BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY!

Volume 53, Number 1, January 2016, Pages 173—-177
http://dx.doi.org/10.1090/bull/1511

Article electronically published on August 26, 2015

Upper and lower bounds for stochastic processes, by M. Talagrand, Modern methods
and classical problems, Ergebnisse der Mathematik und iher Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas, 3rd Series of Modern Surveys in Mathematics|, Vol. 60, Springer,
Heidelberg, 2014, xvi+626 pp., ISBN 978-3-642-54074-5/978-3-642-54075-2, US
$149.00

I was at the beginning of my graduate studies at the Courant Institute when
one of my professors, in his typical calm voice, advised in class: “Probability is all
about inequalities. Knowing how to do upper bounds is essential, but the true art
lies in handling the lower bounds.” Somehow, I kept these words in the back of my
mind. Now, they truly came alive while reading and reviewing this wonderful book
by M. Talagrand. The quote certainly does not do full justice to my field, but it is
too tempting not to recall.

To see how simple inequalities arising in probability may lead to ingenious results
(and thus give some evidence of the above paragraph), let me try to motivate the
reader with two classical, simple examples. The first one, almost 100 years old,
comes from number theory. Let v(n) denote the number of primes p dividing n
without multiplicity (though counting multiplicity makes little difference). The
following result roughly says that almost all integers n have very close to loglogn
number of primes.

Theorem 1. Let f(n) be any function such that lim,, f(n) = co. Then the number
of integers x in {1,...,n} such that

|v(x) —loglogn| > f(n)y/loglogn
is o(n).

A quite complicated proof of the above theorem appeared in a 1920 paper of
Hardy and Ramanujan [3]. But here is a sketch of a simple argument, given in
[5] and beautifully presented in [6l, Chapter 4], that establishes Theorem 1. It is
a simple application of Chebychev’s inequality, one of the simplest inequalities in
probability theory:

P(|X —EX|> ) < § *VarX.
The argument goes as follows. Let x be chosen uniformly at random from {1, ...,n}.
For p prime, we set

1 if p divides =,
X, = )
0 otherwise,

and let X ="
1/2

p<nl/2 Xp. Asno z < n can have more than two prime factors larger
than n'/2, it suffices to study X to understand v(z).
The average of X, satisfies EX,, = |n/p|/n = 1/p + O(1/n). By linearity of

expectation one gets

(0.1) EX=E > X,= > 1/p+0(1/n)=1loglogn+O(1),

p<nl/2 p<nt/2
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where we used the fact that } - _ (1/p) = loglogz + O(1) (which comes from Abel
summation and Stirling’s formula). We now write

VarX = Y VarX, + Y Cov[X,, X,].

p<nl/2 PF#q
The first sum can be handled as in ([01): VarX, = (1/p)(1 — 1/p) + O(1/n) and
(0.2) Z VarX, = loglogn + O(1).
p§n1/2

It turns out that the sum of the covariances Cov[X,, X,] = EX, X, - EX,EX, is
negligible compared to ([0.2). Indeed, for p # ¢, X, X, = 1 if and only if (pq)|z.
Hence, EX, X, = |n/(pq)]/n and a direct calculation leads to

11 1
X, X< =|t+2
Cov[X,, q]n[p-i-q],

which implies

ZCOV[XP,XQ] < %Z (1 + é) <2on~ Y2 Z 1_ o(1).

pF#q pF#q p p<nl/2 p

That is, VarX = loglogn 4+ O(1) and the Chebychev inequality gives

IP’(|X —loglogn| > Ay/log logn> <A 2+ 0(1),

for any constant A > 0. The same holds for v, proving Theorem 1.

Another inequality that is quite useful in probability theory is the lower bound
[@3), known as “the second moment method”, or the Payley—Zigmund inequality.
For any nonnegative random variable X with EX? < co and any 6 > 0,

(1-0)*(EX)?
EX?2 '
(The reader will probably notice that (03] is essentially Chebychev’s inequality
disguised.)
In particular, if X takes only nonnegative integer values, we have the simple
bound:

(0.3) P(X > 0EX) >

(EX)?
(0.4) PX>0=PX>1)> Ex?
Here is a nice use of ([04) that I learned in Lawler and Limic’s [4] gray book. It
roughly says that if B is a Brownian motion in RY, then d = 4 is the critical
dimension in which Brownian paths start to avoid each other. Precisely,

>0, d<S3,

(0.5) P(B[0,1] N B[2,3] # 0) {_ 0 do4

We sketch the proof for a random walk S,,. Equation (3] then follows by taking
the limit n — oo. The trick is to consider the following number of intersections of

a random walk path .S,,,
n 3n

In=20 2 Lis,=su

j=0k=2n
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Note that J, is integer valued and
P(S[0,n] U S[2n,3n] £ 0) = P(J, > 1).

