
PART 1. EXOTIC SPHERES

This section will consist of the following eight papers:

On manifolds homeomorphic to the 7-sphere, Annals of Mathe-
matics 64 (1956) 399–405.

On the relationship between differentiable manifolds and combi-
natorial manifolds. Unpublished notes, Princeton University
1956.

Sommes de variétés différentiables et structures différentiables des
sphères, Bulletin de la Société Mathematique de France 87
(1959) 439–444.

Differentiable structures on spheres, American Journal of Mathe-
matics 81 (1959) 962–972.

A procedure for killing homotopy groups of differentiable man-
ifolds, in “Differential Geometry,” Proceedings Symposia in
Pure Mathematics III, American Mathematical Society (1961)
39–55.

Differentiable manifolds which are homotopy spheres. Unpub-
lished notes, Princeton University 1959.

Groups of homotopy spheres: I (with Michel Kervaire), Annals of
Mathematics 77 (1963) 504–537.

Differential topology, in “Lectures on Modern Mathematics II,”
edited by T. L. Saaty; Wiley, New York (1964) 165–183.

Introduction: How these papers came to be written

During the 1950’s, I worked on an ongoing project of trying to understand one
particularly simple class of manifolds, namely 2n-dimensional manifolds which are
(n−1)-connected. Although my intended paper on this subject was never finished,
the project none the less led to the eight papers which follow (as well as the paper
“On Simply Connected 4-Manifolds,” Milnor [1958]1).

1Names in small caps refer to the bibliography at the end of this volume.
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To understand how this came about, let me first describe the original plan. The
homotopy theory of a closed manifold M2n which is (n− 1)-connected is relatively
easy to describe. If the middle Betti number is β, then the manifold can be obtained
(up to homotopy type) by attaching a 2n-cell to a bouquet

Wn = Sn ∨ · · · ∨ Sn

of β copies of the n-sphere. The attaching map can be described as an element of a
homotopy group π2n−1(W

n) which is reasonably well understood. More explicitly,
this group splits as the direct sum of β copies of the group π2n−1(S

n) together with
β(β − 1)/2 free cyclic groups which correspond to Whitehead products of distinct
generators of πn(W

n).
Better still, this space can be described in terms of cohomology theory. The

cohomology groups Hk = Hk(M2n;Z) are zero with the exception of H0 and H2n

which are free cyclic and Hn ∼= Hn(Wn;Z) which is free abelian of rank β. The
bilinear pairing

Hn ⊗Hn → H2n

is either symmetric or skew according as n is even or odd, and has determinant
±1 by Poincaré duality. Finally the “stable” attaching map can be described by a
cohomology operation

ψ : Hn → H2n(M2n; Πn−1) ∼= Πn−1 ,

where Πn−1 is the stable homotopy group πk+n−1(S
k) for k > n. This operation

can be described as follows. Any element η ∈ Hn ∼= Hn(Wn;Z) corresponds
to a homotopy class of maps Wn → Sn. Composing with the attaching map in
π2n−1(W

n), we obtain an element of π2n−1(S
n) which stabilizes to the required

ψ(η) ∈ Πn−1.
The problem arises when one tries to flesh out this homotopy picture by con-

structing actual manifolds realizing specified homotopy invariants. In the simplest
case β = 1, we must attach a 2n-cell to a single n-sphere in such a way as to obtain
a manifold. It seems that the best chance of carrying out this construction is to first
“thicken” the n-sphere, replacing it by a tubular neighborhood in the hypothetical
M2n. In other words, we must form an n-disk bundle

Dn ↪→ E2n →→ Sn .

In the hoped for situation, the boundary sphere bundle ∂E2n = Σ2n−1 will be
homeomorphic to the (2n−1)-sphere. Hence we will be able to glue on a 2n-disk by
a boundary homeomorphism h so as to obtain a closed manifold M2n = E2n∪hD

2n

with the required homotopy type. Thus we are led to the following problem:

For which sphere bundles Sn−1 ↪→ Σ2n−1 →→ Sn is the total
space Σ2n−1 homeomorphic to the sphere S2n−1?

Three basic examples had been discovered by Heinz Hopf, namely the fibrations

S1 ↪→ S3 →→ S2 , S3 ↪→ S7 →→ S4 , and S7 ↪→ S15 →→ S8 .

