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MR0148075 (26 #5584) 57.10

Kervaire, Michel A.; Milnor, John W.

Groups of homotopy spheres. I.

Annals of Mathematics. Second Series 77 (1963), 504–537.

The authors aim to study the set of h-cobordism classes of smooth homotopy
n-spheres; they call this set Θn. They remark that for n �= 3, 4 the set Θn can
also be described as the set of diffeomorphism classes of differentiable structures on
Sn; but this observation rests on the “higher-dimensional Poincaré conjecture” plus
work of Smale [Amer. J. Math. 84 (1962), 387–399], and it does not really form
part of the logical structure of the paper. The authors show (Theorem 1.1) that
Θn is an abelian group under the connected sum operation. (In § 2, the authors
give a careful treatment of the connected sum and of the lemmas necessary to prove
Theorem 1.1.)

The main task of the present paper, Part I, is to set up methods for use in Part
II, and to prove that for n �= 3 the group Θn is finite (Theorem 1.2). (For n = 3 the
authors’ methods break down; but the Poincaré conjecture for n = 3 would imply
that Θ3 = 0.) We are promised more detailed information about the groups Θn in
Part II.

The authors’ method depends on introducing a subgroup bPn+1 ⊂ Θn; a smooth
homotopy n-sphere qualifies for bPn+1 if it is the boundary of a parallelizable man-
ifold. The authors prove in § 4 that the quotient group Θn/bPn+1 is finite (Theo-
rem 4.1). More precisely, they prove that bPn+1 is the kernel of a homomorphism
p′ : Θn → Πn/ImJ , where Πn is the stable group πn+k(S

k) and Im J is the im-
age of the classical J-homomorphism. § 4 ends by giving (explicitly) the groups
Θn/bPn+1 for n ≤ 8 and the groups bPn+1 for n ≤ 19, referring the reader to Part
II for details.

The proof given in § 4 depends on results in § 3. In this section, Theorem 3.1
states that every homotopy sphere is S-parallelizable, that is, its tangent bundle
is stably trivial. The proof uses previous work of the same authors, and involves
quoting information about the J-homomorphism. The remaining lemmas in § 3
concern the stability of bundles.

It remains to prove that the groups bPn+1 are finite. The authors divide two
cases. If n is even they prove that the groups bPn+1 are zero. That is, in §§ 5, 6
they prove (Theorem 5.1): If a smooth homotopy sphere of dimension 2k bounds
an S-parallelizable manifold M , then it bounds a contractible manifold. The proof
consists of simplifying M by surgery [J. Milnor, Proc. Sympos. Pure Math., Vol.
III, pp. 39–55, Amer. Math. Soc., Providence, R.I., 1961; MR0130696 (24 #A556)].
The details are technical, and appear to be comparable with work of C. T. C. Wall,
which also results in a proof of the same theorem [Trans. Amer. Math. Soc. 103
(1962), 421–433; MR0139185 (25 #2621)]. § 5 completes the proof for k even; the
case in which k is odd is treated in § 6. Here the authors introduce the notion of
a “framed manifold”, that is, a smooth manifold M plus a given trivialisation of
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the stable tangent bundle of M . The authors arrange to carry this extra structure
through the technique of surgery, making use of it as they go.

The case in which n is odd is treated in §§7, 8. It is shown that the groups bP2k

are finite cyclic, and for k odd they are either 0 or Z2 (Corollary 7.6; Theorem
8.5). The case in which k is even is dealt with in § 7. Here the only obstruction
to performing surgery on M is the signature or index σ(M) (Lemma 7.3). This
leads to the following result (Theorem 7.5). Let Σ1 and Σ2 be homotopy spheres
of dimension 4m− 1 (m > 1) which bound S-parallelizable manifolds M1 and M2.
Then Σ1 and Σ2 and h-cobordant if and only if σ(M1) ≡ σ(M2) modσm. Here σm

is a certain positive integer. § 7 concludes by giving explicit information about the
integer σm and the order of the groups bP4m and Θ4m−1. The reader is referred to
Part II for details.

The cases k = 1, 3, 7 are exceptional; the group bP2k is then zero (Lemma 7.2).
The case “k odd�= 1, 3, 7” is studied in § 8. In this case the only obstruction to
performing surgery on M is an “Arf invariant” lying in Z2. The authors conjecture
that in this case the group bP2k is always Z2 rather than 0; but this is known only
for k = 5, 9.

J. F. Adams

From MathSciNet, June 2015

MR0802786 (87i:57031) 57R60; 57R65

Levine, J. P.

Lectures on groups of homotopy spheres.

