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Geometric measure theory is a broad and beautiful area of mathematics with
deep and persistent connections with geometry, analysis, number theory, combi-
natorics, and beyond. It is also an area that defies simplistic descriptions as it
continually evolves and reinvents its raison d’etre. Any attempt to write a book
containing a comprehensive treatment of all the areas that currently fall under the
umbrella of geometric measure theory would be a futile and thankless task. Instead,
Francesco Maggi chose a very coherent and interesting set of problems pertaining
to sets of finite perimeter and geometric variational problems and produced an ex-
cellent, timely, and thoroughly readable text, accessible to a wide mathematical
audience.

One of the most intuitive and best known results of modern mathematics is the
iso-perimetric inequality. In its simplest form it says that if L is the length of a
closed curve and A is the enclosed area, then

4πA ≤ L2,

and the equality holds if and only if the curve is a circle. This problem goes back
to ancient times, and its solution was well known in ancient Greece. A variant of
this problem, where one of the sides of the enclosed domain is bounded by a line,
is often attributed to Queen Dido of Carthage [10]. A rigorous proof, however,
was not discovered until the 19th century. See, for example, [13] for a detailed
description of the iso-perimetric and related problems.

In higher dimensions, one can formulate the iso-perimetric inequality in the
following way (see, e.g., Federer [8]). For any E ⊂ R

n, whose closure has finite
Lebesgue measure

nω
1
n
n Ln

(
E

)n−1
n ≤ Mn−1

∗ (∂E),

where Mn−1
∗ is (n − 1)-dimensional; Minkowski content, ωn is the volume of the

unit ball in R
n and Ln is the n-dimensional Lebesgue measure. If the boundary

of E is also rectifiable, then Mn−1
∗ (E) is simply the (n− 1)-dimensional Hausdorff

measure of E.
In the case of domains with sufficiently smooth boundaries, the n-dimensional

iso-perimetric inequality is equivalent to the Sobolev inequality(∫
Rn

|f(x)|
n

n−1 dx

)n−1
n

≤ n−1ω−1
n

∫
Rn

|∇f(x)|dx,

which holds for f ∈ W 1,1(Rn), the space of real valued L1 functions on R
n with

one weak derivative in L1(Rn).
The study of iso-perimetric inequalities is closely tied to the question of what

it means for a subset of Rn to have a finite perimeter. The notion was invented
by Renato Caccioppoli in the 1920s and described in his celebrated 1928 paper
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[3]. This topic and related issues were subsequently thoroughly investigated by
DiGiorgi in [4–7]. We say that a Lebesgue measurable set E in R

n is a set of a
locally finite perimeter if there exists a R

n-valued Radon measure μE on R
n, called

the Gauss–Green measure of E, such that the generalized Gauss–Green formula

(0.1)

∫
E

∇φ =

∫
Rn

φdμE

holds for all φ ∈ C1
c (R

n), the space of differentiable function with compact support.
The total variation |μE | of μE induces the notion of both the relative perimeter of
E with respect to F ⊂ R

n, defined by

P (E,F ) = |μE |(F ),

and the total perimeter, defined by

P (E) = |μE |(Rn).

These definitions are quite natural in view of the fact that if, for instance, E has
a C1 boundary, then

P (E,F ) = Hn−1(F ∩ ∂E), and P (E) = Hn−1(∂E),

where Hn−1 denotes the (n − 1)-dimensional Hausdorff content. Indeed, these
definitions lead to a natural generalization of the concept of an open set with a C1

boundary. This, in turn, results in a variety of interesting applications to the study
of geometric variational problems.

We are going to present three representative results (Theorems 1–3 below) that
capture the essence of Francesco Maggi’s text. These results should be viewed in the
context of reconciling the modern mathematical literature on variational problems
with the classical literature expressing the viewpoint of physics and engineering
(see, e.g., [12]), where a variety of symmetry assumptions are made, frequently
without rigorous justification. In the past century, geometric measure theory has
made tremendous strides in the direction of putting many of those results on a solid
mathematical footing. Along with the symmetry considerations, regularity is also
frequently assumed and this issue is addressed during the discussion of Theorem 3
below.

It is difficult to discuss variational problems without mentioning the Plateau
problem, which asks for the minimal area of surfaces passing through a given curve
(see the picture above). The problem was first raised by Joseph-Louis Lagrange in
1760, but it is named after Plateau who added a practical dimension to the question
by experimenting with soap films. If two soap bubbles meet, they merge and a thin
film is created between them. In this way, foams are composed of a network of
films connected by Plateau borders, which serve as models for the surfaces with
minimal area passing through a given curve. A thoroughly accessible description of
these concepts can be found in Frank Morgan’s highly accessible text on geometric
measure theory [11].

For the formulation of a rough version of the Plateau problem, let A ⊂ R
n and

E0 be a finite perimeter subset of Rn. We define

(0.2) γ(A,E0) = inf{P (E), E\A = E0\A},

where P (E) is defined as above.
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Theorem 1. Let A ⊂ R
n, and let E0 be a finite perimeter subset in R

n. Then
there exists a set of finite perimeter E ⊂ R

n such that

E\A = E0\A

and P (E) ≤ P (F ) for every F such that

F\A = F\E0.

In particular, E is the minimizer of the variational problem given by (0.2).

Another important area of variational research is centered around equilibrium
shapes of a liquid confined in a given container. A related well-known example in
science is hydrostatic equilibrium, which occurs when the flow velocity of a liquid
at each point is constant as a function of time. This happens when external forces
are balanced by a pressure gradient. See [14] for further details.

