he called them, are the 3-
dimensional counterpart of Riemann surfaces. Just as a Riemann surface consists of
“sheets” covering S? which are fused together at branch points, a “Riemann space”
consists of “sheets” (copies of S?) which are fused together along branch curves.
The fusion of sheets of a Riemann surface is comparatively easy to visualize, as
Figure 2] shows.
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FIGURE 2. Branch point of a covering of S?

FIGURE 3. Branch curve of a covering of S?

In Figure 2] which is from Neumann (1865) [42] by Neumann, the branch point
lies at one end of a half line called a “branch cut”, which may be taken arbitrarily
as the place where one sheet (the “upper” sheet) joins the other (the “lower” sheet).
Figure B shows the analogous setup for a branched covering of S3.

The branch curve is a trefoil knot, which lies at one end of a conical surface,
which is where one passes from one sheet to the next. (The cone looks cylindrical
in Figure Bl but let the parallel sides meet at infinity.) It is no longer possible to
see separate sheets; one must simply imagine the surface as a portal to “another
world” that is another copy of S3. If the covering has finitely many sheets, then
one will return to the initial copy of S after looping finitely many times around
the branch curve.

In some cases, the branched covering is homeomorphic to the original manifold.
For branched coverings of S2, this happens when there are only two branch points.
For branched coverings of S?, it happens when the branch curve is a circle (or, more
generally, any unknotted curve). Such coverings actually arise in potential theory,
and were investigated by Appell (1887) [9] and Sommerfeld (1897) [62]. The sim-
plest nontrivial covering of S3, discovered by Heegaard (1898) [34], is the 2-sheeted
covering branched over the trefoil knot. He showed that it is not homeomorphic to
S? because it has torsion number 3.

In doing so, he showed that knots have an important role to play in the construc-
tion of 3-manifolds. Conversely, he showed (perhaps unwittingly) that 3-manifolds
are a tool for the investigation of knots. By finding a branched covering over the
trefoil knot that is not homeomorphic to S3, he proved that the trefoil knot is not
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the same as the circle; that is, it really is knotted! At the time, it was not yet ap-
preciated how hard it is to recognize knottedness, or to distinguish one knot from
another, so Heegaard’s proof went unnoticed. But 20 years later, as we will see,
the construction of branched coverings turned out to be the first effective method
for distinguishing a large number of knots.

Heegaard’s other notable idea was the decomposition of 3-manifolds into handle-
bodies B; and By of equal genus, n. Given a system of n canonical curves on By,
a 3-manifold M is determined up to homeomorphism by the images of these curves
on By—the so-called Heegaard diagram of M. The first important application of
a Heegaard diagram was the construction of a homology sphere by Poincaré (1904)
[5I]. The handlebodies in this case are of genus 2. We will shortly see what kinds
of manifold result from Heegaard diagrams of genus 1.

4. WIRTINGER

The name of Wilhelm Wirtinger (1865-1945) is known to all topologists from
the so-called Wirtinger presentation for m of a knot complement. He was a major
influence on the development of knot theory, yet he published almost nothing on
the subject, perhaps because his specialty was analysis. Word of his results trickled
out, sometimes decades late, through the work of his students and colleagues at
the University of Vienna. Wirtinger’s role in the development of knot theory has
recently become clearer, thanks to the work of Epple (1999a) [27] and (1999b) [28].

Like Poincaré, Wirtinger found his way to topology from complex analysis—in
his case by trying to generalize the theory of algebraic functions from one variable
to two. This led him to the problem of describing singularities of algebraic curves,
and he eventually found that knots form part of the description. His investigation
began around 1896, was stimulated by Heegaard’s idea of branched coverings, and
produced the Wirtinger presentation around 1905. However, his derivation of the
Wirtinger presentation surfaced only in Artin (1926) [10] (which is where Figure

A=(23)

Az= (13

FIGURE 4. Brauner’s trefoil knot diagram
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B comes from) and his ideas about singularities were fully expounded only in the
work of his student Brauner (1928) [13].