Algebraic and geometric topology (New Brunswick, N.J., 1983), 62–95, Lecture
Notes in Math., 1126, Springer, Berlin, 1985.

M. A. Kervaire and J. W. Milnor [Ann. of Math. (2) 77 (1963), 504–537;
MR0148075 (26 #5584)] began the classification of homotopy spheres, smooth
closed manifolds homotopy equivalent to spheres. It was to be the first of two
papers, the second of which never appeared. The present paper is what the
author believes would have been “Groups of homotopy spheres, II”. This very
valuable article is based on his 1969 lectures, later distributed as mimeographed
lecture notes. We recall that the basic aim is to calculate θn, the group of h-
cobordism classes of homotopy n-spheres, and bPn+1, the subgroup of θn de-
fined by those homotopy n-spheres which bound parallelizable (n + 1)-manifolds.
The goal of the lectures is to compute bPn+1 and θn/bPn+1. The end result is
expressed most elegantly by means of the Kervaire–Milnor long exact sequence

· · · → An+1 p→ Pn+1 b→ θn
i→ An p→ Pn → · · · , where An can be calculated from

the exact sequence · · · → πn(SO)
J→ πn(S)

t→ An O→ πn−1(SO)
J→ πn−1(S) → · · · ,

with J the stable J-homomorphism going from the homotopy groups of the infi-
nite special orthogonal group into the stable homotopy groups of spheres—which
can also be thought of as the framed cobordism group. An represents the group
of “almost framed” cobordism classes of almost framed (i.e. framed at all but one
point) closed n-manifolds. We also need to know that Pn = 0 for n ≡ 1, 3 (mod 4),
Pn = Z for n ≡ 0 (mod 4), and Pn = Z2 for n ≡ 2 (mod 4).
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Aside from basic techniques of algebraic and differential topology and the orig-
inal Kervaire–Milnor article [op. cit.], the lectures assume familiarity only with
Milnor’s earlier paper [Differential geometry, 39–55, Proc. Sympos. Pure Math.,
III, Amer. Math. Soc., Providence, R.I., 1961; MR0130696 (24 #A556)] on surgery
techniques.

Joel M. Cohen

From MathSciNet, June 2015

MR0620795 (82h:57027) 57R67; 18F25, 57-02

Ranicki, Andrew

Exact sequences in the algebraic theory of surgery. (English)

Mathematical Notes, 26.
Princeton University Press , Princeton, N.J.; University of Tokyo Press, Tokyo,
1981, xvii+864 pp., $16.50 paperbound, ISBN 0-691-08276-6

Surgery is concerned with two problems: When is a space homotopically equiv-
alent to a manifold, and when are homotopically equivalent manifolds homeomor-
phic, diffeomorphic or PL equivalent? This theory has been vigorously developed
during the last 20 years. Unfortunately, there are few books containing an expo-
sition of this topic, and those are basically research monographs and hence make
for rather heavy reading. In particular, the reviewer is familiar with three books,
including the one here reviewed. The other two are Surgery on simply-connected
manifolds by W. Browder [Springer, New York, 1972; MR0358813 (50 #11272)]
and Surgery on compact manifolds by C. T. C. Wall [Academic Press, London,
1970; MR0431216 (55 #4217)]. These two books together with the one under
review should be owned by everyone interested in surgery.

For someone who wants to learn this subject, the reviewer would suggest the
following approach. First, read J. W. Milnor’s paper [Proceedings of the Symposia
in Pure Mathematics, Vol. III, pp. 39–55, Amer. Math. Soc., Providence, R.I., 1961;
MR0130696 (24 #A556)]. It introduces the basic geometric construction of surgery.
Then, read M. A. Kervaire and Milnor’s paper [Ann. of Math. (2) 77 (1963), 504–
537; MR0148075 (26 #5584)], which thoroughly examines the surgery obstruction
in the simply connected case with the object of classifying the possible differential
structures on the n-sphere, n �= 4. After this, read Browder’s paper [Proc. Cam-
bridge Philos. Soc. 61 (1965), 337–345; MR0175136 (30 #5321)], which introduces
codimension-one splitting problems and leads to S. P. Novikov’s paper [Interna-
tional congress of mathematicians (Moscow, 1966), pp. 172–179, Amer. Math. Soc.,
Providence, R.I., 1968; MR0231401 (37 #6956)], which contains an important ap-
plication of surgery, namely, the topological invariance of the rational Pontrjagin
classes. This last paper also motivates the extension of the theory to non-simply
connected manifolds, which is the principal focus of both Wall’s and the present
author’s books. Next, read Browder’s book, which develops surgery theory for sim-
ply connected manifolds and contains a very good discussion of the Kervaire-Arf
invariant. Browder’s book (together with Sullivan’s lecture notes [“Triangulating
and smoothing homotopy equivalences and homeomorphisms”, Geometric Topol-
ogy Seminar Notes, Princeton Univ., Princeton, N.J., 1967], which expounds the
homotopy structure of G/PL) gives one a good picture of surgery theory for simply
connected manifolds—at least, modulo some unsolved problems about the Kervaire-
Arf invariant.
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Next, one should read Wall’s book. It extends the theory to non-simply con-
nected manifolds and discusses many interesting applications, such as space-form
problems. The crucial thing is to analyze the surgery map σ : [Mn, G/Top] →
Ln(π1M), where [Mn, G/Top] is the group of homotopy classes of maps of the
manifold Mn to G/Top and Ln(π1M) is the surgery obstruction group. Very im-
portant but only partially solved problems are to calculate Ln(π1M) and σ.

