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1. THE SUBJECT

Given an algebraic variety X over an algebraically closed field K, one can extract
the following structure, in the sense of Bourbaki, loosely speaking. The underlying
set is X (K) the set of K-rational points of X, and for each n > 1 we have the
collection Z,(X(K)) of Zariski closed subsets of the Cartesian product X (K)".
Conversely, it is not unnatural to ask whether, given an arbitrary set Y and for
each n > 1 a family Z,(Y") of subsets of Y™ satisfying some suitable hypotheses,
there is an algebraically closed field K and algebraic variety X over K such that
(Y, Z,(Y))n is isomorphic to (X (K), Z,(X(K)))n, in the sense that there is a bi-
jection f:Y — X(K) inducing a bijection between Z,,(Y') and Z,, (X (K)) for each
n. Of course a key issue is what kind of suitable hypotheses are acceptable. The
kind of thing we have in mind includes treating the elements of Z,,(Y") as the closed
sets for an abstract Zariski topology on Y™ and requiring at least some continuity
assumptions for the projection maps Y — Y*. An important result of Hrushovski
and Zilber from the mid 1990s [3] says that, assuming Y is 1-dimensional, in an
appropriate sense, this converse does hold: under a strong nondegeneracy assump-
tion on (Y, Z,(Y)), (very ampleness), Y with its families Z,(Y") is isomorphic to
some X (K) with families Z, (X (K)) where X is an algebraic curve over K. Under
a weaker but natural nondegeneracy assumption (ampleness or nonmodularity) on
(Y, Z,(Y))n, but still assuming 1-dimensionality, they show that Y is a finite cover
of an algebraic curve. Examples of such Y which are not themselves algebraic curves
are given in [3], and this partly motivates Chapter 5 of the book under review, which
tries to interpret such examples in terms of noncommutative geometry.

One of the aspects of the Hrushovski—Zilber theorem is the recovery of an ambient
algebraically closed field from a set Y equipped with an abstract Zariski topology
on each of its Cartesian powers. This is an analogue of the well-known result,
sometimes called the Fundamental Theorem of Projective Geometry, which recovers
a coordinatizing field (or division ring) from an abstract projective geometry of
dimension at least 3.

The Hrushovski-Zilber theorem is very powerful, and its consequences are still
being mined. One such application, discovered quickly by Hrushovski, was a proof
of the functional Mordell-Lang conjecture, which required some more finessing in
the positive characteristic case; see [2]. But as we describe below, what is really
important is the Zilber conjecture for (strongly) minimal sets, and its validity in
important cases, sometimes, but not exclusively, via the Hrushovski-Zilber theorem.

The background to and motivation for the Hrushovski-Zilber theorem is the
problem of classifying strongly minimal sets, from model theory or more specifi-
cally the subarea geometric stability theory. There are several reasonable surveys
of model theory for a general audience, including [7] and [5]. So rather than include
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a mini-course in model theory in the current review, I would rather refer the inter-
ested reader to these other sources and limit myself here to providing an informal
description of the key notions.

Model theory studies first order theories. Such a first order theory T consists
of a collection of first order sentences or axioms in a given vocabulary L, where L
consists of some relation symbols and function symbols. For example if L consists
of a binary function symbol x, a unary function symbol inv, and a 0-ary function
symbol e, we can write the axioms for groups as a (finite) set of first order sentences
in the vocabulary L, and this collection of sentences is an example of a first order
theory, the theory of groups. Likewise, if L consists of function symbols 4, —,
X, 0, e, and binary relation symbol <, we can write the axioms for ordered fields
satisfying the intermediate value property for polynomials as a (infinite) collection
of first order sentences in the language L, and this collection of sentences is called
RCF (the theory of real closed fields). It is worth remarking that completeness
of the ordered field cannot be expressed in a first order manner. A structure for
a vocabulary L is simply a set M equipped with actual relations and functions
corresponding to the symbols of L (and we often notationally identify this structure
with its underlying set M in the same way that a group G is often notationally
identified with its underlying set G). And given a theory T in the vocabulary L,
M is said to be a model of T if the sentences in T are true in M (in the obvious
or tautological sense). So a group is a model of the theory of groups, and a real
closed field is a model of RCF.

A structure M for vocabulary L also comes equipped with its category Def(M)
of definable sets. These definable sets are the subsets of M", which are defined by
first order formulas of the vocabulary L allowing parameters from M. Alternatively
they are the subsets of M™ obtained from the basic relations on M and graphs
of basic functions on M via finite Boolean combinations, projections, and fibres
of projections. When M is the structure (C,+, x), Def(M) is the category of
constructible subsets of the various Cartesian powers of C (namely finite unions of
locally Zariski closed sets).

A privileged class of first order theories consists of those which have a unique
model in each uncountable cardinality s, and these are often called uncountably
categorical theories and are special cases of stable first order thories (which T will
not define here). If M is a model of such an uncountably categorical theory, M is
controlled in a suitable sense, by a strongly minimal definable set X in M. Strong
minimality of X means that X is infinite but has no infinite co-infinite definable
subsets. This definition of strong minimality of X only concerns definable subsets
of X itself, but has implications for definable subsets Z of Cartesian powers X™: for
example to any such Z can be assigned in a canonical fashion a dimension. From
this point of view the strongly minimal definable sets are the 1-dimensional ones.

