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In mechanics, nonholonomic constraints are constraints depending on velocities
that cannot be reduced by integration to a set of constraints depending on positions
only. A typical example of nonholonomic constraints is given by rolling without
slipping. Nonholonomic dynamics is devoted to the study of motion of such (un-
controlled) mechanical systems [12]. However, in many applications, especially in
robotics (e.g., robotic cars with trailers), one has the possibility of controlling the
motion of such systems. This leads to nonholonomic control systems. The main
objective of the book under review is to introduce the readers to nonholonomic
systems from the point of view of control theory.

As a rule, nonholonomic constraints depend linearly in velocities, i.e., are de-
scribed by systems of Pfaffian equations. The corresponding control systems depend
linearly on control, i.e., they have the following form:

(1) q̇ =

m∑
i=1

uiXi(q), q ∈ M,u = (u1, . . . , um) ∈ R
m,

where M is a connected n-dimensional manifold, X1, . . . , Xm are smooth vector
fields on M , and m < n.

The system (1) (with a fixed initial condition q(0) = q0) is controlled by choos-
ing values u(t) ∈ R

m of the control parameter at (almost) every time instant t,
where the function u(·) belongs to an appropriate functional space that ensures the
existence and uniqueness of the solution of the corresponding initial value problem.

The resulting trajectory is called an admissible trajectory of the control system
(1) corresponding to the control function u(t) and the initial point q0. The linear
span Δ(q) of the vectors X1(q), . . . , Xm(q) is called the set of admissible velocities
of (1) at the point q.

Admissible trajectories of system (1) are quite special: for almost every t the
velocity at t of an admissible trajectory q(t) must belong to the set of admissible
velocities Δ

(
q(t)

)
, which are proper subspaces of the tangent space Tq(t)M . The

first natural question about system (1) is: What is the reachable set from a given
point q0, i.e., the set Rq0 of points that can be reached from the point q0 by moving
along all admissible trajectories?

By the Nagano–Sussmann–Stefan orbit theorem [14, 15] the reachable set Rq0

(with piecewise constant control functions) is an immersed submanifold of M . The
dimension of the reachable set can be (and generically is) bigger than the dimension
of the set of admissible velocities (at a generic point), and the reason for this
is that the flows generated by two vector fields usually do not commute. This
noncommutativity is very well demonstrated by the parallel parking of a car, when
a driver uses commutators of the rotation of the steering wheel and a linear motions
of the car.
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Applying the commutators of the flows generated by two vector fields X and
Y tangent to Δ at a point q0, one moves infinitesimally in the direction of their
Lie bracket [X,Y ](q0). Therefore, if Lie(X1, . . . , Xm) is the Lie algebra of vector
fields generated by the vector fields X1, . . . , Xm and Lie(X1, . . . , Xm)(q0) is the
space of all vectors obtained by the evaluation of the elements of Lie(X1, . . . , Xm)
at q0, then the dimension of the reachable set Rq0 is greater than or equal to the
dimension of the vector space Lie(X1, . . . , Xm)(q0),

(2) dimRq0 ≥ dimLie(X1, . . . , Xm)(q0),

and the equality in (2) occurs in the real analytic category (i.e., when the
ambient manifold M and the vector fields X1, . . . , Xm are real analytic) and if
Lie(X1, . . . , Xm) is a (locally) finitely generated module over C∞(M) [2, 10]. The
latter happens, for example, if dimLie(X1, . . . , Xm)(q) is independent of q, i.e., if
the family of subspaces {Lie(X1, . . . , Xm)(q)}q∈M defines a distribution on M or,
in other words, a subbundle of the tangent bundle TM .

