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A group G is said to be generated by a set S C G if every element g € G can be
written as a product g = 5155 - - - 5, of elements of SUS~!. Suppose that the set S
is finite, and let y(n) be the number of elements of G that can be represented as a
product s18g - - sg of length k < n. Then ~(n) is called the growth function of G.

There is a natural geometric interpretation of the growth function. Denote for
g € G by l(g) the length of g with respect to the generating set S, i.e., the shortest
length of a representation of ¢ as a product of elements of S U S~!. It is easy to
see that d(g1,g2) = I(g; *g2) is a metric on G, invariant with respect to the action
by left multiplication h : g — hg. Then v(n) is equal to cardinality of any ball of
radius n in the metric space (G, d).

Of course, the metric d and hence the growth function depends on the choice of
the generating set S. (Consider, for example, Z with respect to the generating sets
{1} and {2,3}.) It is easy to see, however, that if [; and /s are lengths defined by
two finite generating sets, then there exists a constant C' > 1 such that C~1l;(g) <
la(g) < Cly(g) for all g € G. Namely, C is equal to an upper bound of the length
of elements of one generating set with respect to the other. It follows that if vg g,
and g5, are growth functions of G defined using different finite generating sets,
then there exists a constant C' > 1 such that

YG,S: (n) < VG,S2 (CTL), YG,S- (n) < G,S1 (Cn)

for all n.

Note that the last condition is an equivalence relation on the set of growth
functions. More generally, we write 7y, =< 79, for positive nondecreasing functions
7,72 : R — R, if there exists a constant C' > 1 such that v, (n) < Cy2(Cn) for
all sufficiently big n. We write 71 ~ v (and say that growth rates of v1 and 7,
are equivalent) if v1 < 72 and 2 < 1. (For a discussion of different definitions
of equivalence of growth rates, see [Har00, Section IV.B].) In particular, if 1,2
are growth functions of a group G defined with respect to different generating sets,
then 1 ~ 9.

It is easy to see that the growth rate of the infinite cyclic group Z is equivalent
to n. In fact, the growth function v(n) for the standard generating set {1} is equal
to 2n + 1. The free abelian groups Z" have growth ~ n'".

The free group Fj on k generators (with respect to the free generating set) has
growth function y(n) = 2k(k —1)"~! ~ e™. This is obviously the maximal possible
growth function of a group generated by k elements. Consequently, y(n) < e™ for
any growth function y(n) of a group.

Explicit computation of the function g s(n) is rarely possible. But it is nat-
ural in some especially nice cases to consider the (cumulative) growth generating
function S(x) = ), ~,7(n)X™, or the strict growth generating function A(zx) =
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Yonso(y(n) =v(n = 1)) X" = (1 — X)S(X). Note that a(n) = y(n) —y(n —1) is
cardinality of the sphere of radius n in the metric space (G, d).

One can ask, for instance, for which groups the growth generating function is
rational (for some or for all generating sets). There are some classes of groups for
which the growth generating functions are rational for all generating sets; e.g., vir-
tually abelian groups [Ben83|, Gromov hyperbolic groups [Can84], see also [Man12]
Chapter 15]. It is shown in [Sto96] that there exist nilpotent groups that have gener-
ating sets for which the growth generating function is rational, as well as generating
sets for which it is transcendental. There are many examples of groups for which
growth generating functions are transcendental for all choices of the generating set.

Interest in systematic study of growth of groups was kindled by the discovery by
A. Svarc [Sva55] and J. Milnor [Mil68a] of a connection between growth of groups
and geometry. Namely, there is the following relation between the fundamental
group and the universal covering of a manifold.

Theorem 1. Let M be a compact Riemannian manifold, and let G be its funda-
mental group. Then growth of G is equivalent to the volume growth of the universal
covering of M.

Here volume growth of a Riemannian manifold is the function v(n) equal to
volume of the sphere of radius n with center at a point zg of the manifold.

We have seen above that there exist obvious examples of groups of growth equiv-
alent to n” for any » € N, and of growth ~ e”. In fact, for a long time no other
growth rates of groups were known.

