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Extending maps defined on a set to a larger set while preserving some mapping
structures or minimizing some quantities is a fundamental problem in pure and
applied mathematics. For example, the classical Dirichlet problem can be viewed
as an extension problem: given a real-valued function f on the boundary ∂D of a
domain D ⊂ R

n, one would like to extend f to a function F defined on D such that∫
Ω
|∇F |2 dx is as small as possible. The traditional plan of attack is to solve the

Laplace equation ΔF = 0 on D subject to the boundary constraint F = f on ∂D;
a very complete theory has been developed along this direction. However, consid-
ering the Dirichlet problem as an extension problem without looking at differential
equations is a more intrinsic (and more challenging) way of studying the problem.

The study of the extension problems of various types was initiated in 1920s;
after a spurt of foundational results, not much progress has been made until very
recently. In the last three decades we have witnessed a plethora of breakthroughs.
The two-volume book under review is a much welcome attempt to gather together
cumulative efforts of many analysts and to bring to a wide audience the frontiers
of current research on extension problems.

To illustrate the main themes of the subject, it will be useful to review one of the
first fundamental results in the subject: the Tietze–Urysohn extension theorem. It
states that continuous real-valued functions on a closed subset of a normal topolog-
ical space can be extended to the entire space while preserving the boundedness.
More precisely, let X be a normal topological space, and let S be a closed subset of
X. If f : S → R is a continuous function, then there exists a continuous function
F : X → R such that

(i) F (x) = f(x) for all x ∈ S and
(ii) ‖F‖ := supx∈X |F (x)| = ‖f‖ := supx∈S |f(x)|.
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Historically, it was first proved by Brouwer in [3] and Lebesgue in [30] for X = R
n.

Tietze [34] showed the theorem for arbitrary metric spaces X; for normal spaces,
it is due to Urysohn [35]. It is relatively easy to construct a function that satisfies
condition (i). The real delicacy lies in requiring that the norm be preserved (i.e.,
condition (ii) holds).

The problem becomes more challenging when one demands that the extensions
be smoother than just being continuous. In the setting of metric spaces, the next
natural smooth class is Lipschitz functions. Let (M1, d1) and (M2, d2) be metric
spaces. Let S be a subset of M1. A map f : S → M2 is called Lipschitz if there
exists λ ≥ 0 such that d2(f(x), f(y)) ≤ λ · d1(x, y) for all x, y ∈ S. The Lipschitz
constant L(f, S) of f on S is defined by

L(f, S) := sup
x,y∈S,x�=y

d2(f(x), f(y))

d1(x, y)
.

Given a Lipchitz function f on S, one would like to extend f to

F : M1 → M2

while making the Lipschitz constant L(F,M1) as small as possible (and obviously
no smaller than L(f, S)). For M1 = R

n and M2 = R, McShane [31] showed that
an extension can be constructed to have the same Lipschitz constant: Indeed, one
can define such an extension F : Rn → R by

(1) F (x) = L(f, S) · dist(x, S) + inf
s∈S

f(s).

For M1 = R
n and M2 = R

m, a component-wise application of (1) yields an ex-
tension F : Rn → R

m such that L(F,Rn) ≤
√
mL(f, S). As a pleasant surprise,

Kirszbraun [26] showed that McShane’s result still holds for M2 = R
m; in other

words, there exists F : Rn → R
m such that L(F,Rn) = L(f, S). The known proofs

of Kirszbraun’s theorem appeal to Zorn’s lemma. More generally, Valentine (see
[36], [37]) proved that extensions preserving Lipschitz constants exist even if M1

and M2 are Hilbert spaces. Generalizations of the corresponding result to other
spaces are more delicate. It is known that if either M1 or M2 is a Banach space,
there may not exist an extension that preserves the Lipschitz constant. General-
izations to some Riemannian manifolds (with the geodesic metrics) are possible:
for example, if both spaces M1,M2 are spheres of the same dimension, or spaces
of constant curvature −1, the corresponding theorems have been established (see
[37]). More generally, Lang and Schroeder [27] showed that metric spaces with up-
per or lower curvature bounds, in the sense of A. D. Alexandrov, admit extensions
that preserve the Lipschitz constant.

