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Since the introduction of dynamical entropy by Kolmogorov in 1958 [Ko58],
entropy has played a central role in dynamics. Today there are many branches of
active research in this area. The reader is encouraged to peruse [Ka07] for a more
complete survey.

1. Measure entropy

Let us begin with a brief review of measure-theoretic entropy. Imagine you
are observing some dynamical system by making and recording observations at
equal time intervals, say at integer times. Because your measuring instruments and
recording devices have finite capacity, each individual observation can be encoded
by a symbol from a fixed finite alphabet. So when you finish observing, a sequence
of symbols from a finite alphabet is produced that represents all the information
collected. This process is called digitalization.

Now let us introduce some mathematical formalism. The set of all possible states
of the dynamical system is represented by a probability space (X,μ). We assume
that our system is deterministic, which implies the existence of a transformation
T : X → X representing time (so if x is the present state, then Tx is the state
one moment into the future). We also assume our system is in equilibrium, which
means T preserves the measure μ. An observable is a measurable map φ from X to
a finite alphabet A. This induces a measurable digitalization map Φ from X into
the space AN of all infinite sequences with values in A; namely, a state x ∈ X is
mapped to its itinerary as “seen through φ”. So Φ(x) = (φ(x), φ(Tx), φ(T 2x), . . .).

Entropy is used to measure how predictable the sequence Φ(x) is and also how
efficient the encoding is. To be precise, suppose Y ⊂ X is known to us and x ∈ X
is random and unknown to us. How much information do we gain by learning that
x ∈ Y ? Let us say that the answer is a real number (of bits) denoted by I(Y ). We
assume the following: that I(Y ) is always nonnegative; that it depends only on the
measure μ(Y ); and that if Y1, Y2 are independent, then I(Y1 ∩ Y2) = I(Y1) + I(Y2),
and if μ(Y ) = 1/2, then I(Y ) = 1 bit. These assumptions and measurability imply
I(Y ) = − log2(μ(Y )).

The Shannon entropy of the observable φ is the average amount of informa-
tion gained by learning φ(x) when x ∈ X is random. Precisely, it is Hμ(φ) :=∑

a∈A μ(φ−1(a))I(φ−1(a)). The entropy rate of φ with respect to T , denoted
hμ(T, φ), is the average amount of information generated by the system per unit of

time: hμ(T, φ) = limn→∞
1
nH(

∨n−1
i=0 φ◦T i). Intuitively, if hμ(T, φ) is large, then, on

average, it is difficult to predict φ(Tnx) even if we know the values of φ(x), φ(Tx),
. . . , φ(Tn−1x).

In order to obtain an invariant of the dynamical system that does not depend on
φ, we consider lossless observables. That is, we say φ is lossless if the digitalization
Φ(x) determines x for almost every x. It was A. Kolmogorov’s great insight that all
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lossless observables have the same entropy rate. He therefore defined the entropy of
the dynamical system by hμ(T ) := hμ(T, φ), where φ is any lossless observable. But
what if there are no lossless observables? No problem: Y. Sinai showed that the fol-
lowing new definition hμ(T ) := supφ hμ(T, φ) agrees with Kolmogorov’s definition,
and it clearly does not require the existence of a lossless observable.

Kolmogorov was motivated by a problem posed by von Neumann in the 1920s
about classifying measure-preserving transformations. To be precise, if (Y, ν) is a
probability space and S : Y → Y is a measure-preserving transformation, then
T and S are said to be measurably conjugate or isomorphic if there is a measure-
space isomorphism Ψ : X → Y intertwining the two transformations (so ΨT =
SΨ). We would like to classify transformations up to measure-conjugacy. There
is a special class of transformations, called Bernoulli shifts, which has played an
important role in this history. They are defined as follows. Given a probability
space (K,κ), we let KZ denote the set of all functions from Z to K with the
product measure κZ. The shift map σ : KZ → KZ is defined by σ(x)i = xi+1 for
i ∈ Z. This transformation is called the Bernoulli shift with base space (K,κ).
In the special case in which K is finite of cardinality n ≥ 1 and κ is the uniform
probability measure, we say that σ is the full n-shift. Von Neumann asked whether
the full 2-shift is measurably conjugate to the full 3-shift. At the time, only spectral
invariants of dynamical systems were known, but these do not distinguish Bernoulli
shifts. Kolmogorov solved von Neumann’s problem with a short computation of the
entropy of a Bernoulli shift (e.g., the full n-shift has entropy log(n)).