Polynomial growth of abelian groups can be generalized to finitely generated
nilpotent groups. It was shown in [Gui70,[Wol68,[Bas72] that finitely generated
groups containing a nilpotent subgroup H of finite index (virtually nilpotent groups)
have polynomial growth, and moreover, their growth is equivalent to n", where r
is a positive integer that can be found from the formula

r= Z ir(i),
where r(7) is the rank of the abelian group ;(H)/vi+1(H). See a proof of this
result in [Manl2, Theorem 4.2].

J. Milnor conjectured in [Mil68b] that all groups of polynomial growth are vir-
tually nilpotent. He asked at the same time whether all finitely generated groups
are either of polynomial or exponential growth.

Groups of polynomial growth appeared naturally in the study of expanding endo-
morphisms of compact Riemannian manifolds. Here an endomorphism f : M — M
is said to be expanding if there exist constants C' > 1 and A € (0,1) such that

[Df (@) < CA™[|]]

for all tangent vectors ¢ and all positive integers n. Here D f°™" is the differential
of the nth iteration of the map f.

It was shown in [Shu69.[Shu70] that the fundamental group of a compact Rie-
mannian manifold admitting an expanding endomorphism has polynomial growth.
It was conjectured that such groups are virtually nilpotent, which, by results of
M. Shub, would imply that all such Riemannian manifolds are infra-nilmanifolds
and that the expanding map comes from an expanding automorphism of the nilpo-
tent Lie group identified with the universal covering of the manifold.
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J. Milnor’s conjecture on groups of polynomial growth, and hence M. Shub’s
conjecture on expanding endomorphisms, was proved by M. Gromov in [Gro81a].

M. Gromov’s proof is a very successful example of the geometric approach to
group theory. The idea is to look at the metric space (G, d) from far away, i.e., to
consider the metric spaces (G, %d) and pass to some kind of a limit as n approaches
infinity. One then shows that the limit is an arcwise connected, locally connected,
homogeneous, finite dimensional, and locally compact metric space on which G acts
by isometries. One then uses the action and the solution of Hilbert’s Fifth Problem
by A. M. Gleason, D. Montgomery, and L. Zippin to conclude that G is virtually
nilpotent. Chapters 7 and 8 of How groups grow [Manl2] contain an accessible and
complete (modulo Hilbert’s Fifth Problem and Tits’ alternative for linear groups)
exposition of this amazing proof.

A new proof of Gromov’s theorem, not relying on the solution of Hilbert’s Fifth
Problem was recently found by B. Kleiner [Klel(]. Instead of using an action of
G on a limit of metric spaces (G, %d), B. Kleiner uses in his proof the space of
Lipschitz harmonic functions to construct a linear representation of G.

The world of groups of intermediate growth, i.e., of growth strictly lower than
exponential but higher than any polynomial, was discovered after the first such
group was constructed by R. Grigorchuk in [Gri83]. The example was then gen-
eralized in [Gri85] to a family of groups with uncountably many different growth
types.

The first example is a group of homeomorphisms of the space {0, 1} of infinite
binary sequences generated by transformations a, b, ¢, d whose action on {0, 1}V is
defined recursively by the equalities

a(0w) = 1w, a(lw) = 0w
b(0w) = Oa(w), b(lw) = 1c (
¢(0w) = Oa(w), c(lw) = 1d(w )
d(0w) = Ow, d(1w) = 1b(w).

It was shown by R. Grigorchuk that the growth function (n) of this group

satisfies the estimates eV™ < v(n) < e’ where 3 = logs, 31. Later, these estimates
were improved by Y. Leonov [Leo00] and L. Bartholdi [Bar01], who showed that

o< ~v(n) and en” T < ~v(n), respectively, and by L. Bartholdi [Bar98], who
showed that v(n) < e, where ag = log2/log(2/p) ~ 0.7674 for p equal to the
real root of #® + 2% + x — 2. The precise asymptotics of y(n) is still unknown.