The monograph under review recasts the foundational material in Wall’s book
in a more algebraic and functorial setting and answers many questions posed by
Wall. For instance, it allows for a better understanding of the surgery map σ by
taking care of the anomaly that Ln( ) is covariant while [ , G/Top] is contravariant.
It also gives more insights into calculating Ln(Γ) via localization theorems and by
giving algebraic proofs of most of the splitting theorems, thus allowing them to
be applied inductively to larger classes of groups. (The details of some of these
splitting results will be given in a later paper by the author [“Splitting theorems
in the algebraic theory of surgery”, to appear].) Also, the author has asked the
reviewer to mention that the asserted “mild generalization of the splitting theorem
of J. Shaneson [Ann. of Math. (2) 90 (1969), 296–334; MR0246310 (39 #7614)]”
on p. 813 is wrong, and that “the discussion on pp. 812–814 should therefore be
restricted to the case ω = +1 only”.

For the experts, a panorama of this book is best provided by a glance at its
table of contents. Chapter 1. Absolute L-theory: 1.1 Q-groups; 1.2 L-groups; 1.3
Triad Q-groups; 1.4 Algebraic Wu classes; 1.5 Algebraic surgery; 1.6 Forms and
formations; 1.7 Algebraic glueing; 1.8 Unified L-theory; 1.9 Products; 1.10 Change
of K-theory. Chapter 2. Relative L-theory: 2.1 Algebraic Poincaré triads; 2.2
Change of rings; 2.3 Change of categories; 2.4 Γ-groups; 2.5 Change of K-theory.
Chapter 3. Localization: 3.1 Localization and completion; 3.2 The localization
exact sequence (n ≥ 0); 3.3 Linking Wu classes; 3.4 Linking forms; 3.5 Linking
formations; 3.6 The localization exact sequence (n ∈ Z); 3.7 Change of K-theory.
Chapter 4. Arithmetic L-theory: 4.1 Dedekind algebra; 4.2 Dedekind rings; 4.3
Integral and rational L-theory. Chapter 5. Polynomial extensions (x = x): 5.1
L-theory of polynomial extensions; 5.2 Change of K-theory. Chapter 6. Mayer-
Vietoris sequences: 6.1 Triad L-groups; 6.2 Change of K-theory; 6.3 Cartesian
L-theory; 6.4 Ideal L-theory. Chapter 7. The algebraic theory of codimension q
surgery: 7.1 The total surgery obstruction; 7.2 The geometric theory of codimension
q surgery; 7.3 The spectral quadratic construction; 7.4 Geometric Poincaré splitting;
7.5 Algebraic Poincaré splitting; 7.6 The algebraic theory of codimension 1 surgery;
7.7 Surgery with coefficients; 7.8 The algebraic theory of codimension 2 surgery;
7.9 The algebraic theory of knot cobordism.

To summarize, this is a carefully written and lucid (but lengthy) account of an
important topic in topology which the reviewer strongly recommends to anyone
interested in the structure of manifolds.