A celebrated result of Ornstein [Or70a,Or70b] obtains the converse and thereby
shows that Bernoulli shifts are completely classified by entropy. Ornstein’s machine,
as it is now known, led to many other breakthroughs. For example, many trans-
formations of classical interest are measurably conjugate to Bernoulli (e.g., mixing
Markov chains, hyperbolic toral automorphisms, the time 1 map of the geodesic
flow on a hyperbolic surface). These facts cemented the absolutely fundamental
role of entropy in measurable dynamics. Ornstein theory also led to uniform proofs
of Sinai’s Theorem (any system factors onto a Bernoulli system with equal entropy)
and Krieger’s Theorem (any transformation with entropy less than log(n) admits
a lossless observable φ : X → A with alphabet A of cardinality n). In other words,
there is an efficient digitalization. Further research has shown that Bernoulli shifts
with the same entropy over finite alphabets are finitarily isomorphic, which is to
say there exists an almost-continuous measure-conjugacy Ψ with respect to the
product topology [KS79,Se06]. In other words, a Bernoulli shift can be effectively
recoded into an arbitrary second Bernoulli shift of the same entropy. Ornstein’s
ideas also played an important role in the construction of counterexamples, such as
non-Bernoulli K-automorphisms [Or73] and the recent anti-classification theorems
[FW04,FRW11] that study the complexity of the classification problem for measure-
preserving transformations up to measure-conjugacy. For example, [FW04] proves
it is impossible to classify all measure-preserving transformations up to measure-
conjugacy by countable structures.

As an aside, we would like to mention that entropy theory was extended to
actions of amenable groups in the 1970s and 1980s [OW80, OW87] and more re-
cently to sofic groups [Bo10,KL11]. Ornstein’s converse has been extended to all
amenable groups [OW87], to all groups containing an infinite amenable subgroup
[St75], and to all countable groups provided the base measures of the Bernoulli
shifts are supported on more than two elements [Bo12].
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2. Topological entropy

Topological entropy was introduced by Adler et al. [AKM65]. Given a homeo-
morphism T of a compact metrizable space X, the topological entropy h(T ) mea-
sures the complexity of the dynamics, interpreted as the amount of information
transmitted by the system per unit of time. This quote from Downarowicz pro-
vides an intuitive explanation:

The initial state carries complete information about the evolution
. . . , but the observer cannot “read” all this information immedi-
ately. Since we do not fix any particular measure, we want to
use the metric (or more generally, the topology) to describe the
“amount of information” about the initial state, acquired by the
observer in one step (one measurement). A reasonable intepre-
tation relies on the notion of topological resolution. Intuitively,
resolution is a parameter measuring the ability of the observer to
distinguish between points. A resolution is topological, when this
ability agrees with the topological structure of the space. The sim-
plest such resolution is based on the metric and a positive number
ε: two points are “indistinguishable” if they are less than ε apart.
Another way to define a topological resolution (applicable in all
topological spaces) refers to an open cover of X. Points cannot be
distinguished when they belong to a common cell of the cover.

–Tomasz Downarowicz, Entropy in dynamical systems

For example, the topological entropy with respect to an open cover U can be defined
by h(T,U) = limn→∞

1
n logN(Un), where Un is the open cover

∨n−1
i=0 T−iU and

N(Un) is the cardinality of the smallest subcover of Un. The entropy h(T ) is
defined to be the supremum of h(T,U) over all open covers U.

The space of all T -invariant Borel probability measures on X is a Choquet sim-
plex denoted M(T ): it is a compact convex subset of topological vector space with
the property that every μ ∈ M(T ) is the barycenter of a unique probability mea-
sure supported on the extreme points of M(T ), which are precisely the ergodic
measures. It is natural then to obtain invariants of T from the space M(T ). A
classical example of this is the variational principle: the topological entropy of T
is the supremum of the measure-theoretic entropies hμ(T ) over μ ∈ M(T ). More
recently [DS03] shows the set of all pairs (M,h), where M is the simplex of invari-
ant probability measures for a system (X,T ) and h : M → [0,∞] is the entropy
function is, up to isomorphism, precisely the set of all pairs (M ′, h′) where M ′ is a
metrizable Choquet simplex, h′ is affine, and h′ is a non-decreasing limit of upper
semi-continuous functions.

Returning to the theme of digitalization, recall that a symbolic dynamical system
has the following form. Let A denote a finite alphabet, and let AZ be the set of
all sequences with terms in A with the product topology (where A is given the
discrete topology). The shift-map σ : AZ → AZ defined by σ(x)i = xi+1 is a
homeomorphism. If X ⊂ AZ is a closed shift-invariant subspace, then σ restricted
to X is called a symbolic dynamical system. These systems possess nice properties:
they are expansive (this means that for any continuous metric ρ on X there is a
constant ε0 > 0 such that if x 	= y are any distinct points in X, then ρ(Tnx, Tny) >
ε0 > 0 for some n ∈ Z), the entropy function μ 
→ hμ(T ) is upper-semicontinuous
on the simplex M(T ) and the topological entropy htop(T ) is finite (indeed, it is
bounded by log |A|). Quoting now from Downarowicz and Newhouse [DN05]:
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Due to the convenient “digital” form, these systems allow an abun-
dance of applications in more practical areas such as information
theory, signal processing, and computer science. The same form
makes them also relatively easy for abstract studies. For these
reasons building a symbolic model has been a key tool in the in-
vestigation of dynamical systems since the beginning of the 20th
century. Classical examples of such approach are:
(1) describing a homotopy class of a trajectory of a geodesic flow

on a surface of negative curvature by a sequence of labels of
certain closed curves (Hadamard, Morse),

(2) parameterizing a unimodal map on [0, 1] by the kneading
sequence, obtained by labeling the trajectory of the critical
point c with respect to the partition into [0, c] and (c, 1]—the
key notion in the study of chaos, bifurcations, etc.