Figure @ is from Brauner (1928) [13], showing Wirtinger’s setup for deriving
relations for m; of the trefoil knot complement. In addition to the Heegaard-style
picture of the branch curve, and the semicylinder through which one passes from one
sheet to another, there are loops that generate m; of the trefoil knot complement and
labels (12), (23), (13) describing how the sheets of a particular 3-sheeted covering
are to be permuted. These three transpositions give a permutation representation
of the trefoil knot group, showing that it is not abelian, which is another proof that
the trefoil is really knotted.

The trefoil is the simplest knot, so it is not surprising that it was involved in the
first theorems of knot theory. However, it is also the simplest example in Wirtinger’s
program of describing the singularities of algebraic curves: the curve y? = 3, which
has a cusp singularity at the origin. We know what the cusp looks like when x and
y are real, but when x and y are complex, the curve is really a surface 4-dimensional
space and we cannot visualize how it looks near the origin. The best we can do
is intersect the curve with a decreasing series of 3-spheres centered on the origin,
and see what kind of curve the intersection is. It turns out that each intersection
is none other than a trefoil knot!

5. TIETZE

Wirtinger’s work in topology seems not to have been influenced by Poincaré,
except in his adoption of the fundamental group. Less surprisingly, Poincaré was not
influenced by Wirtinger, since he could hardly have known about Wirtinger’s work.
The ideas of Poincaré and Wirtinger came together for the first time in the work
of Heinrich Tietze (1880-1964). In the long paper Tietze (1908) [65], based on his
Habilitationsschrift at the University of Vienna, Tietze took the fundamental group
from Poincaré, handling it with great assurance and foresight, and from Wirtinger
he took the knot concept, using it to throw new light on the basic problems of
topology, for 3-manifolds in particular. His paper not only extended the work of
Poincaré in many ways, but also exposed certain weak points and gaps.

In particular, Tietze used a wild knot to challenge the general approach of
Poincaré, which was to assume that manifolds can be described by finite schema.
For example, Poincaré assumed that curves can be replaced, for homological pur-
poses, by polygons with finitely many sides. Tietze questioned whether this is the
case for the curve in Figure Bl which he showed in both affine and projective form.

FIGURE 5. Tietze’s wild knot
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Even in the case of smooth compact manifolds, Tietze was aware that Poincaré’s
attempt to prove triangulation is unsatisfactory. Beyond this, he raised the problem
of the Hauptvermutung (main conjecture): that any two triangulations of triangu-
lable space have a common subdivision. The triangulation of smooth manifolds
was eventually proved by Cairns (1934) [15], triangulation and Hauptvermutung
for arbitrary 3-manifolds by Moise (1952) [41], and triangulation was shown to be
false for 4-manifolds by Freedman (1982) [29].

Since Poincaré essentially used the Hauptvermutung to prove the topological
invariance of Betti and torsion numbers, the invariance of these homological invari-
ants was put into question by Tietze’s critique. In fact, their invariance was proved
by Alexander (1915) [2], by a different method, so the Hauptvermutung need not
have been raised at this stage. Moreover, Tietze showed that, for 3-manifolds, the
Betti and torsion numbers can be extracted from the fundamental group. So their
invariance reduces to that of 71, which fortunately is not so hard to prove.

Thus Tietze was confident that the combinatorial approach to topology is sound,
and this led him to a general study of groups given by generators and relations, and
of mp in particular. Expanding on a footnote in Poincaré (1895) [48] §13], where
Poincaré remarks that the first Betti number may be extracted from 7 by allowing
its generators to commute, Tietze defines what he calls the “Poincaré numbers of
a discrete group” G. They are what we would call the rank and torsion numbers
of the abelianization H of G, but Tietze finds them by the matrix computations—
bypassing any consideration of H and its group structure. This was natural for
Tietze and his contemporaries, whose goal was to compute invariant numbers, where
possible. If manifolds have different numerical invariants we can tell immediately
that they are not homeomorphic.