The next natural question is to classify all pairs of metric spaces M1 and M2

such that every Lipschitz map f from a subset S ⊂ M1 admits a Lipschitz extension
F : M1 → M2, not necessarily preserving the Lipschitz constant. One can quantify
the problem by defining a Lipschitz constant Λ(M1,M2) for a pair of metric spaces
M1 and M2 as the least constant C = C(M1,M2) such that every Lipschitz map
f from a subset S ⊂ M1 into M2 admits an extension F : M1 → M2 such that
L(F,M1) ≤ CL(f, S). In this terminology, Kirszbraun’s theorem simply states
that Λ(Rn,Rm) = 1 when R

n and R
m are equipped with the Euclidean metrics.

When R
n is equipped with other metrics, the results may be different. The function
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dp : Rn × R
n → R given below defines a metric on R

n:

dp (x, y) =

⎧⎨
⎩

(
∑n

i=1 |xi − yi|p)1/p ,
max {|x1 − y1| , . . . , |xn − yn|} ,∑n

i=1 |xi − yi|p ,

1 ≤ p < ∞,
p = ∞,
0 < p < 1.

The metric space (Rn, dp) is denoted by lpn. We have the following results:
Λ(lpn, l

q
n) = 1 whenever q = ∞, (p, q) = (2, 2), or 0 < p ≤ 1/2 and q = 2. For

other values of p and q, the precise values (finite or infinite) for Λ(lpn, l
q
n) have

not been determined; however, we do know that Λ(l∞n , l2n) > 1. For infinite di-
mensional Banach spaces, the story is even more delicate. Consider for example
Lp = Lp([0, 1]) for 1 ≤ p ≤ ∞. Johnson and Lindenstrauss [25] showed that for
1 ≤ p < 2, Λ(Lp, L2) = ∞. They conjectured that Λ(Lp, L2) < ∞ for 2 ≤ p < ∞.
Partial results of their conjecture have been obtained: One breakthrough is due to
Ball [1], who proved that Λ(L2, Lq) ≤ 6√

q−1
for 1 < q ≤ 2. Another impressive

result is obtained by Naor, Peres, Schramm and Sheffield [32], who showed that
Λ(Lp, Lq) ≤ 24

√
p−1
q−1 for 1 < q < 2 < p < ∞. They conjectured that the constant

24 is unnecessary. If true, this would yield a direct generalization of the Valetine’s
theorem (see above) which states that Λ(L2, L2) = 1. These results represent es-
sentially the state of the art of the subject. For other values of p, q, nothing is
known about Λ(Lp, Lq).

Instead of focusing on the metric spaces M1 and M2 to understand the Lipschitz
extension problem, when given a subset S of M1 and a function f : S → M2,
one can also examine the topological properties of S that obstruct the existence
of extensions. Lang and Schlichenmaier [28] have made significant progress along
this direction. Their results imply a Lipschitz analog of Hurewicz’s theorem which
states that the only obstruction to extending a map from a closed subset S of a
metric space M into the n-sphere

S
n = {x ∈ R

n+1 :
n+1∑
i=1

x2
i = 1}

is the topological dimension of M . In the Lipschitz setting, the substitute for
the topological dimension is the Nagata–Assouad dimension. The Nagata–Assouad
dimension of a metric space M , denoted by dimNA M , is the least integer n with
the following property: for some constant c > 0 and every t > 0 there is a cover U
of M such that diam U ≤ ct and every subset S ⊂ M of diameter at most t meets
at most n+ 1 subsets of U . The topological dimension of a metric space does not
exceed the Nagata–Assouad dimension. Some spaces with finite Nagata–Assouad
dimension are doubling metric spaces and Gromov hyperbolic spaces of bounded
geometry. One of the results from the Lang–Schlichenmaier theory states that if S is
a nonempty closed subspace of a metric space M with either dimNA S or dimNA Sc

finite, then a Lipschitz function f from S to a Banach space B can be extended to
a Lipschitz function F : M → B. Consequently, if M1 is a doubling metric space
or a Gromov hyperbolic space of bounded geometry and M2 is a Banach space,
then Λ(M1,M2) < ∞. However, the Lang–Schlichenmaier theory does not provide
precise estimates on Λ(M1,M2).