F. T. Farrell

From MathSciNet, June 2015
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MR2061749 (2005e:57075) 57R65; 19J25, 57R67

Ranicki, Andrew

Algebraic and geometric surgery. (English)

Oxford Mathematical Monographs.
The Clarendon Press, Oxford University Press, Oxford , 2002, xii+373 pp.,
ISBN 0-19-850924-3

Surgery theory, loosely speaking, refers to a variety of algebraic and geometric
techniques used to classify manifolds, typically of dimensions 4 or greater. The
theory encompasses topological classification within a homotopy type, existence
and uniqueness of smooth or PL structures, and many other topics such as em-
beddings or automorphisms of manifolds. The term surgery itself refers to the
process of cutting out a piece of a manifold (typically of the form Sk × Dn−k)
and replacing it with another (typically Dk+1 × Sn−k−1). This innocent-seeming
operation becomes very powerful when combined with other tools such as bundle
theory, handlebody theory (particularly the S-cobordism theorem) and the algebra
of quadratic forms. The full complexity of the theory is seen when one is dealing
with non-simply-connected spaces, and the calculation of the set S(X) of smooth
n-manifolds homotopy equivalent to a space X is summarized in the “surgery exact
sequence”:

· · · → [ΣX,G/O] → Ln+1(Z[π1X]) →
S(X) → [X,G/O] → Ln(Z[π1X])

Of course, such an exact sequence per se is never enough to do real calculations;
one must calculate and understand all of the terms in the sequence and the maps
between them.

Ranicki’s book provides an introduction to these ideas, pitched at a reader who
knows the basics of algebraic topology and manifold theory. As such, it provides
much more geometric background than the classic books on the subject [W. Brow-
der, Surgery on simply-connected manifolds, Springer, New York, 1972; MR0358813
(50 #11272); C. T. C. Wall, Surgery on compact manifolds, Academic Press, Lon-
don, 1970; MR0431216 (55 #4217)], from which at least two generations of prac-
titioners have learned the subject. Wall’s book, in particular, is a difficult (but
rewarding) read that gives an impression of a subject just reaching its full power.
(The second edition [Surgery on compact manifolds, Second edition, Amer. Math.
Soc., Providence, RI, 1999; MR1687388 (2000a:57089)] has some useful commen-
tary and updates by Ranicki.) The surgery sequence appears about halfway through
Wall’s book, and is followed by several dense chapters giving classification of man-
ifolds in various homotopy types (tori, projective spaces, lens spaces) as well as
applications to embeddings of manifolds. By contrast, the surgery sequence is the
culmination of the book under review, which takes its time developing the geometric
background and the algebra necessary to define the surgery groups, Ln(Z[π1X]).

The treatment of the surgery groups, especially for n odd, differs from the original
treatment in Wall’s book. When n is even, the surgery groups are defined as
equivalence classes of quadratic forms, which in turn are defined in terms of Z[π1X]-
valued intersection numbers. The detailed discussion of these intersection numbers
(and the more subtle self-intersections) are an attractive feature of Ranicki’s book.
When n is odd, the definition of Ln is given in terms of pairs of Lagrangians in
a standard Z[π1X]-valued quadratic form. This definition, apparently suggested
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by S. P. Novikov [Math. USSR-Izv. 4 (1970), 257–292; ibid. 4 (1970), 479–505;
translated from Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 253–288; ibid. 34
(1970), 475–500.; MR0292913 (45 #1994)], is equivalent to that given in Wall’s
book but is somewhat easier to digest. Except for π1 = {1}, there are no actual
calculations of surgery groups in the book. However, some basic tools such as
localization and the author’s theory of “algebraic surgery” are briefly discussed,
and references to the literature are given.

All in all, Ranicki’s book is a readable introduction to this powerful theory that
will be useful to a student or beginning user. One thing that such a reader should
know, however, is that many of the proofs of the background results are sketched
rather than being given in detail. The author’s own advice (from the preface) is
sound: start with the classic paper by M. A. Kervaire and J. W. Milnor [Ann. of
Math. (2) 77 (1963), 504–537; MR0148075 (26 #5584)] and then move on to the
more sophisticated versions. This book provides a very good next step.

Daniel Ruberman

From MathSciNet, June 2015

MR2874640 53D12; 57R17, 57R60, 57R90

Abouzaid, Mohammed

Framed bordism and Lagrangian embeddings of exotic spheres.

Annals of Mathematics. Second Series 175 (2012), no. 1, 71–185.

Recall that the cotangent bundle of a smooth manifold admits a standard sym-
plectic structure, and that a diffeomorphism between two smooth manifolds induces
a symplectomorphism of the corresponding cotangent bundles. From early on in
the history of symplectic topology it was hoped that the symplectic structure on
the cotangent bundle could be used as an effective invariant of smooth manifolds;
for instance, one could try to show that two homeomorphic manifolds are not dif-
feomorphic by showing that their cotangent bundles are not symplectomorphic (it
has long been known on the other hand that homeomorphic-but-not-diffeomorphic
manifolds often have diffeomorphic cotangent bundles; see, e.g., [R. De Sapio, Math.
Z. 107 (1968), 232–236; MR0238341 (38 #6617)] for the case of exotic spheres).
However, by the middle of the last decade optimism regarding this program was
beginning to fade in some quarters, partly because of the discovery of relations be-
tween certain symplectic invariants of the cotangent bundle with invariants arising
from the string topology of the underlying manifold, which in turn depended only
on the homotopy type of the manifold.