There are the following two extreme cases:
1. Holonomic (integrable, involutive, Frobenius) case. Assume that Δ

is a distribution of rank m and Lie(X1, . . . , Xm)(q) = Δ(q) for all q ∈ M . The
latter condition means that the Lie brackets of any two vector fields tangent to
the distribution Δ are also tangent to the distribution Δ, or, symbolically, if
Δ2(q) := Δ(q) + [Δ,Δ](q), then Δ2(q) = Δ(q). In this case the distribution Δ
is called involutive. As a consequence of the results stated in the previous para-
graph and applied in this situation, one gets the classical Frobenius theorem: if Δ
is an involutive distribution of rank m, then it admits a foliation of m-dimensional
integral submanifolds of Δ, i.e., submanifolds with tangent space at any point equal
to the fiber of Δ at the same point. In this case the constraints given by the sys-
tem (1) can be replaced by constraints depending on positions only, i.e., they are
holonomic in the sense of the first sentence of this review.

2. Completely nonholonomic (bracket generating, Rashevsky–Chow,
Hörmander) case. Assume that

(3) Lie(X1, . . . , Xm)(q) = TqM, ∀q ∈ M.

Then from (2) and connectivity of M it follows that Rq = M , i.e., one gets the
classical Rashevsky–Chow theorem [5, 13]: under condition (3) (also called the
Rashevsky–Chow, bracket-generating, or Lie algebra rank condition) any two points
of M can be connected by a piecewise smooth admissible trajectory of (1) or, equiv-
alently, the system (1) is controllable by piecewise smooth trajectories. In this case
no constraints depending on position only can be obtained from the constraints
given by the system (1), which justifies the name “completely nonholonomic”. Note
that in the theory of PDEs the same condition (3) is called the Hörmander condi-
tion, and it guarantees the hypoellipticity of second-order differential operators of
type

∑m
i=1 X

2
i or

∑m
i=2 X

2
i +X1 + · · · , where “· · · ” denotes terms of order smaller

or equal than 1 [8].
Note that the intermediate cases between holonomic one and completely nonholo-

nomic one can be reduced to the completely nonholonomic case under assumption
that dimLie(X1, . . . , Xm)(q) is independent of q (and greater than m) if one re-
places M by a connected component of the integral submanifold of the (involutive)
distribution {Lie(X1, . . . , Xm)(q)}q∈M . In this case some (but not all) constraints
given by the system (1) can be replaced by constraints depending on position only.
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So, it is not so restrictive to assume from the beginning that system (1) is completely
nonholonomic.

The Rashevsky–Chow condition ensures the existence of an admissible trajectory
connecting two given points of M . The next natural task, obviously important for
applications, is to solve the motion planning problem: namely, given two points
q0 and q1 in M , find a control function which steers a control system (1) from q0
to q1 or, in other words, such that the corresponding trajectory of (1) starting at
q0 will terminate at q1. Some proofs of the Rashevsky–Chow theorem (including
the proof given in the book under review) are almost constructive in a sense that
they provide an explicit class of control functions such that if one uses them with a
given initial point q0, the set of all terminal points of the corresponding admissible
trajectories will sweep out a neighborhood of q0. However, since all proofs rely on
the implicit function theorem, they are still not satisfactory for solving the motion
planning problem.

The solution of the nonholonomic motion planning problem consists mainly of
the following three natural steps:

Step 1. Define properly the “first approximation” of system (1) which preserves
the main anisotropic properties of this system and, in particular, the controllability
property. The naive “linearization” of system (1) by “freezing” the vector fields
X1, X2, . . . , Xm at the point q0 and considering the corresponding system on Tq0M
is not a good choice for the first approximation because the resulting system is
involutive.

The true first approximation of system (1) at q0, under certain regularity as-
sumption that will be described later, is a special system of type

(4) q̇ =
m∑
i=1

uiX̂i(q), q ∈ G, u = (u1, . . . , um) ∈ R
m,

where G is a certain nilpotent Lie group such that the associated Lie algebra g is
graded, g =

⊕−1
j=−μ g

j , and it is generated by its component g−1 (such a group G

is also called Carnot group), while the vector fields X̂1, . . . , X̂m are left invariant
on G and they span g−1. System (4) is called the nilpotent approximation at q0
in control theory and (Tanaka) flat homogeneous structure (model) in nilpotent
differential geometry developed by N. Tanaka and his school [16]. It plays a crucial
role not only in the motion planning problem and other aspects of control theory,
but also in PDEs (subelliptic equations and nonholonomic diffusion equations) and
in the equivalence problem for filtered structures in differential geometry (which is
the same as the problem of state-feedback equivalence of the corresponding control
systems). An example of a Carnot group is the Heisenberg group, and it appears
as an ambient manifold of systems (4) with the underlying distribution Δ being
contact.