The study of problems of this type was originated by Gauss who introduced
the free energy functional. Suppose that the liquid occupies a region E (of finite
perimeter) inside a container A (an open set with a sufficiently smooth boundary).
The free energy of the liquid is given by

(0.3) σ(P (E;A)− βP (E; ∂A)) +

∫
E

g(x)dx ≡ Fβ(E;A)− G(E),

where σ > 0 denotes the surface tension at the interface between the liquid and the
other medium filling A. The coefficient β is called the relative adhesion coefficient
between the fluid and bounding solid walls of the recipient. The integral in (0.3)
denotes the potential energy acting on the liquid.

One of the most impressive results pertaining to this problem is the symmetriza-
tion principle for liquid drops in strips. Let ST denote the strip {x ∈ R

n : 0 < xn <
T}, and let E∗ denote the Schwartz symmetrization of E, where intersections of E
with hyperplanes of the form xn = const are replaced by centered balls of the same
volume. By the celebrated Schwartz inequality, P (E) ≥ P (E∗), which is one of the
fundamental ideas behind iso-perimetric inequalities.

Theorem 2. If β ∈ R, g ∈ L1(Rn), E ⊂ ST are a set of finite perimeter with
0 < |E| < ∞ and

Fβ(E;ST ) + G(E) ≤ Fβ(F ) + G(F )

for ever F ⊂ ST with |E| = |F |, then there exists z ∈ R
n−1 such that E is equivalent

to z + E∗.

We now turn our attention to the issue of regularity of solutions of variational
problems. We say that E is a local perimeter minimizer at scale r0 in some open set
A if the support of μE is ∂E and P (E;A) ≤ P (F ;A) whenever E
F ⊂ B(x, r0)∩A
and x ∈ A. Here μE denote the Gauss–Green measure on E defined in (0.1) above
and E 
 F is the symmetric difference of E and F defined by (E\F ) ∪ (F\E).

The following deep result shows that local minimizers have a remarkably smooth
structure or, in other words, that the smoothness is the consequence of the as-
sumptions inherent in assumptions of the problem. As we we will see in a moment,
A ∩ ∂∗E is an analytic hypersurface and the singular set is quite small, where

∂∗E =

{
x ∈ support(μE) : lim

r→0+

μ(B(x, r))

|μE |(B(x, r))
exists and belongs to Sn−1

}
.
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Theorem 3. If n ≥ 2, A is an open set in R
n, and E is a local perimeter minimizer

in A, then A ∩ ∂∗E is an analytic hypersurface of zero mean curvature which is
relatively open in A ∩ ∂E, while the singular set of E in A,

Σ(E;A) = A ∩ (∂E\∂∗E),

satisfies the following:

• If 2 ≤ n ≤ 7, then Σ(E;A) is empty.
• If n = 8, Σ(E;A) has no accumulation points in A.
• If n ≥ 9, then Hs(Σ(E;A)) = 0 for every s > n− 8. (Here Hs denotes the
s-dimensional Hausdorff measure).

One of the earlier results in this direction was proved by Enrico Bomberi in [2].
See also a seminal paper by Almgren and Lieb [1].

The results presented above give you only a taste of this wonderful book. Fran-
cesco Maggi weaves together a precise, self-contained, and deeply insightful narra-
tive of which Theorems 1–3 above are representative examples. A reader interested
in a more basic grasp of the underlying concepts with a slightly different emphasis
may want to begin by reading the aforementioned interesting text [11] by Frank
Morgan. On the other hand, any scientist interested in a deep understanding of
the notion of geometric measure theory pertaining to sets of finite perimeter and
regularity theory will find this book to be a very valuable asset.

A difficult question every writer of an advanced monograph must answer is how
much basic background to put in. The book under review begins with a thorough
and clearly written series of sections covering Borel, Radon and Hausdorff mea-
sures, Lipschitz functions, the area formula, Gauss–Green formula, rectifiable sets
and tangential differentiability. The whole Part I of the book is dedicated to this
meticulous review of basic notions of geometric measure theory. A student with
a strong background in undergraduate analysis should have little trouble reading
this book, though some knowledge of basic theory of Lebesgue integration would
certainly speed things along. The first part of the book is extremely useful regard-
less of what flavor of geometric measure theory one is interested in covering, and I
plan to use it extensively the next time I teach a graduate course on the Falconer
distance problem or related problems.

Once Part I of the book is carefully mastered, the beautiful world of sets of
finite perimeter and regularity theory and analysis of singularities, covered in Parts
II and III, respectively, becomes thoroughly accessible. The transitions between
the various parts of the book are carefully thought out and designed to make this
book widely accessible. This is a truly a first rate text that will serve to bring some
of the most fundamental ideas of geometric measure theory to a significant portion
of the mathematical community.

Let me conclude my review by noting that I find it interesting and inspiring
that Francesco Maggi’s book arrived on the mathematical scene within a year of
another monograph on geometric measure theory, entitled Fourier analysis and
Hausdorff dimension by Pertti Mattila ([9]). The emphasis of Mattila’s book is on
the Fourier analytic aspects of geometric measure theory and on continuous variants
of extremal problems in combinatorics, such as the Falconer distance problem.
Nevertheless, similarities both on the level of techniques and ideas certainly exist,
and experts in both areas would benefit from examining those connections. The
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resulting symbiosis would serve as a further testament to the universal appeal of
the underlying concepts.
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