The appearance of the paper under review has restored such optimism, providing
for the first time examples of pairs of homeomorphic smooth manifolds whose cotan-
gent bundles are not symplectomorphic. Indeed, it is shown that for any integer
k, a homotopy (4k + 1)-sphere Σ can have cotangent bundle T ∗Σ symplectomor-
phic to T ∗S4k+1 only if Σ is the boundary of a parallelizable compact manifold.
Since by [M. A. Kervaire and J. W. Milnor, Ann. of Math. (2) 77 (1963), 504–537;
MR0148075 (26 #5584)] for k ≥ 2 there are several exotic (4k + 1)-spheres that
do not bound parallelizable compact manifolds, these exotic spheres cannot have
cotangent bundle symplectomorphic to T ∗S4k+1.

More specifically, what is shown is that any Lagrangian homotopy sphere (or for
that matter any compact Lagrangian submanifold, in view of progress on the nearby
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Lagrangian conjecture) in T ∗S4k+1 is the boundary of a parallelizable compact man-
ifold. This obviously implies the aforementioned result, since a symplectomorphism
T ∗Σ → T ∗S4k+1 would send the zero section of T ∗Σ to a Lagrangian submanifold
of T ∗S4k+1. The starting point for the proof is the fact that the graph of the Hopf
fibration embeds S4k+1 as a Lagrangian submanifold of C2k+1 × CP2k (with the
opposite of the standard symplectic form on the first factor). Consequently by the
Weinstein neighborhood theorem any compact smooth manifold that embeds as a
Lagrangian submanifold of T ∗S4k+1 also embeds a Lagrangian submanifold L of
C2k+1 × CP2k.

Like any compact submanifold of C2k+1×CP2k, L can be disjoined from itself by
the time-one map of some compactly supported Hamiltonian H : [0, 1] × C

2k+1 ×
CP2k → R. One then considers, as R ≥ 0 varies, solutions u : R × [0, 1] →
C2k+1 × CP2k to a Cauchy-Riemann-type equation

(1)

∂u

∂s
+ J(s, t)

(
∂u

∂t
− λR(s)XH(t, u(s, t))

)
= 0,

u(0, t), u(1, t) ∈ L.

Here the compactly supported smooth functions λR : R → [0, 1] vary smoothly with
R and have λ0 ≡ 0 and, for R ≥ 1, λR|[−R,R] ≡ 1. Let P(L, 0) denote the space

of solutions to (1) which, after being compactified to maps of D2 by the removable
singularities theorem, represent the trivial homotopy class. As was observed in
[Y.-G. Oh, Math. Res. Lett. 4 (1997), no. 6, 895–905; MR1492128 (98k:58048)],
the fact that the time-one map of H disjoins L from itself implies that (1) has no
homotopically trivial solutions when R is large; on the other hand for R = 0 the
homotopically trivial solutions of (1) are just the constant maps to L.

As a result one obtains that, for generic auxiliary data, P(L, 0) is a smooth man-
ifold with boundary L. P(L, 0) is not the desired parallelizable manifold, however,
because it is demonstrably noncompact. Rather, the Gromov-Floer compactifi-
cation of P(L, 0) has a codimension-one stratum corresponding to homotopically
nontrivial solutions of (1) with holomorphic disks attached to their boundaries, a
codimension-two stratum corresponding to solutions of (1) with spheres attached
to their interiors, and a codimension-three stratum corresponding to solutions of
(1) with spheres attached to their boundaries. Using some ingenious constructions
bolstered by quite refined gluing theorems for certain moduli spaces of holomorphic
curves (the latter of which take up a substantial majority of the paper), the author
nonetheless manages to construct the desired compact parallelizable manifold out
of P(L, 0). First he produces a compact manifold with corners whose corner strata
consist of the codimension-one strata of the compactification of P(L, 0) together
with circle bundles over the original codimension-two and -three strata. This is then
glued to another manifold with corners (obtained from a related moduli space of

pseudoholomorphic disks) to yield a compact manifold Ŵ (L) with boundary whose
boundary components are given by L together with several copies of S2 × S4k−1.

Finally it is shown that Ŵ (L) is stably parallelizable (it is important here that the
dimension of the sphere is congruent to 1 mod 4 and not just odd), and that the
S2×S4k−1 components of the boundary can be capped off in a way that yields the
promised compact parallelizable manifold with boundary L.