In general, without the regularity assumption, the nilpotent approximation is a
special control system on a homogeneous space of a Carnot group, and it will be
described in some more detail later.

Step 2. Try to solve explicitly the motion planning problem for the systems which
appear as nilpotent approximations for system (1). The crucial point here, which,
in my opinion, is the main contribution of the book (based on the recent paper
[4]) is that every such nilpotent approximation can be lifted by a procedure, called
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desingularization, to the corresponding left-invariant system on the Carnot group
with the Lie algebra being the free graded Lie algebra with m generators truncated
from a certain weight, and for such systems the motion planning problem can be
solved explicitly via step-by-step use of sinusoidal controls with sufficiently big
integer frequencies, generalizing the well-known algorithm of Murray and Sastry
for chain form systems [11].

Step 3. Try to exploit the first two steps to obtain an approximated solution for
the original motion planning problem. One possibility, discussed in the book in
detail, is to use a Newton-like iterative procedure to find an approximated solution.
More precisely, restricting ourselves to a coordinate neighborhood, one can replace
the ambient manifold M by R

n. At each iterative step, we replace our system by
its nilpotent approximation at the terminal point of the previous step (that now
is considered as the initial one) with coordinates compatible in a natural way to
the standard coordinates in R

n. Further, find the control function that steers the
obtained nilpotent approximation from the terminal point of the previous iterative
step to the terminal point of the original motion planning problem by the method
of Step 2. Applying the same control function to steer the original control system
from the terminal point of the previous iterative step, we arrive to a new point.
Then repeat the same procedure to this new point until we obtain a point which is
sufficiently close to the terminal point of the original motion planning problem.

The rest of this review is mainly devoted to the discussion of the construction
of the nilpotent approximation and the desingularization procedure. There are
several equivalent ways to construct the nilpotent approximation; most of them
are discussed in some form in the book. The primary approach of the book is via
the construction of special local coordinates, the privileged coordinates, and the
exposition follows closely the influential paper of A. Belläıche [3].

My preferred way is to use pure Lie algebraic description (following N. Tanaka
[16] in the regular case and based on the ideas of S. Ignatovich [9] in the general
case). This way is short enough (even in order to include it in this review in a self-
contained manner), a priori intrinsic, and does not use any auxiliary tool such as
privileged coordinates and/or the (generalized) sub-Riemannian metric associated
with system (1) (the metric tangent space approach in the Gromov–Hausdorff sense
[6]). Besides, the desingularization procedure of Step 2 is already built into this Lie
algebraic approach, as will be seen later. Note that an alternative coordinate-free
approach to nilpotent approximation can be found in [1].

To describe the Lie algebraic approach under regularity assumptions, we first
construct the corresponding graded Lie algebra g(q0) by passing from the natural
filtration generated by the distribution Δ on the tangent space Tq0M to the cor-
responding graded space, and then from the Lie algebra g to the corresponding
connected and simply connected Lie group G.

More precisely, first by taking iterative Lie brackets of vector fields tangent to a
distribution Δ, one can define a filtration

(5) Δ1 ⊂ Δ2 ⊂ · · · ⊂ TqM

of the tangent bundle TM , called a weak derived flag or a small flag (of Δ). For this
set Δ = Δ1, and let Δj(q) be the linear span of all iterative brackets of vector fields
X1, X2, . . . , Xm up to the length j evaluated at the point q. The Rashevsky–Chow
condition is equivalent to the fact that for every point q ∈ M there exists a positive
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integer μ(q), called the degree of nonholonomy of the distribution Δ at q, such that
Δμ(q)(q) = TqM . The point q0 is a regular point of the distribution Δ if for every
positive j the dimension of subspaces Δj(q0) is constant in a neighborhood of q0, and

it is called singular otherwise. Let g−1(q)
def
= Δ(q) and gj(q)

def
= Δ−j(q)/Δ−j−1(q)

for j < −1. It turns out that for a regular point q0 with the degree of nonholonomy
μ, the graded space