The invariance of the group m; was less helpful, because one computes only a
presentation of m; by generators and relations. Different presentations can denote
the same group, and it is not clear how to tell when this is the case. Although
w1 can contain more information than its “Poincaré numbers”, as Poincaré knew,
there is no algorithm to extract all the extra information from a presentation. We
cannot always extract enough information to characterize m completely because,
as Tietze presciently remarked in §14 of his paper,

While the equality of two series of numbers can always be decided,
the question whether two groups are isomorphic ...is not solvable
in general.

Tietze was right that this isomorphism problem for groups is unsolvable, though
he wrote almost 30 years before Church (1936) [17] and Turing (1936) [66] gave a
generally accepted definition of “solvability” for algorithmic problems, and almost
50 years before the isomorphism problem was proved unsolvable, by Adyan (1957)
[1]. I believe that Tietze’s remark was more than just a lucky guess, however, be-
cause Tietze really knew something about the isomorphism problem. He had solved
it in one direction (the only direction in which it can be solved) by showing the
following: if PP; and Ps are presentations of isomorphic groups, then P; can be con-
verted to Py by a finite number of transformations. The requisite transformations
are now called Tietze transformations, and they can be applied mechanically. So,
if we are given presentations of isomorphic groups, this fact can be confirmed by a
finite computation.
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FIGURE 6. The two trefoil knots

Tietze’s unsolvability claim resurfaced in Reidemeister (1932) [55, p. 49], with the
stronger claim that there is no algorithm for deciding, from a presentation, whether
a group is free or trivial. Interestingly, Reidemeister organized the August 1930
conference in Konigsberg at which Godel announced his incompleteness theorem.
The link between incompleteness and unsolvability was not yet clear—it became
clearer in Church (1936) [I7]—but it seems that a convergence of ideas in topology
and foundations of mathematics was underway around 1930. Church was a student
of the topologist Oswald Veblen, and the introduction to Church (1936) [17] gives
the problem of finding

a complete set of effectively calculable invariants of closed three-
dimensional simplicial manifolds under homeomorphisms

as an example whose solvability is open. We now know that the homeomorphism
problem is solvable for 3-manifolds, but it is unsolvable for 4-manifolds. A solution
for 3-manifolds depends on Perelman’s work (it was found by Sela (1995) [60],
pending a proof of Thurston’s geometrization conjecture, which was proved by
Perelman), while the unsolvability for 4-manifolds is due to Markov (1958) [38].

Tietze considered the homeomorphism problem for 3-manifolds, and realized
that its difficulty is closely related to the difficulty of distinguishing between dif-
ferent knots. In §16 of his paper he gave the example of two submanifolds of S?:
one obtained by removing two identical trefoil knots, and the other by removing
right and left trefoil knots (Figure [d]). Both manifolds have the same 7;. The two
manifolds are homeomorphic if the left trefoil knot can be deformed into the right,
but Tietze said that this “is obviously out of the question”. It also seems obvious
that the manifolds are different if the two trefoil knots are different, but neither of
these “obvious” results were yet proved. Indeed, in the same section Tietze under-
mined his own confidence that the two trefoil knots are different by pointing out
the lack of proof of two simple propositions about knot complements: that homeo-
morphic complements imply equivalent knots (this proposition remained open until
confirmed by Gordon and Luecke (1989) [30]), and that a torus in S* necessarily
bounds a knot complement (a proposition that follows from one already assumed
by Dehn in 1907—see the next section).

In §18 of his paper, Tietze briefly discussed coverings of S? branched over a
knot, reviewing the results of Heegaard and Wirtinger mentioned above. But he
also foreshadowed a new construction of Heegaard’s double cover branched over
the trefoil, as a lens space. The lens space construction is a return to Poincaré’s
method of constructing 3-manifolds, by identifying faces of a polyhedron, and Tietze
describes it in his §20.

