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The (quantum) Yang–Baxter equation

(0.1) R(z)12R(z + w)13R(w)23 = R(w)23R(z + w)13R(z)12

was introduced in the 1960s in the physics literature in the context of statistical
mechanics, and it was the starting point of several developments in mathematics,
particularly in representation theory and low-dimensional topology, since the 1980s.
The Yang–Baxter equation is an equation for a meromorphic function z �→ R(z) ∈
End(V ⊗ V ) (called R-matrix) of the spectral parameter z ∈ C with values in the
endomorphisms of V ⊗ V for some finite-dimensional vector space V . It is an
equality in End(V ⊗ V ⊗ V ), and the notation with upper indices indicates the
factors of a tensor products on which an endomorphism acts. For example,

R(z)12 = R(z)⊗ Id.

A basic example of a solution of the Yang–Baxter equation is

(0.2) R(z) = Id +
1

z
P, where P (u⊗ v) = v ⊗ u.

To make immediate contact with a classical topic the reader might be familiar with,
let us note that an invertible constant solution R of (0.1) defines a representation
of the braid group Bn on the n-fold tensor product V ⊗n. This representation
sends the group generator σi that braids the ith strand with the (i + 1)-st strand
to P i,i+1Ri,i+1. Indeed the Artin relations σiσj = σjσi, |i − j| ≥ 2 are trivially
satisfied and the relation σiσi+1σi = σi+1σiσi+1 follows from the Yang–Baxter
equation.

But before going to the mathematical contexts where this equation appears, let
us spend some words on its origin in statistical mechanics and quantum integrable
systems. The vector space V is the space of states of a quantum mechanical system
at a site of a one-dimensional crystal. The n-fold tensor product V ⊗n = V ⊗· · ·⊗V
is the state space of the crystal. Out of a solution of the Yang–Baxter equation one
constructs L(z) = R1,n+1(z) · · ·R(z)13R(z)12 ∈ End(V ⊗ V ⊗n) obeying

R(z)12L(z + w)13L(w)23 = L(w)23L(z + w)13R(z)12 ∈ End(V ⊗ V ⊗ V ⊗n).

This relation lies at the heart of the quantum inverse scattering method of the
Leningrad school (see [26]) that led to the notion of quantum group. One feature is
that if R(z) is invertible for generic z, then the partial traces T (z) = Tr|V (L(z)) ∈
End(V ⊗n) form a family of commuting endomorphisms. The quantum inverse scat-
tering method is a technique to find simultaneous eigenvalues of this family and is a
generalization of the Bethe ansatz, developed by Bethe in the 1930s to determine the
spectrum of the Hamiltonian of the Heisenberg spin chain, which appears as the con-
stant term in T (z)−1T ′(z) as z → 0 for Yang’s solution (0.2) and two-dimensional
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V . In statistical mechanics one considers the trace of T (z)m ∈ End(V ⊗n) which,
once written out as a polynomial in the matrix elements of R in some basis, is rec-
ognized as a partition function, namely the weighted sum over all configurations of
a system on an n×m rectangular grid on a torus where each link between nearest
neighbors can be in dim(V ) different states.

A successful approach to finding solutions of the Yang–Baxter equation is to
study the deformation theory of the trivial solution R = Id. Suppose R�(z) is a
solution depending on a parameter � such that R�(z) = Id + �r(z) +O(�2). Then
r(z) ∈ End(V ⊗ V ) obeys the classical Yang–Baxter equation

[r(z)12, r(z + w)13] + [r(z)12, r(w)23] + [r(z + w)13, r(w)23] = 0.

An important feature of this equation is that it implies that the meromorphic
connection on the trivial vector bundle Cn × V ⊗n → Cn defined by

∇ = d+ k
n∑

i �=j=1

r(zi − zj)
ij(dzi − dzj)

is flat for all k ∈ C. A special case is the Knizhnik–Zamolodchikov [25] connection
∇KZ of conformal field theory on genus zero curves; see [27] for a mathematical
introduction. In this case r(z) = t/z, where t ∈ g⊗ g is an ad-invariant tensor for
a semisimple Lie algebra g and V is a g-module.