Another important aspect of the subject deals with extending real-valued func-
tions or jets defined on closed subsets of Rn for spaces of differentiable and smooth
functions. The Dirichlet problem discussed in the introduction is a typical example
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of this type. Let Cm(Rn) denote the space of m-times continuously differentiable
functions F : Rn → R for which the norm

‖F‖Cm(Rn) = max
|α|≤m

sup
x∈Rn

|∂αF (x)|

is finite.
For F ∈ Cm(Rn) and x ∈ R

n, we write JxF to denote the mth degree Taylor
polynomial of F at x and it is called the m-jet of F at x, i.e.,

(JxF )(y) =
∑

|α|≤m

1

α!
∂αF (x) · (y − x)α.

Suppose we are given a closed subset E ⊂ R
n and a function f : E → R. We are

interested in the following fundamental questions:
Problem 1: How can we decide whether there exists F ∈ Cm(Rn) such that F = f

on E?
Problem 2: Compute the order of magnitude of

||f ||Cm(E) := inf{||F ||Cm(Rn) : F = f on E and F ∈ Cm(Rn)}.
In other words, find a number X allowed to depend on m, n, E, and
f such that cX ≤ ||f ||Cm(E) ≤ CX for some constants c, C depending
only on m and n.

Problem 3: Consider the Banach space Cm(E) = {F |E : F ∈ Cm(Rn)} equipped
with the norm in the previous problem. Is there a bounded linear
operator

T : Cm(E) → Cm(Rn)

such that Tf = f on E for all f ∈ Cm(E)?
Collectively, these problems are called the Whitney extension problems. In his

seminal paper [39] published in 1934, Whitney solved the problems for Cm(R) and
paved the way for studying problems in higher dimensions. The roman numeral “I”
in the title of his paper [39] might have suggested that he intended to write a series
of papers to prove similar theorems in higher dimensions. However, significant
progress in this direction did not appear until some fifty years later.

In a different paper [38], Whitney also proved a related theorem, known as the
Whitney extension theorem, which can be viewed as a partial converse to Taylor’s
theorem. It gives a necessary and sufficient condition to extend a given function
on a closed subset E of Rn to have prescribed jets at the points of E. Notice that
in Problems 1–3, we are only prescribed the function’s values on E instead of their
full derivatives. In the paper [38], Whitney introduced what is now known as the
Whitney decomposition, an idea that has inspired many mathematicians for years
to come.

It is worth mentioning that in 1958, using a geometric construction, Glaeser [23]
solved Problem 1 for C1(Rn).

From the 1980s to the early 2000s (see [4–10]), Y. Brudnyi and Shvartsman
studied the problems for the space Cm,ω(Rn) (the space of functions whose mth
derivatives have modulus of continuity ω, e.g., the space of functions whose mth
derivatives are Lipschitz continuous). They conjectured a finiteness principle, which
in essence states that it suffices to understand the extension problems for finite
subsets of R

n. More precisely, it states that to decide whether a given function
f : E → R is extendable to a function F ∈ Cm,ω(Rn), it suffices to consider all
restrictions f |S , where S ⊂ E is a subset with at most k# arbitrary points. Here,
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k# depends only on m and n. By Whitney’s 1934 result, we already know that
for Cm,ω(R) the finiteness principle holds with k# = m + 2. In [9], Y. Brudnyi
and Shvartsman showed that for C1,ω(Rn) the finiteness principle holds with k# =
3 · 2n−1 as the optimal finiteness constant.

By finding an analogue of Glaeser’s iterated paratangent space for Cm(Rn),
Bierstone, Milman and Pawłucki in [2] were able to solve the first two problems for
subanalytic sets E.