Michael J. Usher

From MathSciNet, June 2015
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MR0358813 (50 #11272) 57D65

Browder, William

Surgery on simply-connected manifolds. (English)
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65.

Springer-Verlag , New York–Heidelberg , 1972, ix+132 pp., $13.40

The operation of surgery on a smooth compact n-manifold M consists of re-
moving the interior of an imbedded solid torus T = Sp × Dn−p ⊆ interiorM ,
M0 = M − interiorT , and forming M1 = M0 ∪Dp+1×Sn−p−1, making the natural
identification on the boundaries. This operation can be used to alter the homo-
topy type of M while preserving its cobordism class and some tangential proper-
ties (as in J. Milnor’s article [Differential geometry (Proc. Sympos. Pure Math.,
Vol. III, Univ. Arizona, Tucson, Ariz., 1960), pp. 39–55, Amer. Math. Soc., Prov-
idence, R.I., 1961; MR0130696 (24 #A556)]). Usually one tries to make M more
highly connected. A natural generalization is the operation of surgery on a map
f : (M,∂M) → (A,B), where (A,B) is a pair of CW complexes satisfying Poincaré-
Lefschetz duality H∗A � Hm−∗(A,B), for some m ≥ 0. In this case, one modifies
f , usually trying to make it more highly connected, by performing surgery on suit-
ably chosen T ⊆ interiorM and extending f |M0 to M1. This procedure has had
wide-ranging, deep applications in every area of the topology of smooth manifolds,
including transformation groups, classification of manifolds, and imbedding and im-
mersion theory. Analogous techniques and applications hold for PL and topological
manifolds.

A systematic use of surgery operations requires more conditions on f , which we
now describe. We restrict to the case m = n, which is representative and contains
the most important applications. We require that f have degree ±1 and that there
exist a map of vector bundles b : V → E covering f , where V is the stable normal
bundle of M . We then call f or (f, b) a normal map. Surgery is required to preserve
these conditions, in a manner that we shall not make precise, and is called normal
surgery. In this context, the fundamental problem of surgery theory is: Under what
conditions can a normal map be modified by normal surgeries to produce a normal
map (g, c) with g a homotopy equivalence? Without further conditions, one can
show that a (g, c) may be produced such that g is [n/2]-connected; Poincaré duality
implies that we need only raise the connectivity by one more to achieve a homotopy
equivalence. The problem thus becomes one of describing the obstruction(s) to
achieving this last step.

The case (A,B) = (Dn, Sn−1) was thoroughly analyzed and exploited by M. Ker-
vaire and Milnor [Ann. of Math. (2) 77 (1963), 504–537; MR0148075 (26 #5584)].
This was generalized to the case of 1-connected A independently by the author
[Colloquium on Algebraic Topology (Aarhus Univ., Aarhus, 1962), pp. 42–46, Mat.
Inst., Aarhus Univ., Aarhus, 1962; see MR0146039 (26 #3565)] and S. Novikov
[Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 365–474; MR0162246 (28 #5445);
translated in Amer. Math. Soc. Transl. (2) 48 (1965), 271–396; see MR0189948 (32
#7366)]. Finally, the general case was developed by C. T. C. Wall [Ann. of Math.
(2) 84 (1966), 217–276; MR0212827 (35 #3692); Surgery on compact manifolds,
Academic Press, London, 1970]. We have deliberately omitted mention here of the
operation of “surgery on the boundary”, which leads to interesting variants of the
theory.
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The present book gives a comprehensive introduction to the theory of 1-connected
surgery as well as some of the most important applications. It has a number of fea-
tures that make it especially useful for anyone wishing to learn surgery theory.
First, the author takes special pains with the basic algebraic topology and alge-
bra involved in 1-connected surgery (e.g., cup and cap products, Poincaré duality
spaces, intersection pairings, quadratic forms, etc.). Secondly, the book collects a
great deal of diverse background information from the literature, giving relatively
complete expositions (e.g., of spherical fibrations, Thom classes, Spivak normal
fibrations, homotopy groups of Stiefel manifolds, Spanier-Whitehead duality, func-
tional cohomology operations). This makes the book relatively self-contained. Of
course, the abundance of the material needed forces the style to be somewhat com-
pact; the book requires and merits careful reading. Finally, and perhaps most
important is the way in which the author has organized the theory. After a chapter
on preliminaries, he lists seven basic results of surgery theory and then proceeds
to derive many important applications of the theory from these. The remainder of
the book is devoted to a proof of the seven basic results. This procedure allows the
student to arrive at interesting applications before becoming engulfed in the many
technical details of the main proofs. It also focuses attention properly on the most
significant tools provided by the theory for the study of 1-connected manifolds.