(In fact it is now known that such bundles can exist only in these particular di-
mensions. Compare “Some Consequences of a Theorem of Bott,” pages 233–238
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Fig. 1. Hirzebruch at Erlangen in 1976.

below.) The corresponding (n − 1)-connected 2n-manifolds E2n ∪h D2n were re-
spectively the complex projective plane, the quaternion projective plane, and the
Cayley projective plane. For circle bundles over the 2-sphere, classified by elements
of the homotopy group π1(SO(2)) ∼= Z, the Hopf fibration was the only possi-
bility, up to sign. However, for 3-sphere bundles over S4, classified by elements
of π3(SO(4)) ∼= Z ⊕ Z, there are infinitely many bundles which at least have the
homotopy type of the 7-sphere. More precisely, such a bundle is classified by two el-
ements of H4(S4;Z) ∼= Z, namely the Pontrjagin class p1 and the the Euler class e
(denoted by c in the first paper), subject only to the relation p1 ≡ 2e (mod 4H4). It
is not difficult to check that the total space Σ7 has the homotopy type of a 7-sphere
if and only if the Euler class generates H4(S4;Z). Thus we potentially have in-
finitely many distinct 3-connected 8-manifolds (twisted versions of the quaternion
projective plane), which are distinguished by their Pontrjagin classes, and in some
cases by homotopy invariants as well.

It was natural to take a closer look at the structure of these hypothetical mani-
folds, using the signature theorem (or index theorem) which had recently been devel-
oped by René Thom and Fritz Hirzebruch. For any closed oriented 4m-dimensional
manifold M4m we can form the signature (or “index”) of the symmetric bilinear
form

H2m ⊗H2m → H4m ∼= Z .

In the differentiable case, as a consequence of his cobordism theory, Thom had
shown that this signature could be expressed uniquely as a rational linear com-
bination of the Pontrjagin numbers pi1 · · · pik [M4m] (where i1 ≤ · · · ≤ ik with
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i1 + · · ·+ ik = m). He worked out the precise formula only in dimensions 4 and 8;
but around the same time Hirzebruch had conjectured such a formula and worked
out the precise form which it would have to take in all dimensions. (Compare
Hirzebruch [1956 or 1966, 1971].)

For an 8-dimensional manifold, the formula reads

signature = (7p2 − p 2
1 )[M

8]/45 .

In our case, the signature is ±1, and we can choose the orientation so that it is +1.
Since p2[M

8] is an integer, the first Pontrjagin class must satisfy the congruence

p 2
1 [M

8] + 45 = 7 p2[M
8] ≡ 0 (mod 7) .

Thus, for any allowable choice of p1 which does not satisfy this
congruence, we have constructed a homotopy 7-sphere Σ7 which
cannot be diffeomorphic to the standard 7-sphere.

At this point, I believed that I had constructed a counterexample to the Poincaré
conjecture in dimension 7. In other words, I assumed that Σ7 could not even be
continuously homeomorphic2 to the standard S7. Fortunately however, I did some
experimentation, and discovered that this Σ7 actually is homeomorphic to S7. In
fact, it can be obtained by pasting together the boundaries of two standard 7-disks
under a boundary diffeomorphism. (I call such a manifold, a twisted sphere.) As an
extra bonus, the proof also showed that there exist non-standard diffeomorphisms of
the 6-dimensional sphere. These results are described in the paper On Manifolds
Homeomorphic to the 7-Sphere, on pages 11–17 below. (For an analogous
construction in dimension 15, see Shimada [1957].)

The next paper On the Relationship between Differentiable Manifolds
and Combinatorial Manifolds, written in the same year but never published,
carries the discussion further by tying it in with Henry Whitehead’s theory of C1-
triangulation, and by describing Thom’s proof, based on his theory of combinato-
rial Pontrjagin classes,3 that the combinatorial manifold E8 ∪h D

8 described above
has no compatible differentiable structure. (A few years later, Michel Kervaire

[1960] constructed a topological 10-manifold which cannot be given any differen-
tiable structure at all, and Steve Smale [1961] constructed an analogous example
in dimension twelve. Still later, with the proof by Sergei Novikov [1965] that
rational Pontrjagin classes are actually topological invariants, it followed that the
manifold E8 ∪h D8 above has no differentiable structure at all.)