It fact, for a long time no groups of intermediate growth with precise asymptotics
of their growth function were known. The first such groups were constructed by
L. Bartholdi and A. Erschler in [BE12]. They constructed two families of groups

K. and Hj, such that

(11—« k (l-a ®
VK, (’ﬂ) ~ exXp (nl (1—ap) ) , VH, (n) ~ exp (log(n) . nl (1—a) ) ,

where ag = 0.7674 is as in the previous paragraph.

The examples are constructed using permutational wreath products starting from
the first Grigorchuk group of intermediate growth and from a torsion-free group of
intermediate growth defined in [Gri85].

More examples of groups of intermediate growth with special restrictions on
growth types were constructed in [Brill] and [KP11].
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The most general and complete result so far on groups with known intermedi-
ate growth rate is the following theorem by L. Bartholdi and A. Erschler [BETI].
Unfortunately, this result is too recent to have been included in [Man12].

Theorem 2. Let n =~ 2.4675 be the positive root of X3 — X? — 2X — 4. Let
f Ry — Ry be a function satisfying

f(2R) < f(R)* < f(nR)
for all R large enough. Then there exists a finitely generated group with growth
~J f'

Note that ag =~ 0.7674 is equal to log2/logn. Note also that the inequality
v(2n) < v(n)? is satisfied for the growth function of any finitely generated group.

Theorem ] provides many different examples of growth types. In particular, it
shows that for every a € [ag, 1], there exists a finitely generated group of growth
~ e,

It is remarkable that even when such general theorems as Theorem [2] are now
known, all examples of groups of intermediate growth (in particular, Theorem [2])
are based on the Grigorchuk groups from [Gri85|, or are very similar to them [FG91]
BP06]. In some sense no essentially new examples of groups of intermediate growth
have been constructed since 1985.

In particular, it is not known if there exists a finitely presented group of inter-
mediate growth. This is an interesting question in relation with Theorem [l since
the class of finitely presented groups coincides with the class of fundamental groups
of compact manifolds.

Similarly, it is not known if there exists a simple group of intermediate growth.
The Grigorchuk groups are residually finite (and hence have many finite quotients),
while all known methods of constructing simple groups from the Grigorchuk groups
produce groups of exponential growth.

Another open problem, posed by R. Grigorchuk already in [Gri9l], is about
existence of a group of growth greater than any polynomial, but lower than evV™.
All known examples of groups of intermediate growth have growth rate strictly
greater than eV™. Moreover, it was proved by R. Grigorchuk in [Gri90] that if G
is a finitely generated group that can be approximated by finite p-groups (i.e., for
every g € G\ {1} there exists an epimorphism of G onto a finite p-group such that
the image of ¢ is nontrivial), then either G is virtually nilpotent (and thus has
polynomial growth) or eV”™ < y¢(n). This fact can be generalized to groups that
can be approximated by nilpotent groups [LM91]. See also [DASMS99, Interlude E]
and an overview of questions and results related to gaps in the set of possible growth
types in [Gril2].

How groups grow by Avinoam Mann is the first book devoted to the subject of
growth of groups. It gives a fairly complete overview of the main results in the
area, and is accessible even for beginners in group theory. The two main theorems,
Gromov’s theorem on groups of polynomial growth and Grigorchuk’s example of a
group of intermediate growth, are described in great detail. Some additional topics,
such as amenability and conjugacy growth, are also discussed.

The book starts with some basic Group Theory results used later in the book.
In Chapter 3 groups of growth v(n) ~ n are described. Of course, it follows from
Gromov’s theorem and the formula for the degree of polynomial growth of virtually
nilpotent groups that such groups contain a subgroup of finite index isomorphic
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to the infinite cyclic group Z. However, this result is much more elementary than
Gromov’s theorem, and its proof is a good introduction into the subject of growth
of groups.

The next six chapters are devoted to Gromov’s theorem on groups of polynomial
growth and its ramifications. The first half contains the proof of the direction which
was known before Gromov’s paper—that nilpotent groups have polynomial growth
(including the formula for the degree of growth), and that linear and soluble groups
of polynomial growth are virtually nilpotent. The fact about linear groups follows
from the fact about soluble groups due to Tits’ alternative: every finitely generated
linear group is either virtually solvable or contains a free subgroup.