The polyhedron is a lens-shaped solid with top and bottom divided into m equal
sectors. These sectors are the faces of the polyhedron, and each top face is identified
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FIGURE 7. Face identifications for the (3,1) lens space

with the bottom face with a twist of 2nw/m—that is, the ith face on the top is
identified with the (i + n)th face on the bottom. The result is called the (m,nﬁ
lens space, and Figure [ shows the faces to be identified in the case m =3, n =1
Tietze asserted that the lens spaces are “the simplest possible type of two-sided
closed three-dimensional manifold”. One way in which they are simplest is that
they have Heegaard genus 1, that is, they can be obtained by pasting a pair of solid
tori together. This can be seen by cutting the lens into two pieces: a cylindrical core
surrounding the central axis of the lens, and the remainder. The core obviously
becomes a solid torus when its top and bottom are identified with the required
twist, and the same is true (less obviously) of the remainder. Figures 8 and [@ show
these pieces in the (3,1) case.

FIGURE 8. Core of the lens

FIGURE 9. Remainder of the lens

1One of Poincaré’s examples, the fifth example in §10 of Poincaré (1895) [48], is in fact the
(2,1) lens space. Poincaré constructs it from an octahedron by identifying the four faces on the
top with those on the bottom with a twist through angle .
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F1GURE 10. Assembling the remainder into a cylinder

Moreover, a curve around the “waist” of the core becomes identified with an
(m,n) curve on the other solid torus, that is, the curve that results from m equally
spaced lines on a cylinder when the ends are joined with a twist of 2n7/m. Figure
[0 shows how the cylinder arises in the (3,1) case. The ends of the cylinder must be
joined so that the like-labelled triangles come together, forming a solid torus with
a (3,1) curve.

Finally, since the (3,1) curve on one solid torus bounds a disk in the other, we
get the relation a® = 1, where a is a loop that runs once around the solid torus
in Figure This relation defines the fundamental group of the (3,1) lens space.
In general, m; of the (m,n) lens space has defining relation ™ = 1. So all the
(m,n) lens spaces, for fixed m, have the same 7;. This again raises the possibility
that 71 is not a complete invariant for 3-manifolds, because it seems doubtful that
all the (m,n) lens spaces are homeomorphic, for fixed m. Indeed, in the final
section of his paper, Tietze conjectured that the (5,1) and (5,2) lens spaces are not
homeomorphic.

6. DEHN

Max Dehn (1878-1952) began his research career as a student of Hilbert at
Gottingen in the late 1890s. During this period, Hilbert was working on the foun-
dations of geometry, so this was the field in which Dehn made his first discoveries.
He earned lasting fame for solving Hilbert’s third problem, by showing that a reg-
ular tetrahedron is not equidecomposable with a cube; see Dehn (1900) [18]. He
also made a small contribution to topology, by proving the polygonal Jordan curve
theorem from Hilbert’s axioms of incidence and order. This unpublished paper
from 1899 is discussed by Guggenheimer (1977) [32]. Evidently, Dehn hoped to
establish rigorous foundations for topology on the model of Hilbert’s foundations of
geometry. And foundations were still uppermost in his mind when he co-authored
an article on topology with Heegaard for Klein’s Enzyclopddie der mathematischen
Wissenschaften in 1907.

The work by Dehn and Heegaard (1907) [25] is a survey of topology up to
and including the work of Poincaré, with an attempt to construct foundations of
a combinatorial/geometric nature. Observing how Poincaré relies on a simplicial
structure to compute Betti numbers, torsion numbers, and the fundamental group,
Dehn and Heegaard take a simplicial structure as part of the definition of a mani-
fold, and they use it to define homology, homotopy, isotopy, and homeomorphism.
As we now know, this is no restriction for dimensions < 3, and indeed the most
important contribution of the Dehn—Heegaard paper was probably their proof of
the classification theorem for 2-manifolds. This theorem—that compact surfaces
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FIGURE 11. Picture of surfaces from the Dehn and Heegaard paper

are topologically classified by their genus and orientability—had been known in
some sense since by Mobius (1863) [40], but the Dehn—Heegaard proof was the first
to meet Hilbertian standards of rigor.