The expository paper Sommes de Variétés Différentiables et Structures
Différentiables des Sphères, presented (in English) at a conference in Lille a

2Actually, there is some question as to what Poincaré meant when he formulated his conjec-
ture for 3-manifolds. The word “homeomorphism” did not have a universally understood meaning

at the time, and he may well have intended that homeomorphisms were to be differentiable.
3
Thom [1958]. For C1-triangulations, see Whitehead [1940], Munkres [1963]. For combi-

natorial Pontrjagin classes, compare the presentation in Milnor and Stasheff [1974].
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Fig. 2. René Thom at the Institut des Hautes Études Scien-
tifiques in the early 1970’s.

few years later, introduces this group Γn of oriented diffeomorphism classes of
twisted spheres. Almost by definition, there is a homomorphism from the group
π0 Diff+(Sn−1) of smooth isotopy classes of orientation preserving diffeomorphisms
onto Γn. (In fact this homomorphism extends to an exact sequence

· · · → π1 Diff+(Sn−1) →
π0 Diff+(Dn rel Sn−1) → π0 Diff+(Dn) → π0 Diff+(Sn−1) → Γn → 1

of abelian groups. Compare the paper “Differential Topology” on pages 123–141
below.) A different characterization, due to Thom [1959] is that a smooth manifold
is a twisted sphere if and only if it is combinatorially equivalent to the standard
sphere.

This paper also introduced the group Θn of smooth oriented manifolds having
the homotopy type of Sn, up to the relation which was then called “J-equivalence”
but is now known as “h-cobordism”. Evidently there is a natural homomorphism
Γn → Θn. In fact we will see later (modulo the Poincaré Conjecture for the case
n = 3) that Γn maps isomorphically onto Θn for all n.

The paper Differentiable Structures on Spheres, carries out a similar ar-
gument based on hypothetical manifolds of the form (Sp ∨ Sq) ∪Dp+q, where the
two sub-spheres intersect transversally, with normal bundles described by elements
of πp−1(SOq) and πq−1(SOp) respectively. This construction is much more robust,
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Fig. 3. The author at the Institute for Advanced Study in 1981.

not being limited to dimensions 7 and 15. (There is a closely related bilinear pairing

πkSO� ⊗ π�SOk → π0Diff+(Sk+�) → Γk+�+1 .

Compare the introduction to Part 2 on page 143.)

Although I talked with René Thom only a few times during the years when these
papers were written, his influence was quite important. For example, his intuitive
feeling for the structure of cobordism rings went far beyond his published work.
During one particularly decisive conversation, he constructed an interesting example
by a technique which I called surgery . (The same construction was introduced
independently by Andrew Wallace [1960], who called it spherical modification.
Both terms have been frequently used in the literature.) I developed this idea in
the paper A Procedure for Killing Homotopy Groups of Differentiable
Manifolds. A fairly easy Morse theory argument shows that one manifold can be
obtained from another by a sequence of spherical modifications if and only if the
two belong to the same cobordism class. These ideas played a key role in further
work on groups of homotopy spheres.4

The manuscript Differentiable Manifolds which are Homotopy Spheres,
written in 1959, was never published since most of its results were absorbed into
a larger paper Groups of Homotopy Spheres I, written in collaboration with

4For further developments in surgery theory, see for example, Wall [1970], Browder [1972],

Madsen and Milgram [1979], and Cappell et al. [2000, 2001].
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Michel Kervaire. These papers provided a much more systematic analysis of all
possible homotopy spheres of any dimension (other than 3). In particular, they
showed that Θn is finite for n �= 3. The analysis is based on an exact sequence

0 → bPn+1 → Θn → Πn/Jπn(SO) .

Here bPn+1 (denoted by Θn(∂π) in the 1959 manuscript) is the subgroup consist-
ing of those homotopy n-spheres which bound parallelizable manifolds. Using the
Thom-Pontrjagin theory of cobordism for manifolds with framed normal bundle,
the obstruction to bounding an n-manifold with framed normal bundle is measured
by an element of the stable homotopy group Πn. However, a change in framing will
change this obstruction by an element in the image of the stable J-homomorphism
J : πn(SO) → Πn. (Compare the introduction to Part 3 on pages 223–227.) The
subgroup bPn+1 is trivial for n even and has at most two elements for n ≡ 1 (mod 4).
However, this group is quite large when n ≡ 3 (mod 4). In fact bP4m is cyclic of
order

am 22m−2(22m−1 − 1) numerator(Bm/m) ,

where am is one or two according as m is even or odd, and Bm is the m-th Bernoulli
number. These numbers grow rapidly as m → ∞, as one sees from the identity

Bm = 2
(
1 + 2−2m + 3−2m + · · ·

)
(2m)!

/
(2π)2m .