If we write p(n) = P(S,, = 0), then translation invariance implies

n 3n n 3n n

_ ; 1 1-(d/2) -, 2 (d/2)

06) B0 =3 3 i)~ 30 3 e St e,
7=0k=2n 7=0k=2n 7=0

where we used the fact that p(n) ~ n~%2. For d > 5, the “first moment bound”
P(J, >0) <EJ,
and (06) suffice to end the proof of ([.H). The cute part is when d = 3,4. We now
need to compute the second moment of J,,. This is done through
E(J2) = Y > P(Si =Sk, S, = S)
0<i,j<n 2n<k,<3n
and, for our choices of indices,

P(S: = i85 = 50 < (| max PS = o)) (maxP(sie =)

m>n,x€Z4 €L
C

<
~ nd/2(J0 — k| 4 1)4/2”

where the last inequality follows from the local central limit theorem. Combining
the last two displays, one arrives at

cn, d=3,
(0.7) E(J?) < { clogn, d=4,
en=d/2 g>5

which, combined with (0:6) and (04]), ends the proof when d = 3. The critical case
d = 4 needs an extra step, which can be found in [4 Section 10.1].

The examples and methods above belong to the “classical theory of stochastic
processes”. These methods have been widely used and generalized in several di-
rections. They belong to the toolbox of almost every probabilist. Due to their
importance, they are included in any classical first-year graduate course in proba-
bility. They appear in several textbooks in probability, combinatorics, statistics. . ..
But not in Talagrand’s book.

Although he writes a book about inequalities of stochastic processes, Tala-
grand focuses on modern abstract methods, completely abdicating the “classical
approach”. He describes problems on which the above strategies would not work
and develops an abstract methodology to deal with some of these situations. The
methods described in his book, many of them developed by its author, are much
inspired by the idea of “chaining” that goes back to Kolmogorov. To try to explain
this idea in the current review (it is very well explained in the book by the way!),
let me illustrate one fundamental example that I believe is the starting and one of
the selling points of Talagrand’s textbook.

Consider a subset T of ¢2(N), and i.i.d. Bernoulli random variables (¢;);>1. For
teT, set Xy =), t€, and let

b(T) := Esup X;.
teT
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The process (X;)¢er is called a Bernoulli process, and one wishes to understand
the value of b(T') from the geometry of the set T (as a subset of £2(N)). The bound

(0.8) b(T) < sup [|t]|x
teT

holds trivially, and it is also possible to show (see Chapter 5) that

(0.9) WT) < \/ggm,

where g(T) = Esup,cr ;> tigi, with g; independent, standard Gaussians. The ¢!
bound (8] and the Gaussian bound (0.8) have very different flavors. For instance,
if we take T = {0,a} for some a ¢ ¢*, the former is meaningless while the second is
of constant order. In the case T = ¢!, we have the opposite: the Gaussian bound
is infinite while (I.8]) is equal to 1.

Strikingly, these are the only two useful bounds for any Bernoulli process! In
Talagrand’s book, we learn that any other upper bound must come essentially from
a mixture of ([I.8) and ([@J). To be more precise, in 2013 Bednorz and Latala [11[2]
proved that there exist universal constants ¢ and C' such that for any subset T
of ¢2,

cb*(T) < b(T) < Cv*(T),
where
b*(T) := inf {g(Tl) + Sujp It s TCTh + Tg}.
teTs

This theorem, previously known as the Bernoulli conjecture (see Theorem 5.1.5),
has several implications in the convergence of random Fourier series and lies at the
core of the theory of suprema of random processes. One of the highlights of this
textbook is the presentation of its proof and several generalizations, as well as open
questions.

I hope the examples above give to the reader a taste of what this book is about
(and not about). But they barely touch the full scope of the monograph. Talagrand
goes to infinity and beyond and shows, for instance:

(1) how the chaining method allows one to derive sufficient and necessary con-
ditions for convergence of Fourier series (Chapters 3 and 7);

(2) how to proceed when dealing with a-stable processes (Chapter 8) and in-
finitely divisible processes (Chapter 11); and

(3) a characterization of sequences (a,,) such that for each orthonormal se-
quence (¢p,) the series Y, < amdy, converges almost surely.

In the last chapters, he spends a fair amount of time describing an ambitious and
long range open research program to determine the limits and boundaries of the
chaining method.

Talagrand’s goal in this book is, without any doubt, very ambitious. It is not an
introductory volume, but it contains marvelous ideas that should very likely be in
the toolbox of anyone dealing with stochastic processes. It was my companion dur-
ing many long (and happy) days of last summer. And I still feel T barely scratched
its surface.
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