But the limitation to low dimensions is not the main problem with the Dehn—
Heegaard article. Surprisingly, they fail to appreciate the power of group theory in
topology, and they do not go beyond a brief definition of the fundamental group.
They even attempt to revise the argument for Poincaré’s homology sphere so as to
avoid using group theory. Shortly after the publication of his article Dehn (1907)
[19], Dehn published a short note acknowledging an error in the Dehn—-Heegaard
account of the homology sphere and offering a new construction of his own.

The Dehn construction in Dehn (1907) [19] is very simple, and again it does not
use group theory. He takes two copies of S* minus the tubular neighborhood of a
knot, and pastes them together in such a way as to kill the homology of the resulting
manifold, M. Thus M is a homology sphere, but it is not homeomorphic to S?,
because a torus surface (the boundary of the knot neighborhood) cannot separate
S? into two parts, neither of which is a solid torus. It is not hard to justify the
claim about the homology of M, but the claim that a torus surface cannot separate
S? into two knot complements is not so easy, and was in fact not proved until 1924.

FIGURE 12. Dehn’s Gruppenbild for the icosahedral group
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F1GURE 13. Universal covering of a genus 2 surface

Thus it seems that Dehn’s early investigations in topology were hampered by his
ignorance of group theory. Once he found his own way to work with groups, his
creativity flourished. Dehn’s approach to group theory developed in unpublished
lectures on group theory around 1909-1910, the first two chapters of which may be
seen in English translation by Dehn (1987) [24]. In the first chapter he introduces
his Gruppenbild (group diagram), which allows groups to be studied by geometric
methods. Strictly speaking, group diagrams had already been introduced by Cayley
(1878) [16], but only for finite groups. Dehn includes some finite examples, such
as the icosahedral group (Figure [[2]), but his diagrams are more enlightening for
infinite groups, where they lead to the geometric group theory of today.

Dehn’s most characteristic application of his group diagrams was the solution
of the word problem for m; of surfaces with genus > 2, which is equivalent to the
topological problem of deciding which closed curves on the surface contract to a
point. As Poincaré (1904) [51] knew, curves on a surface of genus g may be studied
by lifting them to the universal cover: a tessellation of the hyperbolic plane by
4g-gons. For a surface of genus 2, for example, the tessellation looks like that in
Figure 13

Dehn realized that the edges in the tessellation, which correspond to canonical
closed curves on the surface, also correspond to generators for 71 of the surface. So
if we label the edges of the tessellation with names for the underlying generators,
we have the diagram of the group. In fact, with the usual choice of canonical curves
a1,b1,...,a4,bg, the boundary of each polygon spells out the “word”

arbra; byt agbgaglbgl.

Now a closed curve p on the surface is homotopic to a product of canonical curves,
which lifts (from a given vertex in the tessellation) to a unique edge path p. And
p contracts to a point if and only if p is a closed path. Thus the word problem
is solved, in principle, by the construction of the group diagram. Dehn’s great
discovery was that the combinatorics of hyperbolic tessellations allows the word
problem for surface groups to be solved by a simple and efficient algorithm, without
actually constructing the group diagram.

His solution of the word problem evolved through several papers, reaching its
purely combinatorial form in Dehn (1912) [22]. The idea is to view the polygons
in the tessellation in successive layers: layer 1 is a single polygon, layer 2 consists
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of the neighbors of polygon 1, layer 3 consists of the polygons (not in the previous
layers) that touch polygons in layer 2, and so on. Any closed path p, starting
in layer 1, must necessarily reach some outermost layer then turn back. When
it does so, it must traverse more than half the edges of a polygon in succession,
because at most three of the edges of each polygon in the outermost layer are
not in the outer boundary of the layer. Such a sequence can be recognized, in
the “word” spelled by the sequence of labels of edges in p, as more than half the
boundary word of a polygon; and it can be replaced by complementary “word”
representing the remainder of the boundary. By repeatedly shortening the word by
such replacements, we find out, in a finite number of steps, whether it represents a
closed path.