The identification, in various senses, of such strongly minimal sets, becomes a
key issue in the classification or description of uncountably categorical theories.
Such a strongly minimal set X can be viewed as a structure in its own right, and
there are three classical examples:

Example (i): X is a set with no structure, i.e., no basic relations other than
equality (and no basic functions).

Example (ii): X is an (infinite) vector space over a field F' where the basic
functions are addition and scalar multiplication by r, for each r € F.
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Example (iii): X is an algebraically closed field where the field operations are
the basic functions (and there are no additional basic relations).

There are various natural model-theoretic ways of distinguishing between Ex-
amples (i), (ii), and (iii) above. One such involves the notion of a pregeometry
(or matroid) coming from model-theoretic algebraic closure. But I prefer to give
another one: We consider definable families F of strongly minimal (1-dimensional)
subsets of X x X. In Example (i) there are no positive-dimensional such families.
In Example (ii) the only such families F have dimension at most 1 (typically the
family of graphs of translations * — x + a as a varies). In Example (iii) there
are families F of dimension > 2 (such as the graphs of maps © — ax + b as a,b
vary). For reasons coming from the matroid point of view, we call these features or
properties of a strongly minimal set, (i) triviality, (ii) nontriviality + modularity,
(iii) nonmodularity, respectively. Any strongly minimal set X will satisfy exactly
one of these.

One of the important early contributions of Hrushovski (in his Ph.D. thesis) was
that property (ii) above (modularity + nontriviality) corresponds essentially to
Example (ii): there is a 1-dimensional definable abelian group which is generically
a vector space over a division ring, with no additional induced structure. On
the other hand what became known as Zilber’s conjecture was that property (iii)
(nonmodularity) corresponds essentially to Example (iii). The “essentially” means
at the minimum that there is a 1-dimensional algebraically closed field K definable
in X and at the maximum that the only induced structure on such K is the field
structure.

Zilber’s conjecture was shown to be false by Hrushovski in the late 1980s; see
[1]. He found a clever variant on the well-known Fraissé method of constructing an
infinite homogeneous (i.e., with many symmetries) structure from a suitable family
of finite structures, and by these means he built a nonmodular strongly minimal
set in which no infinite field (in fact no infinite group) is definable. The general
technique that Hrushovski used now goes under the name Hrushovski construction
and has developed into a subject in its own right, within model theory.

In model theory there is no a priori distinction between closed and open definable
sets, although in natural stable examples, such as algebraically closed fields, differ-
entially closed fields, and abelian groups, we do have such a distinction: the closed
definable sets are the Zariski closed, Kolchin closed, and positive-primitive-definable
sets, respectively; and moreover any definable set is a finite Boolean combination
of closed definable sets. In the above examples the relevant topology is Noetherian
(in various senses) and not Hausdorff. On the other hand there is another class of
examples of structures which are equipped with a Hausdorff topology which has a
definable basis, such as real closed fields and p-adically closed fields (in the language
of rings). These are unstable. The kind of topological structures considered in the
book under review belong to the first rather than second class of examples.

A major insight of Hrushovski and Zilber was that, under additional assumptions
on a strongly minimal set X, which involve precisely the identification of certain
definable sets being closed, the Zilber conjecture can be proved. The intuition is
that one should then be able to define an abstract tangent space to X x X at a
given point (a,b) € X x X, and that composition of suitable strongly minimal
subsets of X x X passing through (a,b) should yield a (definable) group structure
on the relevant tangent vectors. Repeating the procedure with this 1-dimensional
definable group G in place of X (and under the nonmodularity assumption) should
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yield an infinite definable field K. This intuition is realized in Chapters 3 and 4 of
the book under review. The approach is, at least superficially, somewhat different
from that in the paper [3], which used more formal methods that depended upon
Hrushovski’s group and field configuration theorems. These latter theorems give
conditions under which one can recover definable groups (fields) from some model-
theoretic configuration of points, a substantial generalization of Weil-type theorems
on recovering an algebraic group from birational data. This review is not the right
place to go into proper details about either proof. In any case, either route to the
existence of a definable field poses formidable technical challenges, and the proofs
are major accomplishments. In fact the maximum version of Zilber’s conjecture
is also proved: the induced structure on K is just the field structure. This is an
abstract version of Chow’s theorem and in fact yields Chow’s theorem (that a closed
analytic subvariety of P"(C) is algebraic).

The general idea of imposing some kind of Zariski topology on definable sets in a
structure M originates with Gabriel Srour and his notion of equational theory (see,
for example, [6]). But Zariski structures (or geometries) involve a bit more, as I
now describe, for the record:

A Zariski geometry or 1-dimensional Zariski structure is a strongly
minimal structure M, equipped for each n with a family Z, of
distinguished definable subsets of M™, which we will call the closed
or definable closed sets in M, with the following properties:

(i) Quantifier elimination to closed sets. Any definable subset of
M™ is a finite Boolean combination of elements of Z,,.