(Compare Milnor and Stasheff [1974, Appendix B].) An explicit generator can
be constructed as follows.5 Start with a 2m-skeleton consisting of eight copies of
the 2m-sphere intersecting in seven points, indicated schematically as follows.

Now thicken each of these spheres by taking a 2m-disk bundle isomorphic to its
tangent disk bundle, with Euler number +2. The spheres are to cross each other
transversally at each intersection point. (Here the normal bundles should all be
non-trivial, but that is not shown in the very schematic picture on the next page.)
The result will be a parallelizable 4m-dimensional manifold W 4m of signature +8,
having a homotopy sphere as boundary, provided that m > 1. It is shown that this
boundary ∂W 4m is a generator for the finite cyclic group consisting of all homotopy
spheres of dimension 4m− 1 which bound parallelizable manifolds.

5This form of the construction, based on the E8-lattice, was suggested by Hirzebruch. Com-
pare the discussion in Hirzebruch [1987, pp. 673, 801]. My original construction was more

complicated.
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Clearly Θ1 = Θ2 = 0. Using these techniques, the first few groups Θn with
n ≥ 4 were described as follows. (Here, for example, the notation (8) stands for
some abelian group of order 8.)

n = 4 5 6 7 8 9 10 11 12 13 14 15
Θn

∼= 0 0 0 Z/28 Z/2 (8) Z/6 Z/992 0 Z/3 Z/2 (16256)

The projected “Groups of Homotopy Spheres: II” was never completed, al-
though a very small part of it found its way into the expository paper Differential
Topology (pages 123–141 below), which was published a few years later.

Meanwhile, the original project of publishing a paper on 2n-manifolds which
are (n − 1)-connected, and a closely related project of studying “Spaces with a
gap in cohomology” got lost in the shuffle. They were finally abandoned when
Terry Wall published a beautiful exposition of the subject which made my attempts
unnecessary. (See Wall [1962a], and compare Wall [1962b, 1964].)

Further Developments.

For the differential geometry of exotic spheres, see for example Gromoll

[1966], Gromoll and Meyer [1974], Wraith [1997], Grove and Ziller [2000],
Boyer et al. [2005]. For exotic spheres via algebraic geometry, see Brieskorn

[1966], Hirzebruch [1966/67], Hirzebruch and Mayer [1968], and compare
Milnor [1968].

The importance of the groups Γn of twisted spheres was brought out by Jim
Munkres [1960a, 1964] and Moe Hirsch [1963] who showed that they appear as
the coefficient groups for obstructions to the existence and uniqueness of a compat-
ible differentiable structure on a combinatorial manifold.

The more precise results of my paper with Kervaire seemed to be achieved
at the cost of replacing these coefficient groups Γn by the cruder groups Θn. In
other words, twisted spheres were replaced by homotopy spheres , and the relation
of diffeomorphism by the apparently weaker relation of h-cobordism. However,
Steve Smale, in [1961, 1962], had proved that every homotopy sphere of dimension
n ≥ 5 is actually a twisted sphere.6 In [1962] he proved that simply-connected h-
cobordant manifolds of dimension at least five are actually diffeomorphic. (Compare

6More precisely, Smale proved this in [1961] for even n, while the general case with
n ≥ 6 follows by applying his h-cobordism theorem [1962] to the n-manifold with two open
disks deleted. The 5-dimensional case depends on the h-cobordism theorem together with the

additional information that Θ5 = 0.
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the presentation in Milnor, Siebenmann and Sondow [1965].) It followed that

Γn

∼=−→ Θn for n ≥ 5.
The groups Γ1 and Γ2 are clearly trivial. Smale [1959b] and Munkres [1960b]

had shown that Diff+(S2) is connected which implies that Γ3 = 0. Jean Cerf

showed in the [1962/63] Cartan Seminar that Γ4 = 0, and indeed that Diff+(S3)
is connected. (Compare Cerf [1968]; and see Eliashberg [1992] for a different
proof that Γ4 = 0.) Combining these results with the statements above, it follows
that Γn is trivial for n < 7. Thus the Munkres-Hirsch obstruction theory yields the
following:

Every combinatorial manifold of dimension ≤ 7 possesses a com-
patible differentiable structure. Furthermore, in dimensions strictly
less than 7 this structure is unique up to diffeomorphism.