This method is now known as Dehn’s algorithm.

When Dehn returned to 3-manifolds in Dehn (1910) [20] from his promising
but incomplete effort in Dehn (1907) [19], his newly acquired group theory skills
made a great difference. He was now able to construct a whole infinite family of
homology spheres, with complete proof that they are not 3-spheres, by computing
their fundamental groups. The method he used, now called Dehn surgery, was to
remove a solid torus from an S? and “sew it back differently”. There are infinitely
many ways to identify a pair of canonical curves on a solid torus with a pair of
curves on the boundary of the knotted hole in S*, producing infinitely many 3-
manifolds. Infinitely many of these have trivial homology but nontrivial 7. One
of them turned out to have the same 7 as Poincaré’s homology sphere (and it was
shown to be identical with it by Seifert and Weber (1933) [59]), while the others
have infinite 7. Moreover, it was later shown that all 3-manifolds can be produced
from S? by Dehn surgery, by suitable choice of knotted, or linked, tori (see Lickorish
(1962) [37)).

In the same paper Dehn derived a presentation for m; of the trefoil knot comple-
ment, similar to the Wirtinger presentation, and described its group diagram. The
diagram has an interesting geometric structure, lying naturally in the 3-dimensional
space equal to line x hyperbolic plane. This happens to be one of the eight 3-
dimensional geometries, discovered by Bianchi (1898) [12], which are the subject of
Thurston’s geometrization conjecture.

Perhaps the most far-reaching result in Dehn (1910) [20] is a kind of “Poincaré
conjecture for knots”, stating that a knot K with the most trivial possible group
(namely, 71(S* \ K) = Z) is in fact the trivial knot. Like the actual Poincaré con-
jecture, Dehn’s result was too hard for the techniques then available. It depended
on Dehn’s lemma, the claim that a curve K in a 3-manifold, spanned by a singu-
lar disk but with no singularities on K itself, is spanned by a nonsingular disk.
Dehn attempted to prove his lemma by a method of surface manipulation he called
“switchover” (Umschaltung), but he overlooked certain cases where the method
fails. It may be that Dehn began thinking about Dehn’s lemma in 1907, because
the gap in his homology sphere construction can also be filled by an application of
Dehn’s lemma (see Stillwell (1979) [63])9

2Gordon (1999) [31] has pointed out an instance where Poincaré seems to assume Dehn’s
lemma, without proof or comment. It is in §5 of Poincaré (1904) [51], where Poincaré assumes the
existence of a disk “without double curves” (see Poincaré (2010) [53} p. 214]). This is just before
his construction of the homology sphere, so it is also possible that Dehn picked up the idea there.
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The mistake in Dehn’s proof was discovered by Kneser (1929) [36], and a correct
proof was first given by Papakyriakopoulos (1957) [45], using a combination of
switchover with an elaborate covering space construction. Surface manipulation in
3-manifolds is indeed a viable idea, and Kneser himself used it successfully in his
1929 paper. The idea took off in the 1950s with its revival by Papakyriakopoulos,
and it was used in the solution of two longstanding algorithmic problems for 3-
manifolds: recognition of the trivial knot by Haken (1961) [33], and recognition of
S? by Rubenstein (1995) [57].

Dehn’s work on the fundamental group and homology spheres was obviously
inspired by Poincaré, but Tietze also had an important influence on him. In 1908,
Dehn for a time believed that he had proved the Poincaré conjecture—until Tietze
pointed out a mistake in his argument (see Volkert (1996) [67]). Thus Dehn had
good reason to respect Tietze’s work and it seems likely that Tietze (1908) [65]
turned Dehn’s thinking towards knots and combinatorial group theory. Like Tietze,
Dehn (1911) [21] raised the isomorphism problem for groups, and with it the word
and conjugacy problems. As mentioned above, the isomorphism problem was shown
to be unsolvable by Aydan (1957) [I]. This was a consequence of the unsolvability
of the word problem for certain groups, proved by Novikov (1955) [44].