Let us turn to the dynamical Yang–Baxter equation. Let V be a semisimple
finite-dimensional representation of an abelian complex Lie algebra h. Thus V =⊕

μ∈h∗ V [μ] with finitely many nonzero weight spaces V [μ]. The dynamical Yang–

Baxter equation is an equation for a meromorphic function R(z, λ) ∈ End(V ⊗V ) of
the spectral parameter z ∈ C and the dynamical variable λ ∈ h∗. It is the equation
in End(V ⊗ V ⊗ V )

R(z, λ− h3)12R(z +w, λ)13R(w, λ− h1)23 = R(w, λ)23R(z +w, λ− h2)13R(z, λ)12.

The dynamical notation is adopted, meaning that hi must be replaced by μi when
acting on V [μ1] ⊗ V [μ2] ⊗ V [μ3]. This equation appeared in the work of Gervais
and Neveu on Liouville theory (without spectral parameter) [22]. Its version with
spectral parameter was viewed in [15, 16] as a genus one theory. The goal was to
extend the R-matrix formalism to interaction-round-a-face models of statistical me-
chanics [2], which involve elliptic functions. The corresponding dynamical classical
Yang–Baxter equation is the flatness condition for Bernard’s extension [3] of the
Knizhnik–Zamolodchikov connection to conformal field theory on genus one curves.
The transfer matrix formalism extends to the dynamical case providing commuting
families of difference operators in the dynamical variables; see [18]. We discuss
these operators below in the setting of dynamical R-matrices that are constant as
functions of the spectral parameter.

What Etingof and his collaborators recognized is that this theory is interesting
and useful in representation theory even without spectral parameter. This book is
about this version of the dynamical Yang–Baxter equation and its relation with the
representation theory of finite-dimensional Lie algebras and their quantum version.

Let g be a semisimple Lie algebra over C with Cartan subalgebra h and an
invariant bilinear form 〈 , 〉 normalized so that short roots have squared length
2. Let us fix a system of simple roots α1, . . . , αr, and introduce the root lattice
Q =

⊕r
i=1 Zαi and its positive cone Q+ =

⊕r
i=1 Z≥0αi. The universal enveloping

algebra Ug = U1g of g belongs to a one-parameter family of Hopf algebras, the
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Drinfeld–Jimbo quantum universal enveloping algebras Uqg [6, 24], defined for q =

e�/2 ∈ C×. The representation theory of Uqg is very similar to the representation
theory of Ug if q is not a root of unity. In particular the adjoint action of h on Ug

extends to a weight decomposition Uqg =
⊕

α∈Q Uqg[α] by the root lattice. To the
Borel subalgebras b± there correspond Hopf subalgebras Uqb± whose gradings lie
in ±Q+. There is a category O of finitely generated Uqg-modules with a weight
decomposition V =

⊕
λ∈h∗ V [λ] and such that Uqb+v is finite dimensional for

each v ∈ V . In particular we can view V ∈ O as a semisimple h-module. To
each λ ∈ h∗ there corresponds a one-dimensional representation Cλ of Uqb+ and
a Verma module Mλ = Uqg ⊗Uqb+

Cλ ∈ O with highest weight λ generated by a
highest weight vector uλ, the image of 1⊗ 1. Simple modules in O are isomorphic
to quotients Lλ of Verma modules Mλ by their maximal proper submodules. If q
is not a root of unity, all finite-dimensional modules are isomorphic to Lλ for some
dominant integral weight λ. Since Uqg is a Hopf algebra, tensor products and duals
of modules are defined. The R-matrices appear when comparing tensor products
V ⊗W and W ⊗ V of representations. The following results are due to Drinfeld;
see [7, 8].