(6) g(q0) =
−1⊕

j=−μ

gj(q0),

corresponding to the filtration (5) is endowed naturally with the structure of a
graded nilpotent Lie algebra, generated by g−1(q0). Informally speaking, this Lie
algebra contains the information about the principal components of all iterative
Lie brackets at q0 of vector fields tangent to Δ. Further, let G be the connected,
simply connected group with Lie algebra g. Note that under the identification
of g(q0) with the tangent space TeG to G at the identity e and the fact that
Δ(q0) = g−1(q0) ⊂ g(q0) (∼= TeG), all vectors Xi(q0), 1 ≤ i ≤ m, belong to TeG.

Finally, let X̂i be the left-invariant vector field on G such that X̂i(e) = Xi(q0). Then

system (4) with the constructed vector fields X̂i is called the nilpotent approximation
of the system (1) at the regular point q0.

If q0 is not regular, consider the free Lie algebra fm with m generators. The
algebra fm has natural grading fm =

⊕
i∈Z−

fim, where Z− denotes the set of nega-

tive integers, f−1
m is the linear span of a (minimal) set of generators of fm and more

generally, f−i
m is the linear span of all brackets of length i of a set of generators. Fix

a set of generators {�1, . . . , �m} of fm. There exists the unique Lie algebra isomor-
phism Φ : fm → Lie(X1, . . . , Xm) sending �i to Xi for any i = 1, . . . ,m. Now fix a
point q0 ∈ M , and let Ψ : fm → Tq0M be the following map: Ψ(�) = Φ(�)(q0) for
any � ∈ fm. In other words, Ψ(�) is the evaluation of the vector field Φ(�) at the
point q0. For any i ∈ Z−, let hi be the following subspace of fim:

h
i = {� ∈ f

i
m : Ψ(�) ∈ Δ−i−1(q0)}.

Let h =
⊕

i∈Z−
hi. Although the maps Φ and Ψ depend on the choice of the gen-

erators (�1, . . . , �m) of fm, the subspace h is independent of this choice. Moreover,
it is a graded subalgebra of fm. Following [9], we call h the core algebra of the
generalized distribution D at the point q0.

How can one construct the nilpotent approximation of system (1) from its core
algebra h? Since the system has a finite degree of nonholonomy μ = μ(q0) at q0,
we can replace fm and h by their truncated finite-dimensional parts fm,μ and hμ

by removing all components of weight greater than μ(q0). Let Fm,μ and H be
the connected and simply connected Lie groups with the Lie algebras fm,μ and hμ,
respectively. Further, let Li be the left-invariant vector field on the Lie group Fm,μ

equal to �i at the identity of Fm,μ. Let Fm,μ/H = {Hg : g ∈ Fm,μ} be the set of all
right cosets of the Lie group H. If we denote by Π : Fm,μ → Fm,μ/H the canonical

projection, set X̂i = Π∗Li. Then system (4) with the constructed vector fields X̂i

is called the nilpotent approximation of system (1) at the regular point q0.
Why, in the case of regular point q0, does this construction give the same as in

the previous one? The reason is that in the regular case the core algebra h is an
ideal of fm, and so G = Fm,μ/H is a Lie group.
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The desingularization procedure is nothing but the lifting of system (4) to the
following left-invariant system on the group Fm,μ:

(7) Q̇ =
m∑
i=1

uiLi(Q), Q ∈ Fm,μ, u = (u1, . . . , um) ∈ R
m.