Dehn (1911) [2I] also answered two questions that had been raised in §14 of
Poincaré (1895) [48]: whether each finitely presented group could be realized as m
of a manifold and, if so, how such a manifold might be constructed. In Chapter
III of his paper, Dehn pointed out the (relatively trivial) fact that each finitely
presented group GG may be realized as m; of a 2-complex, and the less obvious fact
that G is then m; of a 4-manifold; namely the boundary of a neighborhood of the
2-complex when it is embedded in R®. This construction may be used to prove
the result of Markov (1958) [38] that the homeomorphism problem for compact
4-manifolds is unsolvable.

Dehn’s most spectacular contribution to knot theory, in Dehn (1914) [23], neatly
capped off the era of knot theory initiated by Wirtinger and Tietze. In this paper
Dehn gave the first rigorous proof that the two trefoil knots are distinct. Supposing
there were a deformation of the left trefoil knot into the right, Dehn showed that it
would induce a certain kind of automorphism of the trefoil knot group (see Figure
[[4)). Then, by a laborious determination of all the automorphisms (made possible
by knowledge of the trefoil knot group developed in his 1910 paper), Dehn was able
to show that the hypothetical trefoil-reversing automorphism did not exist.

R

<
.&‘)“

i

FIGURE 14. Dehn’s picture of the two trefoil knots
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7. ALEXANDER

James Alexander (1888-1971) was introduced to topology by Oswald Veblen
while he was a student at Princeton. As Volkert says in Volkert (2002) [68, p. 182],
Alexander can be described as the first topologist, in the sense of being the first
person to work almost exclusively in the field of topology. In Alexander (1915) [2]
gave the first proof that the Betti numbers and torsion numbers are topological
invariants, thus putting Poincaré’s homology theory on a sound foundation for the
first time. In 1916 he was involved in the production of the French translation
of Heegaard’s thesis, Heegaard (1916) [35], which perhaps led him to study Tietze
(1908) [65], because in the following years he solved some of Tietze’s open problems
about lens spaces and knots. In particular, Alexander (1919b) [4] proved that the
(5,1) and (5,2) lens spaces are not homeomorphic, thus giving the first example
of nonhomeomorphic 3-manifolds with the same 7;. And Alexander (1919a) [3]
proved that any orientable 3-manifold is a branched cover of S?. He also applied
Heegaard’s branched coverings to obtain the first computable knot invariants, in
1920, and solved Dehn’s problem about the separation of S? by a torus in 1924.

To illustrate Alexander’s way of thinking, we take a more detailed look at three of
the results above: the invariance of the Betti and torsion numbers, the computation
of knot invariants, and the embedding of surfaces in R3.

Like Poincaré, Alexander took the subject matter of topology to be manifolds
that admit simplicial decomposition, with a view towards computing Betti and tor-
sion numbers. The invariance of these numbers is problematic, however, because
it is not clear that the same numbers will arise from different simplicial decom-
positions of the same manifold. Following Riemann (1851) [56], one would like to
superimpose two decompositions and obtain a “common subdivision”, obtainable
from each of the original decompositions by elementary subdivisions (such as split-
ting an edge into two). It is easy to prove that the Betti and torsion numbers are
invariant under elementary subdivisions, but not easy to prove that superposition
always works, as Tietze (1908) [65] pointed out. The trouble is that the cells in
a simplicial decomposition do not necessarily have straight edges—they are only
homeomorphic images of true simplices—so two edges in different simplicial de-
compositions may intersect infinitely often. Alexander (1915) [2] got around this
problem by simplicial approzimation, a method introduced by Brouwer (1911) [14]
to prove the invariance of dimension. 1

Thus, with a little help from Brouwer, Alexander put Poincaré’s homology theory
on a sound foundation. It is therefore not surprising that Alexander was particularly
attached to Betti and torsion numbers, and that he sought to apply them. He found
a spectacular application with his discovery of the first computable knot invariants,
as torsion numbers of branched coverings of S3. To put his discovery in some
perspective, it is useful to compare it with the first known knot invariant: the knot
group discovered by Wirtinger and Dehn.

