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In 1915, at the invitation of Felix Klein and David Hilbert, Emmy Noether ar-
rived in Gottingen. Excitement filled the air. Einstein’s general theory of relativity
was hot off the press, and Hilbert was striving to understand and compete with his
rival. Noether’s invariant theory expertise was sought to help her mentors resolve
certain relativistic conundrums. Her Gottingen sojourn resulted in her remark-
able 1918 paper that contains two groundbreaking general theorems connecting
symmetries and conservation laws in the calculus of variations. While her earlier
research had concentrated in classical invariant theory, and her fame as the founder
of modern abstract algebra was soon to follow, Noether’s all-too-brief foray into
mathematical physics proved no less profound and influential in the development
of twentieth century science and mathematics.

Kosmann-Schwarzbach’s book, skillfully translated from the 2004 French origi-
nal, is an in-depth study of the strange history of Noether’s Two Theorems: their
antecedents, their immediate impact, the long years of neglect and misrepresenta-
tion, and their final vindication and comprehension by much of the community at
large. The book describes the highlights of Noether’s life, her mathematical up-
bringing and talent, her inability to secure a regular position, her exile from Nazified
Germany to Bryn Mawr in the United States, and her tragically shortened career.
The book also brings to life that remarkable era when the titans of German science
and mathematics founded modern physics. It makes for a fascinating and lively
read, as well as being copiously documented and referenced throughout. One also
finds summaries of the contents of many key papers, both pre- and post-Noether,
including recent contributions, modern formulations and applications, as well as
the strikingly large number of less enlightened versions, misquotations, and omis-
sions that sully much of the literature. Besides a new, definitive English translation
of Noether’s original paper [N], there are photocopies, transcriptions, and English
translations of correspondence between Noether and Klein, Klein and Pauli, and
Noether and Einstein. All in all, Kosmann-Schwarzbach’s book is a valuable and
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important contribution to the historical and mathematical literature—well worth
owning to savor and reference.

The mathematical setting for Noether’s Two Theorems is the calculus of varia-
tions, dating back to the Bernoullis and Euler, which now underlies much of modern
analysis and physics. The (classical) extremals or, more generally, critical points of
a variational principle satisfy a system of differential equations known as the Euler—
Lagrange equations, which assumes the role played by the vanishing of the gradient
in multivariable calculus. Simply stated, Noether’s First, and most famous, Theo-
rem states that every one-parameter symmetry group of a variational problem gives
rise to a conservation law of the associated Euler—Lagrange equations. And, vice
versa, every conservation law gives rise to a one-parameter (generalized) symmetry
group. Intimations of this correspondence began to appear in the nineteenth and
early twentieth century literature: Jacobi noted that translational and rotational
symmetries of space give rise to conservation of linear and angular momentum.
Ignaz Schiitz showed how time translational symmetry induces conservation of
energy—a surprisingly recent concept, due in its modern form to Helmholtz, cf. [E].
In 1911, Gustav Herglotz used the Poincaré invariance of special relativity to con-
struct ten conservation laws, followed soon thereafter by Friedrich Engel’s nonrela-
tivistic construction using Galilean invariance. But Noether was the first to realize
these were all, in fact, particular instances of a completely general correspondence
between conservation laws and symmetry properties.

Moreover, to formulate the converse result, Noether had to radically extend Lie’s
theory of continuous transformation groups. According to Lie, the infinitesimal
generators of one-parameter groups of point transformations are vector fields on a
manifold, e.g., the space of independent and dependent variables in a variational
principle. He and Backlund extended such geometrical group actions to contact
transformations on the spaces of derivatives (now known, following Ehresmann, as
jet bundles)—although Lie was profoundly disappointed by Bécklund’s Theorem
[B] that contact transformations were merely prolongations of point transforma-
tions or, in the single dependent variable case, first order ones. Noether’s break-
through, almost completely ignored until the 1960’s, was to allow the infinitesimal
generators, rather than the group transformations, to depend on the derivative (jet)
coordinates. The resulting objects are now known as generalized symmetries. (The
misnomer “Lie-Backlund symmetries” also appears, although a careful reading of
the works of Lie and Béacklund reveals that, unlike Noether, they never ventured
beyond geometrical contact transformation groups.) For example, the higher order
conservation laws of the Korteweg—deVries equation whose discovery [MGK] pre-
cipitated the modern soliton revolution in nonlinear partial differential equations,
arise, via the Noether correspondence, from truly generalized symmetries, namely
the associated hierarchy of higher order commuting flows.