The most important of these results goes as follows: Let (f, b) be a normal map,
as above, n ≥ 5, with A 1-connected and f |∂M : ∂M → B a homology equivalence;
if n is odd, then (f, b) can be modified by normal surgeries so that the result g is
a homotopy equivalence; if n is even, then (f, b) can be so modified if and only if
a certain obstruction σ(f, b) ∈ R is 0, where R = Z2 if n = 4k + 2 and R = Z if
n = 4k.

Other basic results describe properties of σ: the possible values achieved by σ
(all—using plumbing); the effect on σ of “summing” two normal maps (additive);
a cobordism property (σ(f, b) = 0 if f “bounds”); an index property (if n = 4k and
B = ∅, then 8σ(f, b) = IndexM − IndexA); a product formula.

We conclude with a list of the contents: (I) Poincaré duality: § 1: Slant opera-
tions, cup and cap products; § 2: Poincaré duality; § 3: Poincaré pairs and triads;
sums of Poincaré pairs and maps; § 4: The Spivak normal fibre space. (II) The
main results of surgery: § 1: The main technical results; § 2: Transversality and
normal cobordism; § 3: Homotopy types of smooth manifolds and classification;
§ 4: Reinterpretation using the Spivak normal fibre space. (III) The invariant σ:
§ 1: Quadratic forms over Z and Z2; § 2: The invariant I(f) (index); § 3: Normal
maps, Wu classes, and the definition of σ for n = 4k; § 4: The invariant c(f, b)
(Kervaire invariant); § 5: Product formulas. (IV) Surgery and the fundamental
theorem: § 1: Elementary surgery and the group SO(n); § 2: The fundamental
theorem: preliminaries; § 3: Proof of the fundamental theorem for n odd; § 4:
Proof of the fundamental theorem for n even. (V) Plumbing: § 1: Intersection; § 2:
Plumbing disc bundles.

P. J. Kahn

From MathSciNet, June 2015
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MR0212827 (35 #3692) 57.20; 57.10

Wall, C. T. C.

Surgery of non-simply-connected manifolds.

Annals of Mathematics. Second Series 84 (1966), 217–276.

The problem of classifying manifolds of a given homotopy type led W. Browder
and S. P. Novikov (references are given in the preceding review [MR0212826 (35
#3691)]) to a surgery problem which is studied here in the non-simply connected
case.

The author first generalizes the definition of a Poincaré complex X with non-
trivial fundamental group π by requiring that the cap product with the fundamen-
tal class [X] ∈ Hm(X) induces isomorphisms Hi(X) → Hm−i(X) and Hi(X) →
Hm−i(X) for any kind of coefficient groups twisted by π.

Let M be a compact differentiable manifold, ψ : M → X a map of degree one and
ω : X → BO a map such that ω · ψ classifies the stable normal bundle of M . Such
a datum is obtained from a normal invariant of the vector bundle on X classified
by ω [see MR0212826 (35 #3691) above]. The fundamental problem is to replace
ψ by a homotopy equivalence, more precisely, to construct an (m+ 1)-manifold W
and a map Ψ: W → X such that the following conditions hold: the map ω · Ψ
classifies the stable normal bundle of W , the boundary of W is the disjoint union of
M and M ′, the restriction of Ψ to M is ψ and its restriction to M ′ is a homotopy
equivalence ψ′. The method, initiated by M. A. Kervaire and J. W. Milnor [Ann. of
Math. (2) 77 (1963), 504–537; MR0148075 (26 #5584)] (see also W. Browder and
P. S. Novikov [loc. cit.]), consists in modifying M and ψ by a sequence of spherical
modifications.

As usual, there is no difficulty in making ψ connected below the middle dimen-
sion.

If m = 2k and ψ is k-connected, the group G = πk+1(ψ) is a stably free Λ-
module, where Λ is the group ring of the fundamental group π of X. The author
associates to each element α of G a regular homotopy class of immersions of Sk in
M . The element α can be killed by surgery if and only if this class contains an
imbedding. The obstruction for that is defined by a self-intersection map μ of G in
a quotient V of Λ depending on the parity of k. On the other hand, intersections of
these immersions define a map λ : G×G → Λ. These maps μ and λ verify certain
properties and define a kind of hermitian structure on the module G. The author
constructs with such Λ-modules a Grothendieck group Lm(π) and shows that the
obstruction to making ψ a homotopy equivalence is the class of G in Lm(π). This
group depends only on π and on the residue class modulo 4 of m. For π = 1, it
is isomorphic to Z for k even and Z2 for k odd, and corresponds to the index and
Arf invariant studied by Kervaire and Milnor [loc. cit]. The author computes the
group Lm(π) when π is cyclic of prime order, using the work of G. Shimura [ibid.
(2) 79 (1964), 369–409; MR0158882 (28 #2104)].