An analogous obstruction theory for passing from topological manifolds to com-
binatorial manifolds was constructed by RobKirby and Larry Siebenmann [1969].
In this case, there is only one obstruction: in H4(M ; Z/2) for existence, and in
H3(M ; Z/2) for uniqueness. Here the dimension of M must be at least 6 (or at
least 5 if M has no boundary).

If we accept the announced proof of the Poincaré Conjecture by Perelman

[2002, 2003a, 2003b], then it follows that Θ3 = 0, so that Γn

∼=−→ Θn for all n. How-
ever, this simple statement conceals the fact that dimension 4 is a world by itself,
different from all other dimensions. Topological 4-manifolds can be wildly non-
differentiable, so it was necessary to introduce wildly non-differentiable methods in
order to understand them. One key step was the introduction of “flexible handles”
by Andrew Casson. (For a description of early steps see Siebenmann [1980] and
Mandelbaum [1980], as well as Guillou and Marin [1986].) The decisive break-
through came with the work of Mike Freedman [1982], who used Casson handles
not only to prove the 4-dimensional topological Poincaré Hypothesis, but also to
completely classify closed simply-connected topological 4-manifolds.

Completely different tools were needed to get a grip on the differentiable theory.
If we consider only simply-connected 4-manifolds which are differentiable (or com-
binatorial) then SimonDonaldson [1983, 1987] showed by gauge theory that there
are very strong restrictions on the cohomology. It quickly became apparent to spe-
cialists that the contrast between Freedman’s results and those of Donaldson led to
very strange consequences. (Compare Kirby [1989], Gompf [1993].) For example
Freedman showed that there exists a differentiable manifold homeomorphic to R

4

which cannot be smoothly embedded in R
4. Then Clifford Taubes [1987] showed

that in fact there are uncountably many such manifolds; while DeMichelis and

Freedman [1992] showed that there are also uncountably many distinct examples
which can be smoothly embedded in R

4. The situation in other dimensions is quite
different, since no exotic R

n can exist for n �= 4. (See Moise [1952] for n < 4 and
Stallings [1962] for n > 4.)

The question of exotic structures on the 4-sphere seems particularly difficult.
In fact one can ask whether there exists a non-standard differentiable structure on
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S4 which reduces to the standard structure on S4
� (point), and one can also ask

whether there exists one which does not. As far as I know, both questions remain
open.

Since I cannot describe all the work in differential topology which has been
done since these papers were written, let me simply list the titles of some books
which help to fill in further history. (For complete citations, see the bibliography,
starting on page 319.)

Munkres, “Elementary Differential Topology,” 1963;
Milnor, Spivak and Wells, “Morse Theory,” 1963;
Milnor, “Topology from the Differentiable Viewpoint,” 1965;
Milnor, Siebenmann and Sondow, “Lectures on the h-Cobordism

Theorem,” 1965;
Stong, “Notes on Cobordism Theory,” 1968;
Wallace, “Differential Topology, First Steps,” 1968;
Guillemin and Pollack, “Differential Topology,” 1974;
Milnor and Stasheff, “Characteristic Classes,” 1974;
Hirsch, “Differential Topology,” 1976;
Chillingworth, “Differential Topology with a View to Applica-

tions,” 1976;
Kirby and Siebenmann, “Foundational Essays on Topological Man-

ifolds, Smoothings, and Triangulations,” 1977;
Bröcker and Jänich, “Introduction to Differential Topology,” 1982;
Gauld, “Differential Topology, an Introduction,” 1982;
Bing, “The Geometric Topology of 3-Manifolds,” 1983;
Guillou and Marin (editors), “A la Recherche de la Topologie Per-

due,” 1986;
Dieudonné, “A History of Algebraic and Differential Topology,

1900-1960,” 1989;
Kirby, “The Topology of 4-Manifolds,” 1989;
Donaldson and Kronheimer, “The Geometry of Four-Manifolds,”

1990;
Freedman and Quinn, “Topology of 4-Manifolds,” 1990;
Akbulut and McCarthy, “Casson’s invariant for oriented homol-

ogy 3-spheres. An exposition,” 1990;
Nash, “Differential Topology and Quantum Field Theory,” 1991;
Kosinski, “Differential Manifolds,” 1992;
Friedman and Morgan,“Smooth Four-Manifolds and Complex Sur-

faces,” 1994;
McDuff and Salamon, “Introduction to Symplectic Topology,”

1995.
Friedman and Morgan, “Gauge Theory and the Topology of Four-

Manifolds,” 1998;
Gompf and Stipsicz, “4-Manifolds and Kirby Calculus,” 1999.
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