Theorem 0.1. Let q = e�/2 ∈ C � {0} be generic. There exist invertible linear
endomorphisms RVW ∈ EndC(V ⊗W ) for each pair of modules of the category O
such that P · RVW : V ⊗W → W ⊗ V is an isomorphism of Uqg modules obeying
the quasi-triangularity property

RU,V ⊗W = R13
UWR12

UV , RU⊗V,W = R13
UWR23

VW ,

and the Yang–Baxter equation

(0.3) R12
UV R

13
UWR23

V W = R23
VWR13

UWR12
UV ,

for any triple of modules in the category O. Moreover, RVW is the image in
End(V ⊗W ) of a universal R-matrix R of the form R = R0e

�
∑

xi⊗xi/2 with

R0 = 1 +
∑

α∈Q+�{0}
Rα ∈ Uqb+⊗̂Uqb−.

Here (xi) is any orthonormal basis of h, and Rα is of weight α in the first fac-
tor. Only finitely many summands in this infinite sum contribute nontrivially when
acting on an element of V ⊗W .

This result provides constant solutions RV V of the Yang–Baxter equation (0.1),
and transfer matrices are partial traces TV = tr|V RVW ∈ End(W ) with W =
V ⊗ · · · ⊗ V . The commutativity of the transfer matrices

TUTV = TV TU

is an easy consequence of (0.3). Solutions of the Yang–Baxter equation with spec-
tral parameter are obtained from Uqg, where g is an affine Kac–Moody algebra,
to which the Drinfeld–Jimbo theory also applies. The technical difficulty is that
finite-dimensional representations of Uqg do not belong to the category O in gen-
eral. Still a well-developed theory exists; see [21, 4, 5, 20]. In particular there are
finite-dimensional evaluation modules V (z) associated to finite-dimensional repre-
sentations V of g, and R-matrices RV V (z−w) : V (z)⊗V (w) → V (z)⊗V (w) defined
for generic z − w, so that PRV V (z − w) is a morphism of Uqg-modules.
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Let us go back to finite-dimensional Lie algebras and explain the appearance of
the dynamical Yang–Baxter equation in representation theory. Let V be a finite-
dimensional Uqg-module and v ∈ V [μ] a vector of weight μ. Then for each generic
λ ∈ h∗ there is a unique morphism of modules

Φv
λ : Mλ → Mλ−μ ⊗ V

sending the highest weight vector uλ ∈ Mλ to uλ−μ ⊗ v. The fusion operator
JVW (λ) : V ⊗W → V ⊗W for finite-dimensional Uq(g)-modules V , W is induced
by the composition of intertwining operators: if v ∈ V [μ] and w ∈ W [ν], then

(Φv
λ−ν ⊗ Id)Φw

λ = Φu
λ : Mλ → Mλ−μ−ν ⊗ V ⊗W

for some uniquely determined u = J(λ)(v ⊗ w) ∈ V ⊗W .

Definition 0.2. Let V,W be Uq(g)-modules of the category O. The exchange
operator is

RVW (λ) = (JVW (λ))−1R21
WV JWV (λ)

21.

The exchange operators relate the composition of intertwining operators to the
composition taken in the opposite order.

Theorem 0.3. Let ρ ∈ h∗ be the half-sum of positive roots and denote by λ̄ the
image of λ ∈ h∗ by the isomorphism h∗ → h defined by the bilinear form. Let
θ(λ) = λ̄ + ρ̄ − 1

2

∑
i x

2
i where xi is any orthonormal basis of h. Exchange and

fusion operators obey the ABRR equation

JVW (λ)(Id⊗ q2θ(λ)) = R0(Id⊗ q2θ(λ))JVW (λ)

and the dynamical Yang–Baxter equation

R12
UV (λ− h3)R13

UW (λ)R23
VW (λ− h1) = R23

VW (λ)R13
UW (λ− h2)R12

UV (λ).