This leads to the questions, what is a good “symbolic model” and which systems
have them? In the measure-theoretic setting, by a “symbolic model” one usually
means an isomorphism π : X → AZ (defined on a conull set). In the topological
setting, where we require continuity of the map π, it is clear that non-trivial maps
do not exist if, for example, X is connected. Therefore, it reasonable to look for
symbolic extensions. In other words, given a topological system (X,T ) we seek a

symbolic system (X̃, T̃ ) and a continuous surjection π : X̃ → X with T̃ π = πT . The
amount of “imprecision” in the model is measured by the amount of entropy added
to each invariant measure μ ∈ M(X,T ). So we define hπ

μ(T ) = supν hν(T̃ ), where

the sup is over all T̃ -invariant probability measures ν that project to μ and the
symbolic extension entropy is defined by hsex(μ) = infπ h

π
μ(T ), where the infimum

is over all symbolic extensions π. The symbolic extension entropy of the system is
hsex(T ) := inf h(T̃ ), where the infimum is over all symbolic extensions (X̃, T̃ ).

Of course, an infinite-entropy system does not have any symbolic systems.
Around 1990 Mike Boyle gave the first examples of finite-entropy systems with
no symbolic extensions [BFF02]. In [Do01], a family of examples is constructed
showing that any positive number can be the residual entropy, which is defined by
hres(T ) := hsex(T ) − h(T ). By contrast, C∞-systems behave very nicely: Buzzi
[Bu97] proved C∞-systems are asymptotically h-expansive and [BFF02] showed
that asymptotic h-expansiveness is equivalent to the existence of a principal sym-
bolic extension, meaning an extension whose residual entropy is zero. Cr-diffeomor-
phisms are more complicated: the authors of [DN05] conjectured an explicit upper
bound on the symbolic extension entropy of a Cr-system (r > 1) in terms of Lya-
punov exponents. This conjecture is confirmed in [DM09] for maps of the interval
and circle and in [Bu11] for C2-surface diffeomorphisms, but it remains open in
higher dimensions.

In [Do05] Downarowicz introduced a new invariant, called the entropy structure
of a topological dynamical system. This “master invariant” consists of an equiv-
alence class of sequences of functions {hk}k on the simplex M(X,T ) of invariant
Borel probability measures. Intuitively, hk(μ) is the entropy of μ as measured at
a certain scale parametrized by k. In fact, Downarowicz considers several estab-
lished methods for computing entropy and shows that they give rise to equivalent
sequences (with a few exceptions). The equivalence relation on such sequences cap-
tures the “type of non-uniformity” in the convergence of hk to the entropy function.
Downarowicz shows that symbolic extension entropy and Misuirewicz’s topological
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conditional entropy can be derived from entropy structure. More generally, en-
tropy structure determines the entire set of possible entropy extension functions of
a system. These results are applied in [DM09] to obtain bounds on the symbolic
extension entropy of interval and circle diffeomorphisms.

3. This book

The book under review is a pleasure to read as each new concept is well motivated
and presented in an intuitively clear manner before being made rigorous. The
first part of the book is on measure entropy. Aside from standard material, the
book includes the intriguing Ornstein–Weiss return times theorem and the shortest
known proof of Ornstein’s Theorem classifying Bernoulli shifts (based on [DS12]).
There is an “optional” section on the ergodic law of series, which seeks to provide a
mathematical basis to explain the curious phenomenon that random events (usually
extremely rare) may be observed suprisingly often throughout a relatively short
period of time (based on [DL11,Do11b]).

The second chapter covers topological entropy. While some of the material here
is classical, the heart of this chapter comes from recent research related to the
author’s interests. There is a large variety of different kinds of relative entropy
for topological systems which are carefully explained along with how they relate
to one another. Three different variational principles are presented. It is really a
welcome contribution to the literature to have all of these concepts explained in one
place in a uniform and systematic matter. The chapter also includes a section on
Downarowicz’ entropy structure. This is a complicated notion to absorb, and the
author deserves credit for a careful presentation with helpful examples. Symbolic
extension entropy and tail entropy are also carefully explained as well as their
relationships with entropy structure.

The last chapter covers the entropy theory of stochastic and Markov operators.
These correspond to random dynamical systems. The treatment follows the au-
thor’s work [DF05].
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