In a series of papers [11–13,15] (from 2005 to 2009), Fefferman proved the finite-
ness principle conjectured by Y. Brudnyi and Shvartsman and gave complete an-
swers to the problems for the spaces Cm,ω(Rn) and Cm(Rn). Furthermore, Feffer-
man and Klartag [18, 19] have come up with algorithms that require κ · N logN
computer operations to solve the extension problems, where N is the number of
points in E and κ is a constant depending only on m and n. Notice that just by
examining the data set E (with N points) requires N computer operations. In
view of this remark, we see that the Fefferman–Klartag algorithms are extremely
efficient in theory.

The only shortcoming with their results is that the constants c and C that appear
in Problem 2 may be enormous. To make c and C as close to 1 as possible is a
challenging open problem. For C1,1(Rn), LeGruyer [29] provided the solution; his
result is a direct analogue of Kirszbraun’s theorem for C1,1(Rn). When we are given
the full jets instead of just the function’s values, Fefferman [14,16] gave algorithms
for computing the Cm-norm of a function F : Rn → R having prescribed m-jets
at N given points within ε percent of the least possible; the computer operations
involved are at most exp(C/ε)N logN , where C is a constant depending only on
m and n. Another interesting result by Fefferman [17] allows one to compute a
function taking prescribed values at N points in R

2, whose C2-norm is within a
factor of (1 + ε) of least possible with at most C(ε)N logN computer operations.
These partial results represent the current state of the art.

The extension problems for the function spaces Cm(Rn) and Cm,ω(Rn) are well
understood by now. It is natural to consider the extension problems in Sobolev
spaces Lm,p(Rn) (the space of functions whose mth (distributional) derivatives are
in Lp(Rn)): they include the Dirichlet problem alluded to at the beginning as a
special case. Significant progress has been made in the last few years. Impor-
tant first steps were taken by Shvartsman [33] and Israel [24], who addressed the
extension problems for L1,p(Rn) (with p > 1) and L2,p(R2) (with p > 2), respec-
tively. In [21], Fefferman, Israel, and Luli generalized the results to Lm,p(Rn) with
p > n, and in [22] they made all the steps in [21] algorithmically effective and
obtained the analogous Fefferman–Klartag algorithms for Lm,p(Rn) with p > n.
Although a linear extension operator can still be constructed for Lm,p(Rn), the
structure for the extension operator is fundamentally different from the one for
Cm,ω(Rn) or Cm(Rn). Specifically, the value of a bounded linear extension op-
erator T : Lm,p(E) → Lm,p(Rn) at a point x ∈ R

n may have to depend on the
function’s values at all the points in E (see [20]); whereas for Cm(E) with E finite,
Fefferman [13] showed that there exists a bounded linear extension operator T :
Cm(E) → Cm(Rn) that is sparse, in the sense that Tf(x) =

∑
y∈Sx⊂E c(x, y)f(y),

for all x ∈ R
n, where c(x, y) ∈ R and #(Sx) ≤ k#(m,n). In other words, inde-

pendent of the size of E (as long as it is finite), the number of nonzero coefficients
in the linear expression for Tf(x) is at most a universal constant (depending only
m and n). This can be viewed as an effective version of the finiteness principle.
By the Sobolev embedding theorem, we can make sense of an Lm,p(Rn)-function’s
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pointwise value when mp > n; understanding the extension problems for Lm,p(Rn)
when mp > n remains elusive.

Remarks on the book

The two-volume book under review is enormous in scope and contains most of
the old and current results on extension problems. Many of the theorems appear
here for the first time in book form. The book is self-contained, and the detailed
arguments make it accessible to a wide audience, especially graduate students inter-
ested in getting into the subject. The book covers topics beyond what is discussed
above. For example, it includes several fundamental metric embedding theorems:
Bourgain theorem for finite spaces, Assouad theorem for doubling metric spaces,
and Bonk–Schramm theorem for Gromov hyperbolic spaces. The book is well writ-
ten and well organized. It will become a standard reference in the subject, and it
deserves a spot in the library.
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