Somewhat later, the reviewer [O3|] revisited Noether’s result and proved that,
as long as the system of Euler-Lagrange equations is “normal”, meaning that it
can, in some coordinate system, be placed in Cauchy—Kovalevskaya form, then
the Noether correspondence matches nontrivial symmetries to nontrivial conserva-
tion laws. “Abnormal” systems include the underdetermined systems covered by
Noether’s Second Theorem—Iless commonly known and appreciated, but of equal

1A model for water waves, first written down, in fact, twenty years earlier by Boussinesq,
cf. [D].
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profundity and importance to modern physics and elsewhere. It deals with the
case when the variational principle admits an infinite-dimensional symmetry group
whose generators depend on one or more arbitrary functions, e.g., the gauge sym-
metry groups arising in relativity and physical field theories. The conservation laws
associated with one-parameter subgroups of such an infinite-dimensional symme-
try group are necessarily trivial, meaning that they provide no information on the
behavior of solutions. In this way, Noether was able to explain the triviality of the
energy conservation law in general relativity that perplexed Einstein, Hilbert, and
Klein. Moreover, Noether’s Second Theorem states that a variational problem ad-
mits such an infinite-dimensional symmetry group if and only if its Euler—Lagrange
equations are underdetermined, in the sense that a nontrivial combination of their
derivatives vanishes identically. In general relativity, this relation is a form of the
Bianchi identity of (pseudo-)Riemannian geometry. These results motivate an in-
teresting, still open problem [O3]: normal systems match nontrivial symmetries
with nontrivial conservation laws; underdetermined systems match nontrivial sym-
metries with trivial conservation laws; it is still not known whether there are any
overdetermined systems that match trivial symmetries with nontrivial conservation
laws through the Noether correspondence.

Despite her close association with Klein and Hilbert, despite their subsequent
promotion of her talents and achievements, and despite the fundamental and
groundbreaking impact of her Two Theorems, Noether’s original paper remained
mostly unread, unappreciated, and even unquoted for much of the twentieth cen-
tury, her accomplishments either ignored or obscured by claims of later lesser lights.
We will never know how much of this neglect was purposeful (because she was a
woman, because she was Jewish, because she was not a member of the academic
establishment, etc.) and how much was because other researchers were unable or
unwilling to come to grips with her deep mathematics and profound insight. While
Courant and Hilbert’s influential text [CH]| includes a version of her First Theorem
with attribution, her contributions are either downplayed or completely omitted
from the contemporaneous works of Weyl, Pauli, Wigner, Carathéodory, Cartan,
etc., as Kosmann-Schwarzbach’s book fully documents. Even those Noether parti-
sans that tout her enduring fame as a pioneering woman mathematician and alge-
braist fail, almost uniformly, to properly appreciate or understand the true extent
of her analytical accomplishments. An oft-cited 1951 paper by the (University of
Minnesota) physicist Edward Lee Hill [H, billed as a comprehensive survey of the
analysis and applications of conservation laws in physical field theories, included
only a simplified form of Noether’s First Theorem, and no mention whatsoever of
the Second Theorem. Hill’s paper inspired a host of mediocre follow-up papers
claiming to generalize Noether’s First Theorem while in reality only re-establishing
or proving special cases of her original result. (I found and documented many of
these whilst composing the historical notes in my own book [O3].) While the true
extent of Noether’s contributions has become much better understood and appre-
ciated over the last 25 years, one, frustratingly, still finds similarly unenlightened
works appearing in print to this day; e.g., [Ne].