(ii) Noetherianity. Z, has the descending chain condition (DCC),
in the sense that the intersection of any collection of members of
Z,, is a finite subintersection.

(iii) Dimension theorem. If X,Y are irreducible closed subsets
of M™ with nonempty intersection, then the dimension of an irre-
ducible component of X NY is > dim(X) + dim(Y) — n.

Condition (iii), the dimension theorem, is key, and realizing its importance was
a great insight of Hrushovski and Zilber.

To summarize, the fundamental theorem of [3], and also of the book under review
(except that (d) below is not paid much attention in the book), is:

Fundamental Theorem. Suppose M is a Zariski geometry and is nonmodular.
Then

(a) There is a 1-dimensional definable field K (necessarily algebraically closed)
in M.

(b) Any subset of K™ definable in M is definable in the structure (K, 4+, x).

(¢) Up to removing finitely many points, M is a finite cover of the affine line
over K.

(d) When M has the property (slightly stronger than nonmodularity) that there
is a definable family of strongly minimal subsets of M x M which generically
separates points, then M has the natural structure of an algebraic curve
over K.

Two important and nontrivial examples to which the Hrushovski—Zilber theo-
rem applies are strongly minimal differential algebraic varieties X (in the sense of
Kolchin [4]) and strongly minimal compact complex manifolds X. In each of these
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cases there are natural choices for the closed sets, namely the Kolchin closed sub-
sets of X™, and the closed analytic subvarieties of X™, respectively. In both these
examples, the consequences of Hrushovski-Zilber (truth of the Zilber conjecture)
are substantial, with impact on the structure of solutions of differential equations,
and bimeromorphic geometry, respectively. On the other hand in each of these
cases the Zilber conjecture can be proved relatively directly (although these proofs
were found later). The function field Mordell-Lang conjecture in characteristic zero
follows from the differential algebraic case. Among the consequences (with some
additional work) for bimeromorphic geometry is a trichotomy theorem for simple
compact complex manifolds X: X is either an algebraic curve, a simple nonal-
gebraic complex torus (up to correspondence), or X has no positive dimensional
family of correspondences. When X is not of Kaehler-type it is of the third kind.

2. THE BOOK

The book is based on notes that Zilber wrote in the early 1990s. The original
notes have been massaged in various ways, a couple of additional chapters have
been added around Zilber’s more recent interests, and there is an appendix on
model theory. Chapters 1 to 4 exposit the basic theory of Zariski structures and
geometries, culminating in a proof of the fundamental theorem, as described earlier,
and using ideas with a nonstandard analysis flavour (infinitesimal neighbourhoods).
Chapter 5 attempts to relate some nonalgebraic examples of nonmodular Zariski
geometries (from [3]) to noncommutative geometry, and Chapter 6 discusses the
notion of analytic Zariski structure.

Chapters 5 and 6 are more speculative than the earlier part of the book. Chapter
5 takes as its starting point an example in [3] of a nonmodular Zariski geometry
M which is not an algebraic curve and is not even interpretable in an algebraically
closed field (basically because of the structure of Aut(M)). Zilber attaches to such
examples a noncommutative K-algebra. Conversely, to a suitable K-algebra, he
associates a Zariski structure. The K-algebras considered here have large central
subalgebras. I understand that for applications to noncommutative geometry it
would be interesting to also consider simple algebras, in particular with no non-
trivial centre. Concerning Chapter 6, I must admit that I understand neither the
(mathematical) content of the notion of analytic Zariski structure nor its (math-
ematical) motivation. I guess that the author believes that, as with nonalgebraic
Zariski geometries, various exotic structures (such as Hrushovski’s examples) should
nevertheless have some classical origin, but coming maybe from analytic rather than
algebraic geometry. And the analytic Zariski structure machinery is supposed to
make this more precise. My feeling is that one has to buy into or accept this ide-
ology in order to to appreciate the mathematics. The actual definitions or axioms
for analytic Zariski structures have developed over a few years through several ap-
proximations and Ph.D. theses. I leave the reader to explore these independently.
Some examples are given, rather briefly, including the author’s pseudo-exponential
field, coming out of his rather influential model-theoretic approach to the complex
exponential function.

Boris Zilber has been a dominant force in model theory for around 40 years,
and his ideas and results have shaped what we now call geometric model theory.
These wide ranging ideas, sometimes rather speculative, are on show throughout
the book. But the book is marred by a considerable amount of loose definitions,
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ambiguities, and typographical problems, which might make it rather difficult for
a graduate student or interested mathematician to actually learn something at a
technical level. In fact one wonders about the nature of the refereeing process. Also
what is missing from the book is a treatment of type-definable Zariski geometries,
which are relevant to the really new part of Hrushovski’s proof of the functional
Mordell-Lang conjecture, namely the positive characteristic case. Nevertheless, this
book is an important achievement. Any model-theorist should have a copy, and it
can serve as a motivated introduction to model theory for a general mathematician.
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