Moreover, JVW (λ) is the image in End(V ⊗W ) of a universal dynamical twist

J(λ) ∈ Uqb−⊗̂Uqb+.

Remark 0.4. The ABRR equation is due to Arnaudon, Buffenoir, Ragoucy, and
Roche [1] who noticed that if R is a universal R-matrix in the sense of Drinfeld
[7], then J(λ)−1R21J(λ)21 obeys the dynamical Yang–Baxter equation provided
J(λ) obeys a cocycle condition, which is a dynamical version of Drinfeld’s twist
equation. They showed that the dynamical twist equation is implied by the ABRR
equation that being linear can be solved by an explicit recursive procedure. Explicit
expressions are given in [1] and [23]. The interpretation of the image of J(λ) in
End(V ⊗W ) as the fusion operator is due to Etingof and Varchenko [13, 9].

With this result one can apply the machinery of transfer matrices and construct
families of commuting operators. Let V be a finite-dimensional Uqg-module with
zero weight space V [0]. Then each finite-dimensional module W gives rise to a
difference operator acting on V [0]-valued functions on h∗:

DW f(λ) =
∑

ν∈h∗

Tr|W [ν]RWV (−λ− ρ)f(λ+ ν).

The dynamical Yang–Baxter equation implies that DWDU = DUDW for any W ,
U . Common eigenvectors of these difference operators are obtained from traces of
intertwining operators: the trace function ψV : h∗ × h∗ → End(V [0]) is

ψV (λ, μ) : v �→ Tr|Mμ
(Φv

μe
�λ̄).
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Etingof and Varchenko showed that a suitably normalized version of the trace func-
tion is a common eigenfunction of the commuting difference operators and has
several additional properties.

Theorem 0.5. Let δq(λ) =
∏

α>0(q
〈λ,α〉 − q−〈λ,α〉) and Q(μ) =

∑
i S(ai)bi, where

J(μ) =
∑

i ai ⊗ bi and S is the antipode of the Hopf algebra Uqg. The normalized
trace function

FV (λ, μ) = δq(λ)ψV (λ,−μ− ρ)Q(−μ− ρ)−1,

regarded as a function of λ, is an eigenvector of DW with eigenvalue χW (q−2μ) =∑
ν q

−2〈μ,ν〉dimV [ν]. Moreover, if V ∗ denotes the representation dual to V ,

FV ∗(μ, λ) = FV (λ, μ)
∗.

A consequence is that FV (λ, μ) also obeys a dual difference equation with respect
to μ.

In the special case of g = sln with V a symmetric power of the vector represen-
tation, the difference operators reduce to the Macdonald difference operators, and
the Macdonald polynomials for sln can be constructed out of trace functions [14].

Moreover, as shown in [11], the normalized trace function obeys several further
identities, including the invariance under the dynamical Weyl group [10], orthogo-
nality relations, and the qKZB heat equation. These identities (and the terminol-
ogy) are degenerate versions of identities proposed in an attempt [19] to develop a
quantum group version of conformal field theory on elliptic curves. Conjecturally,
trace functions ψV (λ, μ) are degenerate limits of trace functions for quantum uni-
versal enveloping algebras of affine Lie algebras. The classical (q = 1) version of the
latter trace functions appears in conformal field theory. They are solutions of the
Knizhnik–Zamolodchikov–Bernard equations [3] and have integral representations
of hypergeometric type [17]. The corresponding statements for q 
= 1 are known
only in very special cases, cf. [19].

This book originates from lecture notes of a course given by the first author at
MIT. It contains a hands-on introduction to the representation theory of quantum
groups and develops the theory of intertwining operators and the dynamical Yang–
Baxter equation from scratch, starting from the classical case q = 1. The book is an
excellent and accessible introduction to the subject. It is a good complement to [12],
based on another course of Etingof, where the quantization problem, namely the
construction of R-matrices from solutions of the classical Yang–Baxter equation,
and the geometric interpretations in terms of Poisson–Lie group(oid)s are discussed.
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