The strange neglect of Noether’s work also served to retard the development
of a number of areas of mathematics, physics, and engineering. For instance, re-
searchers in elasticity, including Eshelby [Es] and Rice [R], who were well aware of
the use of material symmetry properties for formulating frame-indifferent constitu-
tive relations, nevertheless ended up constructing the associated conservation laws
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(path-independent integrals) by hand; only later did the simpler and more powerful
Noether mechanism become known [KS| and, subsequently, generalized symmetries
were applied to construct new conservation laws [OI) [02]. In a similar vein, the
famous analytical identities of Pokhozhaev [P], generalized and extended by Pucci
and Serrin [PS)], turned out to be direct consequences of the basic Noether identity,
again much later producing significant generalizations [V].

Turning to the mathematics, with the underlying jet and transformation group
machinery in hand, the identity that underlies both of Noether’s results essentially
reduces to integration by parts! To illustrate, let me outline the basic construction,
omitting some calculational details, which can all be found in [O3, Chapter 5]. A
variety of more sophisticated geometric formulations using, for example, differential
forms have been proposed, but the underlying idea is inevitably based on Noether’s
original argument, as I now explain.

Given a system of differential equations, by a conservation law we mean a diver-
gence expression

(1) Div P =0

that vanishes on all (classical) solutions. In dynamical ordinary differential equa-
tions, when the only independent variable is the time ¢, a conservation law D; P = 0
produces a constant of the motion or first integral: P = const. on solutions. For
dynamical partial differential equations, the conservation law takes the form

DT +Div X =0,

the indicated divergence now being with respect to the spatial variables x =
(x',...,2P). In this case, T is a conserved density and its integral f T dz is con-
stant for solutions with suitable boundary behavior, e.g., no flux or sufficiently
rapid decay at large distances. On the other hand, in two-dimensional equilibrium
mechanics, there is no time coordinate, and a conservation law (1) provides a path-
or surface-independent integral, of use in fracture mechanics in that behavior near
a singularity, e.g., a crack tip or a dislocation, can be deduced by far field measure-
ments obtained by moving the path of integration away from the singularity.
The starting point for Noether is an nth order variational principle

(2) Iu] = / L(z,u™) dz,

Q
in which Q C RP is a “nice” domain, while u: Q@ — R? is a sufficiently smooth
function. The notation u(™ is shorthand for the derivatives 7u® )0z, a=1,...,q,

of orders 0 < #J < n. The basic problem of the calculus of variations is to find
a function u(x) that minimizes the functional I[u] subject to prescribed boundary
conditions on Jf2. Classical smooth minima satisfy the Euler-Lagrange equations
E[L] = 0, obtained by taking the first variation of the functional.

Now suppose that the variational principle admits a continuous symmetry group
G. (Discrete symmetries, while obviously important in their own right, fall outside
the purview of Noether’s Two Theorems.) To begin with, we assume that G is a
(connected) Lie group acting on the space of independent and dependent variables
(x,u). The group acts on functions, u(z) — g-u(x), by pointwise transforming their
graphs. We call G a symmetry group of the variational principle (2) if the group
transformations do not change the value of the integral over all subdomains Q). As
in all matters Lie, the first step in the analysis is to write down the infinitesimal
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form of the postulated invariance. To this end, a vector field

p q
; 0 0
3 = ' — a —
Q R CCTE-ED WP
is called an infinitesimal generator of G if its flow g, = exp(tv) forms a one-

parameter subgroup. We substitute the group transformations g; into the varia-
tional problem, and, by invariance, set the derivative of the resulting expression
equal to zero. Since this must hold on all domains 2, we arrive at the infinitesimal
moariance criterion

(4) prv(L)+ L Div £ =0.

Here pr v denotes the prolonged action of v on the derivatives of u (or, equivalently,
to the jet space), whose explicit formula can be found in [O3] Theorem 2.36].