In this way, if q0 is a singular point of the degree of nonholonomy μ for the
original system, then system (7), corresponding to the lift of its nilpotent approxi-
mation at q0, consists of regular points of the degree of nonholonomy μ only. Note
that this desingularization procedure is not relevant in the equivalence problem,
because nonequivalent distributions of the same rank have the same desingulariza-
tion. However, this procedure is quite useful for motion planning, because, infor-
mally speaking, one can project the trajectory which solves a steering problem for
the lifted system to the original one. Besides, it is much simpler to deal with the
set of lifted systems (7) than with the set of all possible nilpotent approximations
(4) because the former set is discrete, and each system (7) can be written in a
convenient way in appropriate coordinates (Hall–Grayson–Grossmann normal form
[7]), while the set of all nilpotent approximations (4) cannot be explicitly classified
and depends on continuous parameters.

The method of privileged coordinates, taken as the primary one in the book, is
the most popular method for construction of a nilpotent approximation in control
theory literature, maybe due to its elementary nature. It also can be seen in
essence as the coordinate realization of the Lie algebraic approach: one can define
a nonholonomic order of a smooth function f at a point q0 as the biggest integer k
such that for any l < k

X1 ◦X2 ◦ · · · ◦Xl(f)(q0) = 0

for any l vector fields X1, . . . , Xl tangent to Δ (here the vector fields are considered
as derivation of the algebra of smooth functions). The nonholonomic order on the
algebra of functions induces a nonholonomic order of vector fields at a point in a
natural way. A system of local coordinates (x1, x2, . . . , xn) is called privileged if the
first m of the xi’s have nonholonomic order at q0 equal to 1, the next dim g−2(q0)
xi’s have the nonholonomic order at q0 equal to 2, the next dim g−3(q0) xi’s have
the nonholonomic order at q0 equal to 3, etc., where spaces gi(q0) are as in (6).
There are several standard ways to construct privileged coordinates: e.g., coordi-
nates of first and second kind with respect to the specially adapted frame and more
effective“algebraic” constructions, which do not require integrating flows of vector
fields. Fixing a system of privileged coordinates, one gets a natural splitting of the
space of vector fields into homogeneous components (with respect to the nonholo-
nomic order at q0). In particular, replacing the vector fields Xi in system (1) by
their homogeneous component of the minimal possible degree −1, one again obtains
the nilpotent approximation of (1).

Finally, another way to understand the nilpotent approximation of system (1)
is by introducing the (generalized) sub-Riemannian structure: if the vector fields
X1, . . . , Xm from (1) are linearly independent at every point, then there exists
a unique Euclidean structure on each fiber of the corresponding distribution Δ
for which the vector fields constitute an orthonormal frame. The distribution Δ
endowed with Euclidean structure on each fiber is called the sub-Riemannian struc-
ture on M with the underlying distribution D. Once a sub-Riemannian structure is
given, one can define the length of any curve tangent to the distribution Δ. If the
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distribution is completely nonholonomic, the sub-Riemannian distance between any
two points is the infimum of the lengths of all admissible curves connecting these
two points, which in turn defines the sub-Riemannian metric space. In general, by
topological reasons, the vector fields might be dependent at some points. In this
case one can generalize the sub-Riemannian distance by assuming that we consider
only admissible trajectories of system (1) with the control functions u(·) taking val-
ues on the unit sphere of Rm. The generalized sub-Riemannian distance dSR(q0, q1)
between two points q0 and q1 is the infimum of time required to steer from q0 to
q1 moving only along the admissible trajectories satisfying this additional property.
With this metric point of view, one can further clarify many previous construc-
tions starting from the notion of the nonholonomic order of a function f at a point
q0, which turns to be exactly the integer k such that f(p) = O

(
dSR(p, q0)

k
)
, and

end up with the purely metric construction of the nilpotent approximation itself:
the generalized sub-Riemannian metric space of the nilpotent approximation (4)
at point q0 is exactly the Gromov–Hausdorff limit of the one parametric family of
pointed metric spaces (λdSR, q0) as λ → +∞ [3, 6].

To summarize, the book is a concise survey of the methods for motion planning
of nonholonomic control systems by means of nilpotent approximation. It con-
tains both the theoretical background and the explicit computational algorithms
for solving this problem.
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