The group m1(S?\ K) of a knot K is a good invariant only to the extent that we
can distinguish different knot groups given by generators and relations. The first
method available—T1ietze’s process of abelianization and subsequent extraction of
the “Poincaré numbers”’—fails because all knot groups have the same abelianization
(namely Z)E Before the 1920s, no general method of computing invariants that

30ne wonders whether it was at this point that Tietze realized the difficulty of the isomorphism
problem for groups. He does not explicitly mention the abelianization of knot groups, but it follows
immediately from the Wirtinger presentation.
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distinguish knot groups was known, so in this sense the knot group was not a
computable knot invariant in 1920. In 1920 Alexander got around this problem by
avoiding knot groups entirely and revisiting Heegaard’s idea of studying coverings
of S* branched over knots.

Torsion is computable and, as we know, Heegaard observed torsion in a covering
of S branched over the trefoil knot. Heegaard failed to exploit this discovery in
the study of knots, but in 1920 Alexander exploited it with a vengeance, computing
the torsion numbers for 2- and 3-sheeted covers of S? branched over many different
knots. Amazingly, he found that these invariant numbers are able to distinguish
between all the knots that can be described by diagrams with up to eight crossings.
Figure [I5] shows some of these diagrams (in which the crossings are not shown, be-
cause they are understood to alternate between “under” and “over”). It is from the
paper by Alexander and Briggs (1927) [§], which is a writeup of an announcement
to the National Academy of Sciences by Alexander in 1920.

Alexander did not always write up full proofs of his results, but in this case he was
forced to by the appearance of Reidemeister (1926) [54] by Reidemeister, a paper
in which the same invariants were obtained from the knot group. Reidemeister
replaced the covering of S, branched over a knot K, by an unbranched covering
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F1cURE 16. The Alexander horned sphere

of $*\ K. He noticed that the 71 of such coverings are subgroups of 1 (S? \
K) with nontrivial torsion numbers. The numbers were the same as Alexander’s,
but for the first time they were computable from the knot group. Reidemeister’s
method was a significant breakthrough, foreshadowing a new chapter in topology in
which m; could play an effective role. Alexander’s method, while more elementary,
looked backward to the old world of Betti and torsion numbers. It was perhaps the
swansong of the torsion numbers as they were conceived by Heegaard and Poincaré.

Finally, consider Alexander (1924b) [6], which contains a proof that any torus in
S? bounds a solid torus on at least one side, thus filling the gap in the Dehn con-
struction Dehn (1907) [19] of a homology sphere, and answering Tietze’s question
whether a torus in S? necessarily bounds a knot complement. In the same paper,
Alexander showed that a polyhedral S?> in S® bounds a ball on each side, a result
that becomes significant in the light of the companion paper Alexander (1924a) [5].
In the latter paper, Alexander constructed the famous Alexander horned sphere—
Figure [[6—a non-polyhedral object, homeomorphic to a ball, whose complement
is not simply connected. Rather in the spirit of Poincaré, Alexander takes it to
be obvious that the complement of the horned sphere is not simply connected. He
merely points to the example of the curve $; in Figure as one that cannot be
shrunk to a point in the complement space.

As these examples show, Alexander was able to fill most of the gaps in the work
of Poincaré and his successors, and to make new advances, while staying quite close
to their methods. In this sense, Alexander in the mid-1920s brought a natural close
to the chapter of 3-manifold topology opened by Poincaré. By the late 1920s a new
chapter had begun. The ideas of Poincaré continued to reverberate, but they were
joined by many new ideas, such as the Alezander polynomial in Alexander (1928)
[7]. If Alexander closed the Poincaré era, he also opened the post-Poincaré era.
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