When m is odd, the setting is much more complicated and the author considers
only the case where π is finite. He completely solves the case π = Z2.

In the last paragraph, the case of manifolds with boundary is studied.
{Reviewer’s remarks: This important paper is very long and technical, and the

results obtained are not always clearly expressed. We mention that the author has
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since written a new version giving a much more satisfactory account (unpublished),
especially of the odd-dimensional case.}

A. Haefliger

From MathSciNet, June 2015

MR1747528 (2001c:57002) 57-03; 01A60

Milnor, John

Classification of (n− 1)-connected 2n-dimensional manifolds and the
discovery of exotic spheres.

Surveys on surgery theory, Vol. 1, 25–30, Ann. of Math. Stud., 145, Princeton
Univ. Press, Princeton, NJ, 2000.

This is a (very readable) short history of one of the most amazing discoveries of
modern topology, namely the discovery of exotic spheres, and an interesting pen-
dant to the famous paper by Milnor [Ann. of Math. 64 (1956), 399–405; MR0082103
(18,498d)] in which a 7-dimensional exotic sphere was described for the first time.
In the present paper the author tells us how this discovery was made. The starting
point was the problem of understanding the structure of closed, smooth (n − 1)-
connected 2n-manifolds. The author describes the state of knowledge of topology
during the 1950s (fibre bundles, obstruction theory, characteristic classes and Hirze-
bruch’s signature theorem, early chapters of cobordism theory), and then shows
that homotopy spheres bounding disc bundles over the ordinary n-sphere (normal
neighbourhoods of the n-sphere in 2n-manifolds) enter the theory of such manifolds
in a natural way. In 7 = 2n − 1 dimensions such homotopy spheres can be easily
described using quaternions, but only those diffeomorphic to the ordinary sphere
can appear in this setting. Using Hirzebruch’s signature formula, the author discov-
ered that some of those homotopy spheres cannot bound (as smooth manifolds) the
8-disc. The author’s first guess was that such a manifold must be a counterexample
to the 7-dimensional Poincaré conjecture (any homotopy sphere is homeomorphic
to the standard one), but next he found a real-valued smooth function on it with
precisely two critical points, which proves that it must be homeomorphic to the
standard sphere. This proves the manifold in question is the topological sphere,
but with an exotic smooth structure.

Wies�law J. Olȩdzki

From MathSciNet, June 2015

MR1190010 (95b:57001) 57-02

Kosinski, Antoni A.

Differential manifolds. (English)

Pure and Applied Mathematics, 138.
Academic Press, Inc., Boston, MA, 1993, xvi+248 pp., ISBN 0-12-421850-4

The book under review takes the reader on a scenic tour of geometric topology
from 1950–1970. The mathematics is beautiful and the exposition detailed and
lively.

The starting point is differentiable structures, vector bundles and tubular neigh-
bourhoods followed by transversality and Morse theory, leading to handle decom-
positions of smooth manifolds and the h-cobordism theorem. Other high points of
the tour include inspection of the groups θm of homotopy spheres, operations on
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framed manifolds with their connection to homotopy theory and the beginnings of
surgery theory.

The titles of the chapters are: I. Differentiable structures. II. Immersions, imbed-
dings, submanifolds. III. Normal bundle, tubular neighbourhoods. IV. Transversal-
ity. V. Foliations. VI. Operations on manifolds. VII. Handle presentation theorem.
VIII. The h-cobordism theorem. IX. Framed manifolds. X. Surgery.

Each chapter concludes with historical remarks and comments, and there is an
appendix containing consequences of the implicit function theorem, the Brown-Sard
theorem, and some facts about the orthogonal group.

{Reviewer’s comment: A slip occurs on p. 164 where the author asserts that
“every simply connected 4-manifold is a connected sum of a certain number of
copies of S2 × S2, CP2 and its conjugate CP2, and of two exotic manifolds”.
By Freedman’s theorem, the classification of simply connected 4-manifolds is as
complicated as the classification of unimodular symmetric bilinear forms over Z,
and there are many definite indecomposable forms.}

Ian Hambleton

From MathSciNet, June 2015