In fact, soluble groups that are not virtually nilpotent have uniformly exponential
growth, which is defined as follows. If v g(n) is the growth function of a finitely
generated group G defined for a finite generating set S of GG, then we obviously
have

va,5(n1 +n2) < va,5(n1)76,5(n2)

for all positive integers ni,n2. It follows that the limit ag = lim, o ¥/vg,5(n)
exists. The group G is of exponential growth if and only if ag > 1. If the group is
not of exponential growth, then ag = 1.

We say that G is of uniformly exponential growth if infimum of ag over all finite
generating sets S of G is greater than 1. By a result of D. Osin [Osi03], every
soluble group of exponential growth has uniformly exponential growth; see [Man12|
Section 5.2]. More generally, D. Osin has proved in [Osi04] that every elemen-
tary amenable group of exponential growth has uniformly exponential growth; see
also [Manl12l, Section 12.1].

The question of existence of groups of exponential but not uniformly exponential
growth was asked by M. Gromov in [Gro81b]. The first example of a group of
nonuniform exponential growth was constructed by J. Wilson in [Wil04bl[Wil04a].

There exists a natural relation between groups of nonuniform exponential growth
and groups of intermediate growth. For every natural number & the set of all groups
with k marked generators s, s, ..., s has a natural topology; see [Gri85L[Cha00].
For instance, one can naturally identify this set with the set of normal subgroups of
the free group F}, on k generators, and then consider it as a subset of the topological
space 2%,

Let G be a finitely generated group of exponential growth. Suppose that we can
find a sequence of generating sets .S; = {s14, S2i, . - . , Sk } of the same cardinality such
that the sequence (G, s1;, $2;, - - . , Sgi) of groups with marked generators converges
to a group of subexponential growth H. Then H has intermediate growth, and
G has nonuniformly exponential growth. The latter follows from the fact that the
map (G, S) — ag is upper semicontinuous on the space of marked finitely generated
groups. See the papers [Bar03|[Nek10], where this relation is explored explicitly.

In some cases uniform lower estimates for the exponent ag of exponential growth
can be found not just for one group, but for all groups in some class. Such estimates
were obtained by M. Bucher, P. de la Harpe, R. Grigorchuk, J. O. Button, and
A. Mann for free products, one-relator groups, and groups with positive deficiency
(groups with a presentation with more generators than relators). These results are
described in Chapter 16 of the book under review.

Chapter 7 describes asymptotic cones of finitely generated groups, which is the
limit of the metric spaces (G,d/n), used in the proof of Gromov’s theorem. The
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Gromov construction was interpreted in terms of nonstandard analysis (in particu-
lar, ultrafilters) by L. van den Dries and A. J. Wilkie [yW84], and it was generalized
by M. Gromov to arbitrary metric spaces.

Chapter 8 then applies this construction to prove the M. Gromov’s theorem on
groups of polynomial growth. In the next chapter, a theorem on infinitely generated
groups of uniformly polynomial growth, due to the author of the book, is proved.

The next four chapters of the book are devoted to groups of intermediate growth.
It starts with a detailed analysis of the first Grigorchuk group. In particular,
the original estimates on its growth due to R. Grigorchuk are proved. In Chap-
ter 11 more examples are discussed: the uncountable family of Grigorchuk groups
from [Gri85], groups acting on rooted trees and defined by finite automata, and
examples of L. Bartholdi and A. Erschler.

As was mentioned above, it is natural to consider growth of groups modulo an
equivalence relation. However, it makes sense, in some cases, to try to find the
sequence g (n) or the generating function > vg(n)z™ explicitly. This can be done
only in some special cases. Such examples, and a general discussion of the growth
generating functions can be found in Chapters 14 and 15 of this book.

The book ends with discussion of conjugacy growth, i.e., the number of conjugacy
classes of a group G that intersect the set of elements of length at most n. The last
chapter of the book contains a list of thirteen open research problems.

How groups grow is an excellent introduction to growth of groups for everybody
interested in this subject. It also touches a variety of adjacent subjects (such as
amenability, isoperimetric inequalities, groups generated by automata, etc.) It is
written in a very accessible style, with very clear exposition of all main results.
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