Step 2 applies integration by parts to the left-hand side of the preceding equation,
resulting in Noether’s identity

(5) prv(L)+ L Div&=Q - E(L) — Div A,
in which Q = (Q*,...,QY), with components

ou

p
X = % — L =1,...,q,
Q*=¢ ;5%1, a q

is known as the characteristic of the infinitesimal generator v, while A = (A!,... AP)
is a well-defined p-tuple of functions that depends on L, £¢, ¢, and their derivatives.
(The geometrical interpretation of the characteristic is that the solutions to the first
order system of partial differential equations @ = 0 are precisely the group-invariant
functions.) Now comes the punchline: if the infinitesimal invariance criterion (4)
holds, then Noether’s identity (5) implies

(6) DivA=Q-E(L).

But this is a conservation law since the right-hand side vanishes whenever u solves
the Euler—Lagrange equations!

There are two key extensions to the original Noether formulation. The first,
noted in the subsequent paper by Bessel-Hagen [BH] (which was written upon the
suggestion of Noether herself), is to relax the infinitesimal invariance condition by
allowing a divergence term on the right-hand side of (4):

(7) pr v(L) + L Div £ = Div B,

which amounts to requiring that the variational problem (2) be invariant under the
group action modulo boundary contributions. The resulting conservation law then
takes the form
Div(A— B)=Q - E(L).

However, while allowing divergence symmetries permits a cleaner formulation, it
does not lead to any new conservation laws that cannot already be deduced through
Noether’s original correspondence. The second, more profound extension is to allow
the infinitesimal generator coefficients &%, 0%, to also depend on derivatives of the
field variables; the resulting infinitesimal generator v forms a generalized or higher
order symmetry. By including generalized symmetries, Noether’s First Theorem
also admits a converse: every conservation law comes from a generalized symmetry
generator. The first step in the proof is to show, again by integration by parts, that
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the conservation law is equivalent, modulo trivial laws, to one in characteristic form
(6). One then runs the preceding argument in reverse to produce the corresponding
(generalized) symmetry generator.

Turning to infinite-dimensional symmetry groups, one theoretical challenge is
that the underlying theory of Lie pseudo-groups remains, to this day, in poorly
developed shape [Op]. Remarkably, unlike finite-dimensional Lie groups, we still
do not have an abstract object that adequately represents an infinite-dimensional
Lie pseudo-group, and so they are inextricably tied to their action on a space.
Despite this theoretical complication, applications to the construction of conser-
vation laws and identities through Noether’s Two Theorems remains reasonably
straightforward.

For linear systems of Euler-Lagrange equations, the infinite-dimensional sym-
metry group obtained by linear superposition of solutions produces the so-called
reciprocity relations as conservation laws, of importance in continuum mechanics
and elsewhere [O3]. As for Noether’s Second Theorem, suppose there is a nontrivial
differential relation

8) DIEy(L) + - +DyEy(L) =0

among the Euler-Lagrange equations, where the D,’s are certain differential op-
erators. Multiplying (8) by an arbitrary function h(z) and integrating by parts
produces a conservation law in characteristic form (6), with Q, = DX[h], where
* denotes the formal adjoint of the differential operator. The conservation law
is, in fact, trivial since it vanishes identically on solutions to the Euler-Lagrange
equations. However, applying the preceding Noether argument produces a nontriv-
ial infinite-dimensional variational symmetry group that depends on the arbitrary
function h(z) and its derivatives. To establish a converse, the only subtle point
is to show that, even if the original infinite-dimensional symmetry group depends
nonlinearly on an arbitrary function h(z) and its derivatives, one can always pro-
duce one that depends linearly on h(z), from which the corresponding differential
relation (8) readily follows. Again, full mathematical details can be found in [O3].

In conclusion, Kosmann-Schwarzbach’s masterful historical and mathematical
study is a most welcome addition to the literature, furnishing new insight into
the sociology and curious history of twentieth century science and mathematics,
supplying a deeper appreciation of Noether’s profound genius, and providing an
invaluable resource for clearing up misconceptions and misreadings of Noether’s
wonderful theorems.
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